
Literate Programming, Why?

Bart Childs

Texas A&M University

Abstract

Knuth's WEB system for literate programming has slowly built a

signi�cant following. Systems now exist for most common high level

languages.

I will give an overview of literate programming and a biased view

of its status including:

1. an annotated bibliography of available WEB systems,

2. elementary software metrics that may be used in evaluating

codes,

3. an indication of the using (practicing?) communities, and

4. expected changes/evolutions in these systems.

The `Literate Programming' column of the CACM was canceled

because it seemed every literate programmer had created their own

system. Both sides of this issue will be addressed.

Finally, we will discuss the use of a literate programming

environment in a �rst programming/problem solving/CS-1, and CS-2

type courses. This is being done on an experimental basis in honors

sections of our courses this semester.

1

1 Introduction

Literate programming is a style in which the design of the code reects that

the human reader is as important as the machine reader. The human

reader is often associated with the expensive process of maintenance and

the machine reader is the compiler/interpreter. Literate programming is a

process which should lead to more carefully constructed programs with

better, relevant `systems' documentation.

We acknowledge that a program which produces correct results may be

quite di�cult (to nearly impossible) for a human reader to understand. It

is also possible to produce programs that appear correct to the human that

the machine will not accept. We claim that these extremes are part of the

causes of the high cost of maintenance. This cost is reason enough for our

professions to seek a dramatically di�erent methodology in programming.

We de�ne literate programming to be a methodology and process for

simultaneous construction of a code and its documentation. The code and

documentation will coexist in the same source(s). The author must keep as

a goal the requirement of human readability : : :

A second requirement in this de�nition is that the author take care to

modularize the code in appropriate cognitive chunks; be descriptive in

naming the cognitive chunks; and select variable names to contribute to

clear understanding of the function of the code. One screen : : :

One page : : :

They should not be so short as to be trivial. Pseudo-code descriptions

should be carefully constructed : : : not just verbose. Variable names should

be descriptive, Knuth envisioned \literate programmers with thesaurus in

hand selecting the best names for variables."

Finally, our de�nition requires that the process produce aids to the

human reader that are similar to the best technical books. The minimum

set includes: a table of contents; presentation of both the documentation

and code at a level of graphic excellence consistent with reasonably

available current practice; indices of variable names (similar to compiler

cross references) and author supplied supplements; cross references of the

cognitive chunks; and diagrams or other graphics that will aid

understanding of the code.

2

We believe that verbosity is preferable to omission of documentation.

Good documentation and code will be concise, however it is better to err on

the side of slight excess in documentation rather than too little.

Current programming methodology is characterized by:

� code and documentation in separate �les and rarely synchronized,

� variable names that are mnemonics and acronyms, not words,

� documentation that is seldom created by the programmer, and

� documentation that has a lower priority than the program.

Knuth created the style of literate programming we are following and

stated \it will lead to the construction of better programs and that those

programs will actually be created in less time than comparable programs

created in the usual manner [Knuth84]."

These advantages have not been proven by carefully designed tests,

carried out repeatedly. However, we are con�dent that fair tests would

show this to be true. This is based upon circumstantial evidence we have

observed. The necessary testing would be expensive because it would have

to be based upon several large projects. The resulting software may have to

be monitored for years to be conclusive.

The maintenance of codes is frequently quoted as being from 60% to

80% of the cost of signi�cant codes during their lifetimes. Bad grammar

and spelling; use of acronyms, mnemonics, and creation of `new words' from

intentional misspellings: : :

Literate programming is not a stand alone concept: : :

make, CASE tools, con�guration management, : : :

It is a disciplined way of doing what we should be doing : : :

We consider literate programming to be a methodology that aids the

programmer (team) in producing the `systems documentation' of codes

simultaneous with the code. This integrated documentation is necessary for

e�ective maintenance. Further, we believe the design concepts that Knuth

selected encourage the use of these concepts without being intrusive.

