FIST INTRODUCTION

Introduction.
FIST
Emphatic Message Generator
by John Walker

This program is in the public domain.

««««««««««««««

EEEEE RRRR_ DDDD PPPP 000 EEEEE RRRR
E R R E R R

zmmmzz=
E
=
z
=Bz

E R R

D
D R

EEE RRRR D

E D

E RR
E R R
EEEEE R R

A year or two after emigrating, she happened to be in Paris on the anniversary of the Russian invasion of
her country (Czechoslovakia). A protest march had been scheduled, and she felt driven to take part. Fists
raised high, the young Frenchmen shouted out slogans condemning Soviet imperialism. She liked the slogans,
but to her surprise she found herself unable to shout along with them. She lasted only a few minutes in the
parade.

When she told her French friends about it, they were amazed. “You mean you don't want to fight the
occupation of your country?” She would have liked to tell them that behind Communism, Fascism, behind
all occupations and invasions lurks a more basic, pervasive evil and that the image of that evil was a parade
of people marching with raised fists and shouting identical syllables in unison. But she knew she would never
be able to make them understand. Embarrassed, she changed the subject.

— Milan Kundera, The Unbearable Lightness of Being

#define PRODUCT "fist"

#define VERSION "4.0"
#define REVDATE "2001-11-24"

1

http://www.fourmilab.ch/

2 COMMAND LINE FIST §2

2. Command line.

FIST is invoked with a command line as follows:
fist options

where options specify processing modes as defined below. Input is read from standard input until end of file
is encountered and output is sent to standard output. All I/O is done serially and the program may be used
as part of a pipeline.

3. Options.
Options are specified on the command line, preceded by a hyphen, . Arguments for options which take
them must immediately follow the option letter. Arguments without options may not be aggregated.

“w_»

-c
Don’t print the fist—just the block letter message.
-f pat
Fill the fist with the text pattern pat (default “x”).
-1
Left handed fist.
-m text
Use text as message text. You can specify multiple -m options for multiple line messages.
If the -n option is not specified, lines from standard input will be printed after lines given
by -m options.
-n
Do not read message from standard input.
-s factor
Scale the fist by the given percentage 25 <factor< 100.
-u

Print how to call information.

84 FIST MAIN PROGRAM 3

4. Main program.
The main program has a simple straight-through one pass structure. The section names indicate the
phases of processing.
(Main program 4) =
int main(int argc, char xargv|])
{
(Declare local variables 5);
(Process command line options 17);
(Generate and print the fist 6);
(Process text specified by command line M options 13);
(Read input lines and write as block letters below the fist 14);
return 0;

}

This code is used in section 21.

5. The following variables are defined in the context of the main program. No dynamically allocated
storage is used.
(Declare local variables 5) =

int i, j, I, zstart, ystart, zend, yend, fillen, prfist = TRUE, readin = TRUE, mopt = FALSE,

left = FALSE, scale = 100, sPLEN, sXLEN

char xcp, opt, xfillpat = FILL;

char ibfr[200];

char page [PLEN][XLEN + 2];

char [len[PLEN];

This code is used in section 4.

6. Generate and print the fist.

(Generate and print the fist 6) =
if (prfist) {
(Generate the fist in memory 7);
(Print the fist 12);

}

This code is used in section 4.

7. The fist is generated in three phases. First we initialise the in memory arrays, then scan the table of
rectangles to be filled, and finally add line terminators after the rightmost character filled in each line.

(Generate the fist in memory 7) =
(Compute scaled image size 8);
(Initialise fist and line length arrays 9);
(Fill in rectangles comprising the fist 10);
(Place C string terminators at the end of each line 11);

This code is used in section 6.

