mCWEB, an Extension of CWEB for Teams

Markus OIIinger

March 3, 1997

Abstract

This article describes mCWEB—a descendant of the CWEB system of struc-
tured documentation by Donald E. Knuth and Silvio Levy—that adds
some features that are indispensable when working in a team. mCWEB re-
gards a project as a book consisting of several chapter files. By means of
import and export commands, it automatically manages all relationships
between the chapters of a book and to other books.

Interface Documentation is now part of the mCWEB file and can be ex-
tracted into a second TgX file. This allows to define well known interfaces
between the individual parts of a project that will be implemented by

different persons.

In [6] Donald E. Knuth introduced the
term ‘Literate Programming’. Knuth
tought that programs should best be
seen as works of literature that are
meant to be read by human beings.
The main difference to conventional
methods is that a programmer is sup-
posed to write the program as if he
or she wants to present it to another
programmer, which means that you
should present the program in an order
that is suitable to understand it easily.

Knuth has created two preproces-
sor tools which make it possible to
combine documentation and code in
one document, the WEB system of struc-
tured documentation [5]. It has been
used to write programs of any size,
from rather small examples [2, 3] to
rather large ones like TEX [7] and
METAFONT [8].

Later, Knuth’s WEB has been ported
to different languages and further ex-
tensions were made to the syntax of
the language. A couple of other tools
like noweb [12], nuweb [4] or FWEB [1]
appeared. Silvio Levy created the C
version of WEB called CWEB [10].

Although the CWEB system also
makes sense for smaller programs, its
strong points lie in the support of large
scale software projects, where accurate
documentation and careful design are
basic requirements for success. But
nowadays, most large projects are de-
veloped by software teams rather than
one single programmer. This means,
that the program will necessarily con-
sist of more than one WEB source file,
since one file can only be edited by one
person at a time.

Unfortunately, CWEB does not sup-

port multiple source files at the mo-
ment. It requires one single source
document, which makes it difficult to
use for projects where more than one
person is involved. Even for projects
which are developed by a single person
it may be desirable to split the source
file up into more files.

There is a historical reason for this
inconvenience. CWEB is a descendant
of Knuth’s WEB which was intended
for PASCAL. PASCAL, unlike C, does
not support linking of multiple files to-
gether and did indeed expect one sin-
gle input file. However, the adaption
of WEB to a new language like C does
not only mean changing the grammar
for pretty-printing, but you also have
to consider the language specific prop-
erties.

One of the features of C are header
files, which are used to insert shared
data into different translation units. In
release 3 of the CWEB system of struc-
tured documentation, the new @(com-
mand was introduced, which allows
writing some sections into another file
but the C output file. With this op-
tion, it is possible to create C header
files.

@ @(foo.h@>=
void bar(int);

13. (foo.h 13)=
void bar (int);
outputs the code of this section to the
file foo.h.

This header file can then be in-
cluded with #include "foo.h", but
if we are using make, the header file is
rewritten every time we call CTANGLE
thus causing a retranslation of the
whole project and making make use-
less. Knuth’s demonstrates how he

uses @(in [9]. Still, the index only cov-
ers one single CWEB file and is unaware
of all identifiers in other files.

Anyway, header files are conces-
sions to the compiler because from a
human point of view, there is no reason
for packing some parts of a program in
separate header files. The mCWEB [11]
system described below has a couple
of export and import commands which
make header files for information inter-
change between translation units obso-
lete.

Furthermore, software teams usu-
ally break their projects into smaller,
independent units and assign each pro-
grammer one of it. To coordinate the
work between the individual members
of the team, an interface specification
is made which does not cover the im-
plementation details but only how the
different units interact with each other.
This means that each unit is regarded
as a black box with a well-defined in-
terface. mCWEB is able to combine
the interface documentation in the web
code.

mCWEB’s Book Concept

Conforming to the idea of creating
works of literature, I decided to regard
each executable or library as a book
consisting of several chapters. Each
chapter is a single file that can be
edited independently from all other
files. Thus, an old-style CWEB source
file would only be a chapter of a mCWEB
book. Chapters are meant to contain
functions that have a high cohesion
(e.g. they work on the same data struc-
ture).