3

The `Literate Programming' column was canceled in the CACM because

: : :

TheLitProg discussion list leads me to believe that there are several

thousand people trying to do it worldwide. Messages often have these

themes:

1. just one more feature,

2. I would adopt it if it behaved like the editor on my Macintosh (or : : :),

3. I would use it but those I work with will not : : : ,

4. there is too much to learn, and

5. I would use it if it used WYSIWYG system X instead of TEX.

The �rst theme validates the CACM rationale. Why do people write these

systems?

The second and third themes are indications of the problems in our

profession. Thorough, e�ective communication between teams and

members thereof is important. We suspect that the most successful teams

have such extensive training but in tracking recent graduates, we know that

many teams do not.

The �rst, fourth, and �fth should also be considered together. We need

simple literate programming systems. Statistical studies of existing literate

programs show that many features of the existing systems are not used: : :

We believe that quality software and documentation can be achieved

only through purposeful e�orts.

Lin posed the question, \since programmers are notorious for not

documenting programs, why might they want to write literate ones?" We

feel that there are three reasons:

1. the shortage of programmers has disappeared and it is time for a more

professional approach;

2. the pro�tability of the employer should make the programmer's

environment better; and

3. the lessons learned in manufacturing by the American automobile

industry are signi�cant. We cannot a�ord to continue creating software

to be repaired.

4

Reading maketh a full man; conference a ready man; and writing an exact

man. { Francis Bacon

What is written without e�ort is in general read without pleasure.

{ Samuel Johnson

The reason this letter is long is that I did not have time to write a short one.

{ Blaise Pascal

5

2 Literate Programming Systems,

Fundamentals

Knuth's WEB is apparently the most commonly used style of literate

programming. It can be characterized as a formalized and structured

pseudo-code system. It strongly encourages the writing of the code in small

parts through the use of a pseudo-code like labeling strategy.

These small parts or chunks may vary depending upon the problem,

programming language, and programmer. These are generally called

sections. Sections may have three parts: documentation, de�nitions, and

code. The de�nitions part may be macro de�nitions or instructions about

local formatting conventions. De�nition parts of sections are more common

in Pascal WEBs than in other languages.

The �gure on the next page is from a study by Babiker, Childs, and

Fujihara. This �gure is a distribution of the percentages of sections in

tex.web with the indicated number of lines of documentation and code.

In most cases sections should be approximately one screen full. This a

guideline and is not intended to be a rule. If Knuth's WEB's are taken to be

de�ning examples, it is obvious that there are a number of sections that are

more than one \screen" or signi�cantly less.

The WEB style of literate programming can easily be used with both

top-down and bottom-up programming. The sources of TEX and METAFONT

are examples of this.

Inside every big program there is a small one struggling to get out.

C. A. R. Hoare

6

We list these characteristics of a WEB style literate program and the

minimum set of tools which are needed to prepare, use, and study the

resulting code. Some of these were explicit in the de�nition given earlier.

1. The high-level language code and the documentation (needed for

maintenance functions or writing a user's guide) will be in the same

(set of) source �le(s).

2. The documentation and high-level language code are complementary

and should address the same elements of the algorithms being written.

3. The literate program should have logical subdivisions. We call these

sections. The current forms of WEBs that we use also allow a higher level

module which we call chapters. (Another level is obvious because codes

often are based upon the linking of separately compiled parts.)

4. The system should be presented in an order based upon logical

considerations rather than syntactic constraints.

5. The documentation should include an examination of alternative

solutions and should suggest future maintenance problems and

extensions.

6. The documentation should include a description of the problem and

its solution. This should include all aids such as mathematics and

graphics that enhance communication of the problem statement and

the understanding of its challenge.

7. Cross references, indices, and di�erent fonts for text, high-level

language keywords, variable names, and literals should be reasonably

automatic and obvious in the source and the documentation.