4 MAIN PROGRAM FIST §8

8. The original fist image was encoded in 1969, the very height of the mainframe era, when real program-
mers punched cards and line printers used wide paper with 120 characters or more per line (132 in the case
of UNIVAC printers: 22 36-bit words of 6 FIELDATA characters each). The image was sized to fit a wider
page than is common on modern-day window displays and printers—it requires a line length of 96 character
or more to avoid truncation or wrapping around. To preserve the integrity of the original 30+ year old image
while accommodating contemporary community standards, the —s option allows you specify a scale factor
between 25% and 100% (the latter the default if the option is omitted) which applies to both the width and
height of the fist image. Here we take the scale factor scanned in { Process command line options 17) or the
default and compute the actual width and height of the image to generate. We define a Scale macro which
applies this scale factor to co-ordinate pairs extracted from the table of filled rectangles in { Fill in rectangles
comprising the fist 10) below.

#define Scale(z,y) x = (x * scale)/100;
y = (y * scale)/100;
(Compute scaled image size 8) =
sPLEN = (PLEN * scale)/100;
sXLEN = (XLEN x scale)/100;

This code is used in section 7.

9. The fist image is built in the page array. The rectangle table, fistab, only specifies the areas to be
filled so we need to initialise the array to all blanks so areas not filled will print properly. We also clear the
llen array to all zeroes. This array keeps track of the rightmost character filled on each line and permits
(Place C string terminators at the end of each line 11) to insert C string terminators so no trailing spaces
are printed.

(Initialise fist and line length arrays 9) =
memset (llen, 0, sizeof llen);
for (j=0; j <sPLEN; j++) {
memset (page[j], >’ , SPLEN);

This code is used in section 7.

810 FIST MAIN PROGRAM 5

10. The fist is defined in the fistab array as corners of rectangles in the page array to be filled with fillpat.
The last rectangle in the table is indicated by its first Y co-ordinate being zero. If the -1 option is specified,
we mirror the image in the X axis to change it into a left handed fist.

(Fill in rectangles comprising the fist 10) =
fillen = strlen(fillpat);
l=0;
while (TRUE) {
xstart = fistab[l++];
if (—(ystart = fistab[l++])) {
break;
}
xzend = fistab[l++];
yend = fistab[l++];
Scale (zstart, ystart);
Scale(zend, yend);
if (left) {
int tz = sXLEN — xstart;
zstart = sXLEN — zend,
zend = tz;
}
for (i = ystart; i < yend; i++) {
for (j = zstart; j < zend; j++) {
pageli][j] = fillpat[j % fillen];

if (zend > llen[i]) {
llen[i] = zend;
}
}
}

This code is cited in section &.

This code is used in section 7.

11. As the rectangles from fistab were filled in the page array, the rightmost character in each line is kept
track of in llen. Once all of the rectangles have been filled, we riffle through the lines and place a C line
terminator at the end of each line.

(Place C string terminators at the end of each line 11) =
for (i =0; i < sSPLEN; i++) {
pageli][llen[i] + 1] = EOS;

This code is cited in section 9.

This code is used in section 7.

12. With the fist now built in the page array, we need only iterate over the lines, printing each in turn.
(Print the fist 12) =
for (i=0; i < sPLEN; i++) {
puts (pageli);

This code is used in section 6.

6 MAIN PROGRAM FIST §13

4

13. If one or more “-m” options were specified on the command line, (Process command line options 17)
sets the mopt flag to remind us to re-scan the command line and process them here. Arguments of the -m
options are passed successively to printmsg to print them in the order they appear on the command line.

(Process text specified by command line M options 13) =
if (mopt) {
for (i =0; i < arge; i++) {
ep = argolil;
if ((ep[0] ==") A ((ep[l] = m) Vep[l] =°M7)) {
printmsg (cp + 2);
}
}
}

This code is used in section 4.

14. If the “-n” option is not specified, after processing any text from command line -m options, lines are
read from standard input and printed below the fist. Lines from standard input are processed until end of
file is encountered.
(Read input lines and write as block letters below the fist 14) =
if (readin) {
while (fgets(ibfr, (sizeof ibfr) — 1, stdin)) {
ibfr[strlen (ibfr) — 1] = 0;
printmsg (ibfr);

}

This code is used in section 4.

815 FIST MAIN PROGRAM 7

15. Lines of text below the fist are printed by the printmsg function. A maximum of 16 characters are
printed from each line; any additional characters are truncated.