Book files usually have the file ex-
tension .prg. For instance, an exam-

ple book foobar.prg could look like
the following;:

\def\title{The FooBar Program}
\def\author{A. U. Thor}
\showtitle

\noindent

This is an example book.
\vfill

Q@c foo

Q@c bar

©Om

#

Here is the makefile

#

foobar : $(CHAPTERS)

$(CC) -o foobar $(CHAPTERS)

foo.o : $(FO0)

bar.o : $(BAR)
As we can see, the book im-
ports two chapters foo.w and
bar.w. Everything following the

@m [{ makefile name)] command goes
to the makefile.

mCWEAVE processes all chapters
given by the @c commands and copies
all other lines of the book file up to the
@m command or the end of file to the
output file foobar.tex. This means
that one can define TEX macros in the
limbo part of the book that will be
available in all chapters of the book.

In particular, one can write an
introduction to the book after the
\showtitle command like it is indi-
cated in the above example. This in-
troduction should contain information
about what the program the book con-
tains does. In addition, if it is neces-
sary to have read other books in order
to understand this one, please say so
in the introduction so that reader can
find out which book to start reading

with if a project consists of multiple
books.

The Chapter Files

Chapter files are ordinary CWEB files
and therefore end in .w. Each chapter
file usually starts with the TEX macro

\chapter name-of-chapter.

giving the name of the chapter (termi-
nated by a ‘.”) which will also be used
in the header. Unlike in former CWEB
files, the first section should not be a
starred section because the \chapter
magcro already puts a chapter title line
and adjusts the header. Use an ordi-
nary @, instead to introduce the first
section.

Unlike CWEB, mCWEB now parses
all included header files, so that it
now knows about all datatypes defined
there. In addition, datatypes appear-
ing in the CWEB source are now rec-
ognized as such even if they are ref-
erenced before they are defined in the
source file.

To translate a book to a TEX
file, just call mCWEAVE as one did call
CWEAVE in order to translate old-style
CWEB files. Files with the recom-
mended book file extension .prg are
automatically treated as book files. If
one has chosen another file extension,
one must explicitly set the ‘+m’ flag
or mCWEB will be in CWEB compatibility
mode.

Similarly, just pass the book file
to mCTANGLE to convert it into a com-
pileable C file. mCTANGLE will only
translate those chapters that have
changed. This means that chapters
that have not been modified will not
create new C files, so that the compiler
won’t have to retranslate them.

mCWEAVE always weaves all chap-
ters of the book. For an input file
foobar.prg, mCWEAVE outputs a file
foobar.tex containing the implemen-
tation (as CWEB did) and—if there is an
interface documentation in the book—
a file autodoc.tex. Both files are
plainTEX files and can be passed on to
TEX to get printable DVT files.

Import and Export

As mentioned above, mCWEB now sup-
ports export and import commands
which greatly simplify the mainte-
nance of the relationship between the
individual source files that make up
a project. What we want to do is
to automatically generate declarations
for all parts of a chapter we want to
make visible to others. For example, if
one has a function func in chapter A
one wants to be accessible from other
chapters of the same book, one simply
writes:

shared int func(int z)

{

In chapter B of the same book, one can
write

#import chapter "A"

and chapter B will automatically have
a prototype of chapter A’s function
func thus making it able to call it (as
well as all other shared functions de-
fined in chapter A). This does not only
work for functions but for all C defini-
tions like datatypes or variables.

Export Commands

Let’s have a look in more detail what

export commands are available. There
are three export levels. There first
level is indicated by the @_global
qualifier. It makes a function visible in
the whole chapter where it is defined,
which means that—unlike in ordinary
C—the function can be called before
it is defined. This makes it easy to re-
arrange sections without caring about
their interrelationships. It is generally
a good idea to precede every C func-
tion by @_global which saves the work
of creating all function prototypes by
hand and putting them into annoying
(Predeclaration of procedures) sec-
tions.

The next export level makes the
function callable by another chapter
of the same book. The name of this
export command is @_shared, where
@_shared implies @_global (i.e. all
shared functions are automatically
global).

Last but not least, one can export
functions to another book. This can
be done using @_export in front of the
C definition. Exported functions are
not automatically global nor shared so
one might want to combine two export
commands to make a function, say, ‘ex-
ported and shared’.

Exporting to other books is of-
ten necessary if a project is made
of more than one book. This is
the case in Client-/Server Applications
and projects that make use of libraries.
Since libraries are books too, they are
supposed to @_export all their inter-
face functions to make them visible for
users of the library.

The mCWEB system automatically
creates the required header files (called
shared and export files) for each chap-
ter which consist of declarations for the

exported stuff.

Import Commands

In order to import exported data, we
can either import from another chap-
ter of the same book, from a chapter of
another book or we can simply import
all exported stuff from all chapters of
another book.

