

Software Documentation: How Much is Enough?
Lionel C. Briand

Software Quality Engineering Laboratory
Carleton University

Department of Systems and Computer Engineering
1125 Colonel By Drive

Ottawa, ON, K1S 5B6, Canada

URL: http://www.sce.carleton.ca/Squall/

e-mail: briand@sce.carleton.ca

1 Introduction

It is a well-known fact that software documentation is, in
practice, poor and incomplete. Though specification,
design, and test documents among other things are
required by standards and capability maturity models
(e.g., SEI CMM), such documentation does not exist in a
complete and consistent form in most organizations.
When documents are produced, they tend to follow no
defined standard and lack information that is crucial to
make them understandable and usable by developers and
maintainers.

Why is this the case? Recent work [4] suggests that
documentation is often perceived as too expensive,
difficult to maintain under the typical time pressures that
are pervasive across the software industry. Interestingly
enough, most people think some form of documentation is
necessary but there is usually little agreement on what is
needed. Even more surprising, in everyday practice
people actually use incomplete, obsolete documentation
and find it useful. Obviously, in practice, a tradeoff has to
be found between the level of detail and scope of
documentation, the frequency with which it is updated,
and the cost of its development and maintenance. Intranet
technologies have made the dissemination and use of
documentation much easier within software development
organizations.

Then a fundamental practical question, which motivated
this keynote address, is to better understand what type of
documentation is required, what is needed to support its
completeness and consistency, and what is the level of
precision required for each type of document. These
questions cannot be investigated at that level of generality
though. Answers are likely to be very context-dependent
if they are to be precise. We focus our attention here on
object-oriented development and the Unified Modeling
Language (UML) [2].

2 Documentation in Object-Oriented
Development

 Typical object-oriented development methodologies [2,
3, 5] require that people perform and document (1)
Analysis (i.e., a specification with the specific feature that
the system structure starts to emerge as well as its
functionality), (2) high-level or architectural design (i.e.,
with the main purpose of defining and describing
subsystems) and (3) low level design (i.e., with the main
focus of optimizing and completing the system design).
Those activities are typically taking place in the context
of incremental development and are therefore subject to
numerous iterations.

Analysis documents typically contain a use case model
describing high-level end-user functionality in a textual
but structured manner. From this, an Analysis class
diagram is derived, mostly containing application domain
objects (i.e., objects corresponding to application domain
concepts). Then interaction diagrams (e.g., sequence
diagrams) are defined for each use case, thus describing
the possible exchanges of messages between objects for
various possible scenarios. This is in turn useful to
complete the Analysis class diagram. For classes with
state-dependent behavior, statecharts are usually defined
so as to clearly model such complex behavior and avoid
likely mistakes early on. Statecharts also help to identify
missing use cases if transitions are not covered by
existing use cases.

The high-level design usually decomposes the system into
subsystems with clearly defined interfaces (i.e., public
operations and possibly contracts) thus introducing
another level of information hiding. Low-level design
makes use of design patterns and modifies the design so
as to complete it and optimize it. This is admittedly an
over-simplification but this summary provides the
overview we need here to develop our argument.

The main motivations for all existing object-oriented
methodologies are as old as software engineering itself:

abstraction and separation of concerns as a means to cope
with complexity. What is more specific to object-
orientation is the smooth transition between phases,
especially between analysis and design.

In this context, many questions arise regarding how
exactly such Analysis and Design documentation is to be
written and used:

• Regarding requirements elicitation: how should
use cases be described, using which templates?
What should be the writing style and guidelines
to follow?

• Regarding the class diagram, what class
taxonomy should be used in order to help assign
class responsibilities (e.g., control, boundary,
entity [2])? What level of detail should be
required? For example, should parameter and
attribute types (e.g., UML types) be provided at
that stage?

• Important questions also relate to the use of
contracts. Should Analysis contracts [6],
defining pre-conditions, post-conditions, and
class invariants be required (e.g., using the
Object Constraint Language (OCL) [7]) so as to
make the analysis more precise? Should they be
left for the design stage only? Fusion [3]
recommends the former whereas Bruegge and
Dutoit [2] recommend the latter.

3 Extreme Programming and Documentation
Extreme Programming (XP) has a very different take on
software documentation. The reason why this is discussed
here stands from the fact that, with respect to
documentation, it provides a drastically different view
from what has been assumed in the last two decades or so
and it is becoming increasingly popular.

XP relies exclusively on “oral communication, tests, and
source code to communicate system structure and intent”
[1]. In other words, if faithfully applied, there is no
Analysis and Design documents. The main assumptions
which justify such an extreme approach are:

• XP is designed to work with small teams of two
to ten programmers

• Staff turnover is supposed to be small as there is
“less chance that a programmer gets frustrated”.