(Print message in block characters 15) =
static void printmsg(char *ibfr)
{
int ¢, 4, j, [;
char oline[134];
1 = strlen(ibfr);
if (I >16) {
[= 16;
}

puts("\n");
for (i=0; i <8; i++) {
oline[0] = EOS;
for (j=0; j <l j++) {
if (j>0) {
streat (oline, "L,);

}

¢ = ibfr[jl;

if (islower(c)) {

} ¢ = toupper(c);

if ((c<’0?)Vie>2_7)) A

=0’
}
streat (oline, bitstring (¢, 1));
}
puts(oline);
}
}

This code is used in section 24.

8 MAIN PROGRAM FIST §16

16. The bitstring function decodes the block character font defined in chartab below. The function is
called with the ASCII character code ¢ and the row index i and returns a pointer to a static string (yikes—
non-reentrant!) containing a zero-terminated string of 6 characters containing the row of the character. The
representation of the character is always made up of spaces and the character itself.

{Decode block character font table 16) =
static char xbitstring (int ¢, int i)
{
static char r[8];
int bits, b, n;
bits = (chartab[(i > 1)+ ((c—'w’) <€ 2)] > ((i & 1) 70: 8)) & #FF;
b= 32;
n = 0;
while (b) {
rln++] = (bits &b) 7 ¢’ L7
b>=1;
}
r[n] = EQS;
return r;

}

This code is used in section 24.

817 FIST MAIN PROGRAM 9

17. We scan the command line options with our own old-fashioned traditional option cruncher. There
are so few options and they’re so trivial to parse it’s hard to justify going to all the trouble of using getopt.
Preserving the tradition of a program which, among its myriad incarnations, ran on MS-DOS, options are
accepted in either upper or lower case.

(Process command line options 17) =
for (i =0; i < arge; i++) {
cp = argvli];
if (xep=--7){
opt = *x(++cp);
if (islower(opt)) opt = toupper(opt);
switch (opt) {

case ’C’: /x —c Don’t print the fist =/
prfist = FALSE;
break;
case ’F’: /x —fpat Fill fist with pat pattern /

if (cp[1] #0) {
fillpat = cp + 1;

}

break;
case 'L’: /% =1 Left handed fist */
left = TRUE;
break;
case 'M’: /* -mtext Specify message on command line */
mopt = TRUE; /* Just remember we’ve seen an -m—processing occurs on the second pass over
the options after the fist is printed. */
break;
case ’N’: /% -n Don’t read standard input #*/
readin = FALSE;
break;
case ’S’: /* =sfactor Scale fist by factor percent, 25 <factor< 100 */

scale = atoi(cp + 1);
if (scale < 25) {
scale = 25;

}
else if (scale > 100) {

scale = 100;
}
break;
case ’7’: case ’U’: /x -u Print how to call information */
(Print how to call information 18);
return 0;

}
}
}

This code is cited in sections 8 and 13.

This code is used in section 4.

10 MAIN PROGRAM FIST §18

18. Print the how to call information when the “-u” option is specified. Such information was traditionally
sent to standard error, but contemporary GNU software prints to standard output, as we do here.

(Print how to call information 18) =
printf ("FIST,--, Emphatic_ message program. . Call\n");

printf (" Luuuuuuuuwith fist [options] <input_>output\n");

printf ("\n");

printf (" uuuuuuuuu0ptions : Luu-CuuuuuuuCool it baby (no,fist) \n");
metf("l LLLLLLLLLUUULLLLLLLFPAt UL |FilluWithuPatternupat\Il");
p?”intf("u LLuLLLLULLLLULUUULULLUL- LuouououuLeftyhanded fist\n");

prmtf("l LLLLLLLLLLLLLLLUDLLUL—MEext L Use text as message below fist,"

"(multiple ,-M options_ 0K)\n");

printf (" LuuuuuuuuuouuLLLLLLL=NuuuLLLLDon ’ t read, message from standard, input\n");
p"“mtf("l AN I I T I I A | SfaCtOI'uSCaleuflStubyu25/¢.A|_|<—|_|faCtOI'|_|<—|_|100%%\n")
pf‘mtf("l LLLLLLLLLUULLLLULUU— T s L= |_||_||_|Pr1nt_1th1Sumessage\n"),

printf ("\n");

printf (" LuuuubyuJohn Walker, (http://www.fourmilab.ch/)\n");

printf (" uuuuuuuuuuoRelease %s—-Lu%s\n", VERSION, REVDATE);

prlntf (LULUUUULIUUIUIL (P) uAllunghtSuReVerSed\n"),

This code is used in section 17.