These requirements have been adapted from (Knuth, 1992), and

(VanWyk, 1989 and 1990). This list has been a�ected by our experiences as

WEB users: �rst in a maintenance mode, then as an author, and �nally using

WEB in undergraduate and graduate education environments. The last has

involved the creation of some tools to enhance the use of literate

programming in all environments.

7

2.1 The WEB Style of Literate Programming

tangle ! foo.hll ! compiler/linker!executable

%

foo.web

&

weave ! foo.tex ! TEX/dvi ? !document

Figure 1. The WEB process. The source of the code and documentation are

in the source �le foo.web. The tangle, compile, and link process creates

an executable. The weave, TEX, and dvi conversion process creates a

document.

There have been a number of WEB and WEB-like systems developed. We

will list a simple classi�cation structure for these systems and identify some

of the systems in each classi�cation.

� WEB systems that are like the original by Knuth. These systems will

have at least the two processors to extract code and documentation, use

similar command structures, macro �les, and produce similar outputs.

{ Knuth's original WEB

{ Levy and Knuth's CWEB

{ Krommes' FWEB is multi-lingual!

� Ramsey created Spider which allows the user to create a WEB for the

language of choice. Ramsey's examples include: Ada, awk, C, and

SPL.

{ Gragert and Roelofs Reduce

{ Gragert and ? Maple

� Ramsey also created a NOWEB system, a \low-tech" literate programming

system (Ramsey, 1991).

8

3 Is Program X a Literate Program?

The concept of creation of a program with relevant and closely coupled

documentation is straightforward. However, it seems to be easy to lose

sight of the goal. We feel that literate programs will generally be done only

as the result of a concentrated e�ort. Literate programs are not created

accidentally. Some obvious questions are:

� Is the level of documentation appropriate?

� Does the documentation relate to the code at hand?

� Are the code fragments appropriately concise?

� Is the index appropriately supplemented with user entries?

� Do the section names agree in tenor with its code?

� Are the variable names appropriate?

We will use this digression to illustrate the point that the literacy of a

program is not accidental. Codes done with DoD 2167 are required to have

several levels of documents associated with them. In a minimal sense these

include: requirements, speci�cations, design, and code.

It could be argued that the documentation portions of the sections of a

literate program could simply be hypertext links to appropriate paragraphs

of these di�erent sources. We feel there is no merit to such a proposal.

Good documents can be constructed by teams but they require signi�cant

editing to ensure continuity, consistent language, and : : : ??? The use of

hypertext facilities to see background information would be powerful, but

the documentation should generally be written explicitly to complement

the code in most cases.

Additional �gures from Babiker, Fujihara, and Childs: : :

There are some measures that should not be presented graphically, but

simply in tabular form. These include: percent of modules with user

supplied index entries, ratio of number of unique user supplied index entries

to number of sections, mean (and standard deviation) of number of words

per `section name,' and percent of words in variable names that are not in a

dictionary.

9

4 Companion Tools

The tangle and weave tools are necessary for the WEB style of literate

programming. They enable the characteristic of the code source and

documentation being in a common �le. However, we have found a number

of other tools to be of signi�cant value. These tools span the range from

editors to aiding checks on syntax, similar to the unix tool `lint.'

As we stated earlier, we consider literate programming to be a

disciplined means of integrating the tasks that are usually ascribed to as

good software engineering practices. Most (or all?) of the tools we suggest

exist in many other environments. These include:

Literate programming environments are not central to this paper. We

include mention of them only to the extent that they should:

� be context sensitive to the structure of the literate program;

� provide access to and use of the index of variables, : : : ;

� provide access to and use of the pseudo-code names of sections;

� enable navigation through a literate program source based upon the

previous items;

� enable navigation through a literate program source using chapter,

section, : : : mechanisms; and

� be compatible with existing con�guration management systems or

provide reasonable alternatives.