• The customer is an integral part of the team (thus
providing constant feedback on requirements).

• A comprehensive suite of tests is maintained
thus communicating, in a certain way, the intent
of the software.

• With new technologies, the cost of change does
not increase exponentially (as common wisdom
and existing data suggest) and rises slowly over

time. This has a huge impact as an attitude of
constant change of the requirements and
refinement of the design then becomes possible.
There is no need for upfront, thorough,
tentatively complete Analysis and Design
models and documents.

Of course, there are a number of possible contradictions
in the premises and principles of XP that are worth
discussing and investigating.

• How do you derive your test suite? How do you
guarantee a systematic testing strategy without
Analysis or Design documentation? We all know
the limits of white-box testing (i.e., cannot detect
missing functionality) and the drawbacks of
relying on word-of-mouth for specifications.

• The specification of the project is continuously
refined as the system is developed. How do you
refine what is not documented? Can test suite be
really a substitute with that respect?

• XP is supposed to work with programmers of
“ordinary skills”. Can you rely on such
programmers to have a total control and
mastering of complex system specifications and
designs?

• XP makes design refactoring a part of
“everybody’s daily business”. Are test suites and
oral communication enough to guarantee that all
team members have intellectual control over the
design?

So how does all this fit with standard Object-Oriented
analysis and design approaches? Are the XP ideas
compatible with them? Is all this just one more software
engineering fad, a reaction to a decade long strong
emphasis on the software process and the procedural
aspects of software development?

4 So where do we stand?

The main reason why the questions above are so difficult
to answer is that they cannot be investigated analytically
and require an investigation in vivo, with actual analysts,
designers and programmers. It requires the empirical
investigation of human processes in realistic contexts and
settings.

In a context where hard, empirical evidence does not
exist, it is natural that expert opinions (sometimes self-
proclaimed) then prevail thus leading to outcomes of,
over the long term, questionable value. Many articles
regarding agile development (e.g., XP) resemble more
rambling stories than well-conducted and reported case
studies [8]. Their conclusions are often not clearly
supported by evidence and conveniently match the
author’s viewpoints or commercial interests.

This is why software documentation, being an important
practical subject, deserves research programs of its own. I
do not mean necessarily working on formal notations but
rather

• better understanding, at each stage of
development and in well-defined contexts, the
needs of software engineers as far as
documentation is concerned.

• experimenting with alternative technologies
addressing those needs, e.g., the use of OCL
contracts during object-oriented analysis.

5 A Research Program

Any research program focusing on software
documentation needs to define the following components:

• A context, e.g., OO development with the UML.

• A scope: requirements, Analysis, high-level
design, etc.

• A set of hypotheses to be investigated. Examples
are: (1) Analysis contracts can help reduce the
number of errors introduced in the analysis
model and can better convey the intent of system
operations to maintainers, (2) Sequence diagrams
clearly model the relationship between the
system structure (class diagram) and end-user
functionalities (use cases). It therefore provides
the maintainers with a rationale for the design of
the system.

• An operational plan for a series of experiments
allowing, step by step, the convergence towards
credible answers. It is unlikely that one
experiment will do the job and studies with
different designs are usually necessary to prevent
threats to validity.

Hypotheses may involve a number of dependent variables
that may be affected by documentation. Typical variables
are related to the introduction rate of defects, the capacity

of people to precisely and clearly understand aspects of
the system, and effort saved on subsequent phases of
development. With respect to maintenance, the difficulty
is that the benefit of good documentation can only be
observed over time, as new releases of the software
system are produced. Such studies (referred to as
longitudinal) are usually complex to carry out and sustain
over a long period of time.

6 Acknowledgements

This work was partly supported by an NSERC operational
grant. The author is director of the SQUALL laboratory at
Carleton University. The SQUALL lab focuses on
software quality engineering (assurance, testing,
verification, and measurement) and further information
can be found on the following web site:
http://www.sce.carleton.ca/Squall/.

7 References

[1] K. Beck, “Extreme Programming Explained”,
Addison Wesley, 2001

[2] Bruegge and Dutoit, “Object-Oriented Software
Engineering”, Prentice-Hall, 2000.

[3] Coleman et al., “Object-oriented Development – The
Fusion Method”, Prentice Hall, 1993

[4] A. Forward, “Software Documentation – Building and
Maintaining Artefacts of Communication”, Masters
thesis, University of Ottawa, 2002

[5] Robillard, Kruchten, D’astous, “Software Engineering
Process”, 2002

[6] Mitchell, McKim, “Design by Contract, by Example”,
Addison Wesley, 2002

[7] Warmer, Kleppe, “The Object Constraint Language”,
Addison Wesley, 1998

[8] Yin, “Case Study Research – Design and Methods”,
2nd edition, SAGE publications, 1994