819 FIST BLOCK CHARACTER FONT TABLE 11

19. Block character font table.

The character table is stored as an array of short integers indexed by the character codes for ASCII
characters from #20 “” through #5F “_". Characters outside this range are not defined! You should map
lower case letters to upper case and replace all unavailable characters with a replacement such as blank or
question mark. The font is defined in a 5 x 7 matrix with each row of 5 characters bit-coded in the least
significant bits of a byte. Successive rows are stored in the four shorts for each character, least significant
byte first. The curious encoding and the fact that we store these in shorts at all is, like everything else in
this program, an artefact of history.

The following block character font was created in Cleveland in about 1968. I have forgotten the name of
the creator—if you recall, please let me know. The font table was originally made for the six bit FIELDATA
code used by the UNIVAC 1108; it has been reshuffled into ASCII order and a few characters present in
ASCII but not FIELDATA added.

(Global variables 19) =
static short chartab|[] ={
0,0,0,0 /% o %/
,2056,2056,8,2048 [+ 1 %/
,5140,5120,0,0 /% " %/
120,15802,15892,0 /x # %/
,2110,10302, 2622, 2048 [x $ */
,2,9224,4640,0 /x % x/
,7202,10264,10274, 7168 /% & */
12056,0,0,0 /% * %/
L2064, 8224, 8208,2048 /x (%/
,4104,1028,1032,4096 /+) */
,42,7230,7210,0 [+ * %/
,8,2110,2056,0 /% + */
,0,0,6152,4006 /+ , */
,0,62,0,0 /x - %/
,0,0,24,6144 /% . */
,2,1032,4128,0 /% / */
,7202,8738,8738, 7168 /% 0 */
L2072, 2056,2056, 7168 [+ 1 */
,7202,1032,4128,15872 /% 2 */
,7202, 540,546, 7168 /% 3 %/
,1036,5182,1028, 1024 /% 4 %/
,15904,8252,546, 7168 [+ 5 %/
,7202, 8252, 8738, 7168 /% 6 x/
,15874,1032,4128,8192 /% 7 */
,7202,8732,8738,7168 /% 8 */
, 7202, 8734, 546, 7168 /x 9 %/
,0,2048,2048,0 /% : */
,24,6144,6152,4006 /% ; */
,516,2064,2052,512 [+ < %/
,0,15872,15872,0 /% = %/
,4104,1026,1032,4096 /+ > */
,7202,1032, 2048, 2048 /% 7 %/
,7202,10798, 8226, 7168 [x @ x/
L2068, 8738, 15906,8704 /x A */
, 15304, 8764,8738,15360 /* B */
, 7202, 8224, 8226, 7168 /+ C %/
, 15394, 8738, 8738, 15360 /* D x/
,15004, 8248, 8224, 15872 /% E */

12 BLOCK CHARACTER FONT TABLE

, 15904, 8248, 8224, 8192
, 7202, 8238, 8738, 7168
, 8738, 8766, 8738, 8704
, 7176, 2056, 2056, 7168

[x F x/
/% G x/
/x H */
/x I %/

,514,514,8738,7168 [+ J %/

,8740, 10288, 10276, 8704
. 8224, 8224, 8224, 15872
,8758, 10786, 8738, 8704
, 8754, 8746, 8742, 8704
,7202,8738, 8738, 7168

, 15394, 8764, 8224, 8192
, 7202, 8738, 10790, 7680
, 15394, 8764, 10276, 8704
, 7202, 8220, 546, 7168

, 15880, 2056, 2056, 2048
,8738,8738, 8738, 7168

, 8738, 8738, 8724, 2048

, 8738, 8738, 10806, 8704
,8738,5128, 5154, 8704
,8738, 5128, 2056, 2048

, 15874, 1032, 4128, 15872
,7184,4112,4112, 7168

,32,4104,1026,0 /% \

,7172,1028, 1028, 7168
,8,5154,0,0 /% ~ %/

}

See also section 20.

