
Software—Concepts and Tools (1996) 18: 35–46 Software—Concepts and Tools
© Springer-Verlag 1997

Analysis of Literate Programs from the Viewpoint of Reuse

Bart Childs
Department of Computer Science, Texas A&M University, USA
e-mail: bart@cs.tamu.edu

Johannes Sametinger
CD Laboratory of Software Engineering, University of Linz, A-4040 Linz, Austria
e-mail: sametinger@swe.uni-linz.ac.at

Abstract. Donald Knuth created the WEB system for
literate programming when he wrote the second version of
TEX, a book-quality formatting system. Levy later created
CWEB, which is based on Knuth’s WEB using the C
programming language and supporting development using
the C and C++ programming languages. Krommes’ FWEB
is based on CWEB and supports several programming
languages. We analyze some parts of these systems from
the viewpoint of reuse.

We make reuse comparisons of four elements of the TEX
system: TEX, METAFONT, DVItype and METAPOST. We
also compare the primary filters (tangle and weave) of
CWEB and FWEB. We analyze the code and integral
documentation, considering similarities of chapters, lines
and words.

With this study we demonstrate that both code and
documentation can and should be reused systematically and
that there is a need for methods and tools for doing so.
Literate programming and software reuse are by no means
in contradiction. However, current literate programming
systems do not explicitly support software reuse, even
though reuse was common in their development.

Keywords: software reuse, literate programming, TEX,
WEB, case study

1 . Introduction

The literate programmer should keep in mind that the
human reader is as important as the machine reader.
Human readers are necessary for maintenance activities,
an area of prime importance in the study of software
engineering. We agree with Knuth’s claim that literate
programming is a process which should lead to more
carefully constructed programs with better, relevant
‘systems’ documentation [16]. We take Knuth’s style
of literate programming as prototypical. It was used in

writing the second version of the TEX typesetting
system [11, 12] and its related components. This WEB
system, as he used it, leads to

• top-down and bottom-up programming through a
structured pseudocode,

• programming in sections, generally a screen or less
of integrated documentation and code (where section
in this use is similar to a paragraph in prose),

• typeset documentation (after all, it was for and in
TEX),

• pretty-printed code where the keywords are in bold,
user-supplied names in italics, etc., and

• extensive reading aids which are automatically
generated, including table of contents and index.

The value of each of these items depends on the pro-
grammer, as always. For example, the index mentioned
in the last item can be supplemented by user-supplied
entries in addition to those automatically generated
(which are similar to compiler cross reference lists). If
the author does not furnish these, the modifier literate
cannot be justified, in our opinion. For example, in
TEX [12] Knuth entered nearly a thousand extra index
entries, of which more than 600 were unique.

Pappas stated that a literate programming approach
provides benefits in writing reusable code [23]. He
emphasized that reusable software requires “more than
just following coding guidelines”. Further, “if a soft-
ware component gives a programmer the impression
that it will take almost as much time to understand ...
as it will to write ... (it) will not be reused!” We feel
that the quality, locality and integration of docu-
mentation that is provided by Knuth’s style of literate
programming could have a dramatic effect on reuse.

36 Childs, Sametinger: Analysis of Literate Programs from the Viewpoint of Reuse

We have chosen Knuth’s sources for his TEX
system and descendent literate programming systems as
examples because:

• they are in the public domain,
• they are commonly available,
• they are well documented,
• they are consistent and complete,
• they are written in Knuth’s WEB (and descendent

systems) for literate programming,
• they are of reasonable size for our planned investi-

gation, i.e., big enough for serious investigation
and small enough to complete the investigation
within a reasonable amount of time, and

• Knuth is an experienced, careful, accurate and
meticulous literate programmer.

In Chapter 2 we discuss some of Knuth’s design
decisions in order to clarify some frequent misunder-
standings. Chapter 3 contains information about soft-
ware reuse and why we believe that reuse in literate
programming is important. In Chapter 4 we present an
overview of the systems we considered for investiga-
tion. In Chapter 5 we explain how the results were
obtained and then we present the results in Chapter 6.
Discussions and interpretations follow in Chapter 7.
Finally, a short summary appears in Chapter 8.

2 . A View of some of Knuth’ s Design
Decisions

We wish to enable understanding of some of Knuth’s
decisions because the results of them have often been
misunderstood and misused in what we view as unjust
criticism.