The editor functions listed above are available in a GNU Emacs based

web-mode. A complete programming environment would include at least

the following coordinated windows (or views) of a program:

� the editor's view of the source of the literate program,

� typeset output, the listing,

� debugger views of the code, : : : , and

� some form of a view of the pseudo-code structure of the program.

10

We would expect that a button would be available to synchronize the

windows when desired. We feel that continuous synchronization would be

wasteful and distracting.

� a syntax sensitive editor { The primary features are not the

understanding of the detailed syntax of the high level language(s). The

most important concept is to be able to view the WEB at a high level

(pseudocode constructs, outline editing, : : :); navigation via chapters,

sections, included �les, section names, variable names, and user ags;

and elimination of repetitive typing of long section names.

� counters of WEB (and TEX) constructs { This can indicate a great lack

of user supplied index entries and needless propagation of TEX macros.

� syntax checkers at a low level { C and TEX both rely heavily on the

use of matched braces for grouping. We have found it is often better

to leave the editor and check for balanced delimiters o�-line.

� graphical and other non-textual views of code structure { Out �rst

e�ort was a graphical view and the limited screen real estate led us

to consider a list view (much like the NeXT presentation of directory

structures.

� makefile creators { These tools will scan WEBs and put one more level

of dependencies in the makefile. The output high level language is

often dependent upon a web of WEBs and hWEBs.

� con�guration management { Systems such as SCCS and RCS should be

an integral part of development of quality codes in literate programming

as in traditional methodologies.

We have also worked with some tools that are application speci�c.

Examples such as converting the TEX description of a mathematical

statement of a di�erential equation into the C or Fortran version of a

Fr�obenius recurrence relation are powerful but too speci�c for this paper.

11

5 Future Changes

Tailorable seems nice but is that defeating the purpose.

The CACM cancellation was because everybody seemed to write their

own LP system. Heck, nobody really makes full use of the existing system

except for the writers. BC often thinks he has made pretty full use of the

system and then �nds that he has not used 60 to 70% of the FWEB

commands.

Bart's placement of braces in C. Bart's preference for begin end over

braces. Are such views worthwhile?

I think that I read that somebody could not stand reading WEB because if

formatted the Pascal <> as 6= : : : When I write it in pseudo-code I darned

sure don't write the former!

White space is a great aid to reading. However, I �nd that LaTEX's use

is sometimes bothersome, FWEB to some extent too.

Should the editor be really syntax directed? If you are coding in

Fortran and you have to have an open statement, how about getting this

open ([UNIT =]

o , FILE =

o , STATUS = 'NEW' 'OLD' 'UNKNOWN' 'SCRATCH'

o , IOSTAT =

o , ACCESS = 'SEQUENTIAL' 'DIRECT'

o , FORM = 'FORMATTED' 'UNFORMATTED'

o , RECL =

o , BLANK = 'NULL' 'ZERO'

o)

and letting the user edit it to the desired form. The environment of

learning how to handle every possible completion could be horrible.

If you want to make a user interface more di�cult to use, add functionality

to it.

Edsger Dijkstra

12

6 Conclusions

There was a question in the title of this talk, the title was Literate

Programming, Why?

I think the reason to do literate programming is that we are creating a

mess with the current processes. Computer programs are an important part

of today's world and if they are worth doing, they are worth doing

correctly. I believe that literate programming is the easiest simple step we

can take toward creating economical, reliable, and maintainable programs.

There is are three simple requirements for creating literate programmers:

training, training, and training.

If Aggies can learn it, surely anybody can?

13

7 References

WEB for Pascal

CWEB for C and C++

FWEB for Fortran 77, Fortran 90, C, C++, Ratfor, and TEX

Spider for the creation of WEB systems

labrea.stanford.edu is the �rst source for WEB and CWEB.

lyman.pppl.gov is the �rst source for FWEB and Spider.

ftp.cs.tamu.edu is the �rst source for web-mode.el.

Most are available from shsu.edu, ftp.th-darmstadt.de, and a number of

other servers.

14