This code is used in section 21.

,0,0,0,15872 /% _ */

/x K */
/x L %/
/x M %/
/x N %/
/x 0 %/
/% P x/
/0
/xR x/

/% S */

/% T x/
/x U %/
[x V %/
/% W ox/
/x X x/
/x Y x/
/*x Z %/
f %/
*/
/x 1 %/

FIST

§19

§20 FIST FIST IMAGE TABLE 13

20. Fist image table.

The fist image is defined by fistab, an array of char consisting of quadruples representing co-ordinates of
the upper left and lower right corners of a square to be filled with the fillpat sequence. The list of squares is
terminated by a quadruple of all zeroes (actually, scanning of the table is terminated by a zero as the second
item of the quadruple—the others are not tested). This table defines a right handed fist; when the -1 option
is specified, X co-ordinates are mirrored to obtain a left hand.

(Global variables 19) +=

static char fistab[] = {

26,36, 64,102, 40,3, 57, 14, 41,2, 56, 2, 44, 1, 54,1, 58,8, 58, 12, 43, 15, 56, 22, 43, 23, 49, 23, 56, 14, 57, 20, 56, 21
56, 21,41, 15,42, 17,42, 18, 42, 21,65, 79, 65, 102, 49, 103, 65, 107, 35, 103, 48, 106, 23, 103, 34, 105, 14, 103,
92,104, 10,103, 21,103, 13,92, 25,102, 12, 95, 24, 102, 11, 98, 23, 102, 18, 78, 25,91, 17, 82, 17, 91, 16, 85,
16,91, 15,87, 15,91, 14,89, 14,91, 22, 67, 25, 77, 21, 70, 21, 77, 20, 72, 20, 77, 19, 75, 19, 77, 10, 31, 21, 43,
992,392,925, 56,23, 57, 25, 58, 24, 59, 24, 59, 15, 44, 25, 48, 16, 49, 25, 49, 17, 50, 25, 50, 19, 51, 25, 51, 21, 52,
95,52, 22, 53,25, 53, 23, 54, 25, 54, 24, 56, 25, 56, 11, 44, 14, 44, 12, 45, 14, 45, 13, 46, 14, 46, 14, 46, 15, 46, 8,
31,9,42,7,32,7,41,6,33, 6,39, 66, 25, 84, 50, 65, 34, 65, 67, 59, 35, 64, 35, 62, 34, 64, 34, 69, 22. 80, 24, 81,
93,82,23,81, 24,83, 24, 47, 25, 65, 32, 48, 33, 61, 33, 46, 26, 46, 31, 45, 28, 45, 29. 85, 34, 93, 43, 85, 44, 92,
44, 85,45, 91,45, 85, 46,90, 46, 85, 47, 89, 47, 85, 48, 87, 48, 85, 49, 86, 49, 94, 35, 94, 42, 95, 37, 95, 40, 96,
38, 96,39, 85,31, 90, 33, 85, 30, 89, 30, 88, 29, 88, 29, 91,32, 91, 33, 92, 33, 92, 33, 58, 28, 87, 29, 85, 27, 86,
27,85, 26, 85, 26,65, 51,74, 56,65, 57,73,57,65, 58, 72,58, 65,59, 71, 59, 65, 60, 70, 60, 65, 61, 68, 61, 65,
62,67, 62, 65, 63,66, 63, 65, 64, 65, 64,75, 51,83, 51, 75, 52, 81, 52, 75, 53, 79, 53, 75, 54, 77, 54, 75, 55, 75,
55,22, 35,43, 35,22, 34, 38, 34, 22, 33, 32, 33, 22, 32, 24, 32, 61,8, 78, 16, 62, 7,78, 7,62, 6, 77, 6, 63, 5, 76, 5,
61,17,70,20,71,17,76,18, 71, 19, 74, 19, 26, 4, 35, 29, 36, 5, 36, 29, 37, 12, 37, 29, 38, 16, 38, 29, 39, 20, 39,
97,40, 26,40, 27, 27, 30, 38, 30, 29, 31, 35, 31, 20, 4, 25, 14, 24, 3, 33, 3,19, 5, 19, 12, 18, 6, 18, 10, 22, 15, 25,
20,21, 15,21, 18,20, 15, 20, 16, 25, 21, 25, 29, 24, 21, 24, 25, 23, 21, 23, 22, 59, 24, 70, 24, 64, 23, 70, 23, 11
92,20, 27,21, 24,21, 27,16, 28, 19, 28, 11, 30, 18, 30, 5, 11,15, 21, 6, 22, 10, 22, 7, 23, 10, 23,8, 24, 10, 24, 9,
25,10, 25, 10,26, 10, 26,2, 12,4, 18,1, 13, 1,17, 2, 19,4, 19, 3, 20,4, 20,4, 11,4, 11,7, 10, 15, 10, 12,9, 13, 9,
16,14,18,22,16,12,17,13, 19, 18, 19, 21, 20, 20, 20, 21, 25, 59, 25, 66, 24, 65, 24, 66, 23, 66, 23, 66, 0,0, 0,0