Import commands can have the op-
tional keyword transitively which
determines if these imported chapters
are passed on transitively to whatever
imports this chapter. If, for example,
chapter B transitively imports chap-
ter A and chapter C in turn imports
chapter B, then chapter C automati-
cally imports chapter A, too. However,
if transitively was omitted, chap-
ter A would not automatically be im-
ported into chapter C.

The Improved Index

Since a mCWEB book consists of several
chapters and can be even related to
other books, we have to print a more
complete index than CWEB did. mCWEB
outputs an index at the end of each
chapter and a final index at the end of
the book.

At the end of each chapter one gets
an index containing all identifiers de-
fined in this chapter or imported from
other chapters. Let’s take a look at an
excerpt of a chapter index:

AddHead: 12, 19.
AddIcon: 19%, 24, 30, 39.

compare_icons: 20, 21.

In this index, compare_icons is a func-
tion that is defined in the current chap-
ter and not exported. AddIcon is

also defined in this chapter, but the
t sign indicates, that this identifier
is shared between chapters within the
book. Identifiers exported to other
books are marked with a I sign.

Each imported identifier has a
superscript number telling where it
comes from. In our example, AddHead
was defined in section 1 of another part
of the project and is used in section 19
of the chapter the index belongs to.
At the end of the index we have a de-
scription of the superscript indices like:

t shared within book

Referenced books:

L 1lists, Chapter 1
2 1ists, Chapter 2

Thus, AddHead is defined in book
lists, Chapter 2.

The final index consists of three
parts. First come the shared identi-
fiers, which means everything that is
exchanged between the chapters of the
book, followed by the exported iden-
tifiers (all names exported to other
books). Last but not least comes the
list of all identifiers imported from
other books into the current one. Like
in the chapter index, the entries in the
final index have superscripts to indi-
cate where they really come from.

Dependencies and Makefile

I presume that every software team
uses make or a similar tool which helps
to automatically keep a project up-
to-date by only retranslating the files
that have changed. This requires a
makefile to give all the dependencies
of the files.

These dependencies are not triv-
ial if one has a large program consist-
ing of several libraries where individ-
ual parts of the program F#include
many header files, some of them result-
ing from transitive dependencies.

Due to import and export com-
mands, mCTANGLE knows about that in-
terrelationship of its chapter files and
can help the programmer creating the
dependencies for the makefile. As we
have seen, the book file can contain a
@m command followed by an optional
name of the makefile. All the lines
following this command until EOF are
copied to this makefile without change.

When mCTANGLE writes the make-
file, it puts some useful constants at
the very beginning of the file. For each
chapter, there is a makefile constant
with the name of the chapter which
contains all files this chapter depends
on.

Linking 1is simplified by the
CHAPTERS constant which contains all
object files that emerge from the book.

For a book foobar.prg con-
sisting of two chapters named
foo.w and bar.w, mCTANGLE defines
F00= foo.c ..., BAR= bar.c ...

and CHAPTERS= foo.o bar.o.

The last makefile constant defined
by mCTANGLE is LIBRARIES which con-
tains all associated link libraries the
book depends on.

Inserting Example Code

Sometimes, one might want to give an
example to illustrate the use of a func-
tion or datatype. CWEB provides the
|...| instruction in TEX text to set
identifiers like C text, but it didn’t
work for C text that contains multi-
ple lines. For this reason, mCWEB now

knows the @e command which switches
example mode on and off. One can use
@e in the TEX text part of a section.
Example code may only contain ordi-
nary C code, no named sections.

Interface Documentation

In software teams, the individual mem-
bers are not interested in the imple-
mentation details of those parts, which
have been written by other members of
the group. They rather would like to
see each part reduced to an interface
documentation, so they can see an-
other user’s chapter from outside with-
out having to read the whole docu-
ment.

Unfortunately, the CWEB system did
not support interface documentation.
Therefore, a so called autodoc section
has been added to mCWEB. Autodoc sec-
tions may only appear in the TEX text
of a section and are exported to a sep-
arate book called autodoc.tex.

The autodoc command has the fol-
lowing syntax:

Qa{{ class)} {{ name)} {{ TEX-text)}

Each autodoc entry has a name and
belongs to an autodoc class. For each
class classname, mCWEAVE creates a
file classname.adc with all autodocs
sorted by their name. Autodoc classes
can be used to group the same kind of
things. For example, for simple books,
one may create a class Functions and
a class Datatypes, thus having a chap-
ter in the reference manual which de-
scribes all functions and one for the
various datatypes. In a more complex
project one might refine this classifi-
cation. Of course, the autodoc book

provides a table of contents containing
the names of the autodoc classes and
all autodoc entries within.