14 PUTTING THE PIECES TOGETHER FIST §21

21. Putting the pieces together.
Now we collect together all the various pieces into the complete program, organised so the compiler can
figure out what we’re doing.

(Preprocessor definitions)
(System include files 23)
(Global variables 19)

(Global functions 24)
(Main program 4)

22. We define the following constants at the global level.

#define FALSE 0 /* What is truth? =/
#define TRUE 1

#define EQ0S °\0O’ /% C end of string marker */
#define XLEN 96 /* Maximum line length =/
#define PLEN 108 /x Page length */

F#define FILL "x" /* Default fill pattern */

623 FIST SYSTEM INCLUDE FILES 15

23. System include files.
The following include files provide access to system and library components. These files are conditionally
included based on config’s determination of which were present on the system where we’re building.

(System include files 23) =
#include "config.h"
#include <stdio.h>
#include <ctype.h>
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif

#ifdef HAVE_STRING_H
#include <string.h>
#endif

#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif

#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif

This code is used in section 21.

24. To avoid ugly forward function declarations, we collect the static utility functions at the top of the
C file so the compiler sees them before they're referenced in the main program.
(Global functions 24) =

(Decode block character font table 16)

(Print message in block characters 15)

This code is used in section 21.

16 RELEASE HISTORY FIST §25
25. Release history.
Release 1: September 1969

Originally written (on punch cards) in Case ALGOL for the UNIVAC 1108. The fist was digitised and
encoded as rectangles by hand and has not changed in any subsequent edition. The block character font was
adapted from a banner making program whose details and author I have since forgotten.

Release 2: August 1981

Rewritten in Marinchip QBASIC and released on the Marinchip giveaway software disc.
Release 3: October 1985

Rewritten in K&R C.

Release 4: November 2001

Converted to ANSI C, re-organised as a CWEB literate program. Added the -1, -m, -n, and -s options and
the ability to specify a multi-character fill pattern with the -f option.

826 FIST BUGS 17

26. Bugs.

The block character font is a limited subset of ASCII containing only upper case letters, numbers, and
punctuation with character codes between hexadecimal #20 and #5F. The font was originally created in the
late 1960’s in UNIVAC 1108 six bit FIELDATA code, and re-shuffled into ASCII order when the first port
was made to an ASCII machine in 1981. If you’d like to add lower case letters, ISO codes, or full Unicode,
go right ahead.

Scale factors smaller than about 60 on the -s option produce infelicitous results: the fist looks like it’s
wearing a mitten.

FIST will not work on machines which do not use the ASCII character code (for example EBCDIC machines).
You’ll need to shuffle the font table or translate character codes to ASCII before you index it. I don’t have
such a machine, so I'm not going to include code I can’t test.

You can’t aggregate options, separate options from their arguments with a blank, or other cool getopt
features because the program doesn’t use getopt in order to preserve its retro look.

Over the last thirty years numerous people have suggested the program might be enhanced by adding options
to raise two fingers (“peace”) or only one finger (well, you know). Please send me the code if you make this
decades-long dream a reality.

18 INDEX

FIST §27

27. Index. The following is a cross-reference table for fist. Single-character identifiers are not indexed,
nor are reserved words. Underlined entries indicate where an identifier was declared.

arge: 4, 13, 17.
argv: 4, 13, 17.
ator: 17.

b: 16.

bits: 16.
bitstring: 15, 16.
c: 15, 16.
chartab: 16, 19.
cp: b, 13, 17.
EOS: 11, 15, 16, 22.
FALSE: 5, 17, 22.

fgets: 14.
FILL: 5, 22.
fillen: 5, 10.

fillpat: 5, 10, 17, 20.
fistab: 9, 10, 11, 20.
getopt: 17, 26.
HAVE_STDLIB_H: 23.
HAVE_STRING_H: 23.
HAVE_STRINGS_H: 23.
HAVE_UNISTD_H: 23.
i: 9, 15, 16.

ibfr: 5, 14, 15.
islower: 15, 17.

j: 5, E

l: 5, 15.

left: 5, 10, 17.
llen: 5, 9, 10, 11.
main: 4.

memset: 9.
mopt: 5, 13, 17.
n: 16.
oline: 15.
opt: 5, 17.
page: 5, 9, 10,
PLEN: 5, 8, 22.
prfist: 5, 6, 17.
printf: 18.
printmsg: 13, 14, 15.
PRODUCT: 1.

puts: 12, 15.

r. 16.

readin: 5, 14, 17.
REVDATE: 1, 18.

Scale: 8, 10.

scale: 5, 8, 17.
SPLEN: 5, 8,9, 11, 12.
stdin: 14.

streat: 15.

strlen: 10, 14, 15.

11, 12.

sXLEN: 5, 8, 10.
toupper: 15, 17.
TRUE: 5, 10, 17, 22.

tr: 10.
VERSION: 1, 18.
zend: 5, 10.

XLEN: 5, 8, 22.
xstart: 5, 10.
yend: 5, 10.
ystart: 5, 10.

FIST NAMES OF THE SECTIONS

(Compute scaled image size 8) Used in section 7.

(Declare local variables 5) Used in section 4.

(Decode block character font table 16) Used in section 24.

(Fill in rectangles comprising the fist 10) Cited in section 8. Used in section 7.

(Generate and print the fist 6) Used in section 4.

(Generate the fist in memory 7) Used in section 6.

(Global functions 24) Used in section 21.

(Global variables 19, 20) Used in section 21.

(Initialise fist and line length arrays 9) Used in section 7.

(Main program 4) Used in section 21.

(Place C string terminators at the end of each line 11) Cited in section 9. Used in section 7.
(Print how to call information 18) Used in section 17.

(Print message in block characters 15) Used in section 24.

(Print the fist 12) Used in section 6.

<PI‘OC€SS command line options 17> Cited in sections 8 and 13. Used in section 4.
(Process text specified by command line M options 13) Used in section 4.
(Read input lines and write as block letters below the fist 14) Used in section 4.
(System include files 23) Used in section 21.

19

FIST

Section Page

Introduction e
Command LINe
OPDIONS .« ettt

Main PrOZramlottt ettt e e
Block character font table
Fist image table

Putting the pieces together
System include files

Release history
Bugs . .o

18

	Introduction
	Command line
	Options

	Main program
	Block character font table
	Fist image table
	Putting the pieces together
	System include files
	Release history
	Bugs
	Index
	Names of the sections
	Compute scaled image size
	Declare local variables
	Decode block character font table
	Fill in rectangles comprising the fist
	Generate and print the fist
	Generate the fist in memory
	Global functions
	Global variables
	Initialise fist and line length arrays
	Main program
	Place C string terminators at the end of each line
	Print how to call information
	Print message in block characters
	Print the fist
	Process command line options
	Process text specified by command line M options
	Read input lines and write as block letters below the fist
	System include files