The idea of putting the interface
documentation in the same file as the
source file is obvious. If the interface
is documented at the same place where
the code is, it is easy to keep both up-
to-date if changes are necessary. One
doesn’t have to search the correspond-
ing places in two separate files.

Copy & Paste

Sometimes, one wants to have a part
of the code in two different places. In
this case, one would usually use named
sections. But if you want to have it
printed by TEX in both places, you
will have to copy it manually. In ad-
dition, named sections only work for
code and not for ordinary text since it
is mCTANGLE’s job to replace the named
sections by their real contents.

Copying and inserting by means of
an editor is not only a nuisance but
also dangerous because in case one of
the copies gets changed, one will have
to change all of them (which are some-
times hard to remember). So, ev-
ery time one needs consistent copies
of parts of the code, one can use
mCWEAVE’s new mark/copy/paste com-
mands.

Suppose, one has a C structure
and also wants to have it in an
autodoc section, something that re-
ally happens very often. Then one

References

encloses the part of the code to copy
in @_mark "(name)" and @_copy,
thus assigning it the name (name).
This code chunk can be inserted any-
where in the mCWEB source code using
Q@_paste "({name)".

The scope of the copy buffer com-
mands is a chapter. Note that one can
paste a copy buffer even before defin-
ing it.

Conclusions

Since mCWEB is based on the source
code of CWEB, it is fully backwards com-
patible. Users of CWEB will have no
problems switching to the new system.
Furthermore, its’ enhancements make
it possible to split up a project into
several translation units (called chap-
ters) and executeables/libraries (called
books). This makes it possible for soft-
ware teams to write well documented
programs in a literary style while still
having multiple input files.

Making CWEB wusable for teams
was especially important because large
scale projects always consist of mul-
tiple files and are generally harder to
understand than small single file pro-
grams created by an individual pro-
grammer. Since a well documented lit-
erate program can greatly help keeping
a project manageable and understand-
able, software teams will particularly
like to take advantage of the literate
programming paradigm.

[1] A. Avenarius and S. Oppermann. FWEB: A literate programming system for For-
tran 8X. ACM SIGPLAN Notices, 25(1):52-58, Jan. 1990.

(2]
3]

[10]

[11]

[12]

J. Bentley. Programming pearls—literate programming. Communications of the
Association for Computing Machinery, 29(5):364-369, May 1986.

J. Bentley, D. E. Knuth, and D. Mcllroy. Programming pearls—a literate pro-
gram. Communications of the Association for Computing Machinery, 29(6):471—
483, June 1986.

P. Briggs. Nuweb, A simple literate programming tool. cs.rice.edu:/public/
preston, Rice University, Houston, TX, 1993.

D. E. Knuth. The WEB system of structured documentation. Stanford Computer
Science Report CS980, Stanford University, Stanford, CA, Sept. 1983.

D. E. Knuth. Literate programming. The Computer Journal, 27(2):97-111, May
1984.

D. E. Knuth. TgX: The Program, volume B of Computers & Typesetting. Addi-
son-Wesley, Reading, MA, USA, 1986.

D. E. Knuth. METAFONT: The Program, volume D of Computers € Typesetting.
Addison-Wesley, Reading, MA, USA, 1986.

D. E. Knuth. The Stanford GraphBase: A Platform for Combinatorial Comput-
ing. ACM Press, New York, NY 10036, USA, 1994. [From the publisher]: ...
represents Knuth’s final preparation for Volume 4 of The Art of Computer Pro-
gramming. Through the use of about 30 examples, the book demonstrates the
art of literate programming. Each example is a programmatic essay, a short story
that can be read by human beings, as well as read and interpreted by machines.
In these essays/programs, Knuth makes new contributions to the exposition of
several important algorithms and data structures.

D. E. Knuth and S. Levy. The CWEB System of Structured Documentation,
Version 38.0. Addison-Wesley, Reading, MA, USA, 1993.

M. Ollinger. mCWEB, an Extension of CWEB for Teams. Manual and software at ist.
tu-graz.ac.at in /pub/litprog/mcweb/mcweb.tgz. Institute of Software Tech-
nology, TU-Graz, Oct. 1996.

N. Ramsey. Literate-programming tools need not be complex. Report at ftp.cs.
princeton.edu in /reports/1991/351.ps.Z. Software at ftp.cs.princeton.edu
in /pub/noweb.shar.Z and at bellcore.com in /pub/norman/noweb.shar.Z. CS-
TR-351-91, Department of Computer Science, Princeton University, Aug. 1992.
Submitted to IEEE Software.