Knuth released the first version of TEX in 1978. It
was written in the SAIL language and was generally
available only on DEC 10’s and 20’s. An enthuastic
following developed in the academic and research lab
communities with such machines (and a few ports were
made to other systems.) A number of limitations in
the original TEX system and the fact that DEC halted
manufacture of the 36-bit systems led to the decision
to rewrite and extend TEX. Knuth included portability
as a prime concern and believed that “systems
documentation” would be a significant factor.

Knuth surveyed a number of users and concluded
that Pascal was the best language choice because it
seemed to be everybody’s second best language and
most versions of Pascal had the facilities to be a
reasonable host for writing a ‘systems program’. (C

was not commonly available at that time, 1980.)
Knuth honored many of the ‘standard’ aspects of
Pascal, used some common extensions that were of
great benefit, and extended Pascal with some WEB
features. There have been a number of posts to news
groups of like “literate programming is brain dead
because I don’t like programming in a monolith”. It is
obvious that the only reason Knuth’s WEB did not use
include files is that it was not common in Pascal(s) in
1980! Features of the WEB system that enhanced
portability included macros, facilities for converting
long, readable variable names to arbitrary compiler
limitations, and many others.

Knuth’s design decisions were based on making the
TEX system portable to a wide variety of systems. He
accomodated a number of characteristics that may seem
perverse today. For example, he programmed using
long variable names that were generally words from the
dictionary connected by underscores. Because of the
existence of Pascal compilers with arbitrary require-
ments, the filter that extracts code (tangle) produced
code that was all uppercase, no underscores, at most
eight characters long, and unique in the first seven.

Knuth makes a token payment to the first person to
find an error. Updates to the TEX systems are issued
periodically. The errors that have been found and
corrected are widely distributed and its evolution has
been well documented also [15]. We will not address
these errors, but that could be a fertile area of study.
(Incidentally, Knuth has doubled the ‘ token payment’
with successive revisions of TEX and now maintains it
at a rather significant level.)

3 . Software Reuse

Software reuse is the process of creating software
systems from existing software rather than building
them from scratch. Reusable software has many
benefits, including the following most common ones
[5, 19, 22]:

• reduction of development time and redundant work

• ease of documentation, maintenance, and modifi-
cation

• improvement of software performance and software
quality

• encouragement of expertise sharing and inter-
communication among designers

• smaller programming teams for the construction of
more complex software systems

Childs, Sametinger: Analysis of Literate Programs from the Viewpoint of Reuse 37

In the context of literate programming we are interested
in technical aspects rather than in managemental,
cultural, organizational, economical or legal issues,
which, without any doubt, have a big influence on
successful reuse of software. Technical aspects of
software reuse have many facets, too, e.g., ad-hoc reuse
vs institutionalized reuse, black box reuse vs white box
reuse, code reuse vs design reuse, and code scavenging
vs as-is reuse. Since McIlroy’s vision of standard
catalogs in 1969, the term software component has
played a major role in the context of software reuse.
Many definitions and taxonomies of software compo-
nents exist, e.g., in [4, 27].

We believe that the idea of literate programming is
important in achieving well-documented and structured
software systems. The question that arises is: How do
literate programming and software reuse fit together?
Donald Knuth proposes creating each software system
as a piece of literature. Can this literature be cut into
components and reused in various contexts? Evaluating
this reuse question is necessary toward our goal of
determining to what extent reusable components could
have been extracted from these literate systems with
minimal effort.

4 . The Subject Systems

The TEX system and the WEB processors were written
in the original WEB. We describe these programs rather
superficially. A description of most of the inputs and
outputs is also furnished to enhance understanding the
functions of the programs. The ← indicates that a file
is input, → indicates that a file is output, and ↔
indicates interactivity (the terminal). Since the original
WEB included a number of features that were designed
to compensate for Pascal deficiencies, some of these
files would not be included if the system were written
in another language, say C. For example, the pool file
was used because of string handling deficiencies in
standard Pascal.

We studied the following versions of the codes:
TEX 3.141, METAFONT 2.71, METAPOST 0.63,
DVItype 3.4, CWEB 2.99++, and FWEB 1.30a.

4.1 The TEX System

We studied four WEBs from the TEX system: TEX, a
book-quality formatting system [11, 12]; META-
FONT, a system that enables a programmer/artist to
create a family of fonts for TEX [13, 14]; DVItype, a
prototypical reader of dvi files that are the output of
TEX [10]; and METAPOST, a close relative of

METAFONT that enables the creation of high-quality
graphics as encapsulated PostScript files [7, 8]. An
outstanding feature of the TEX system is the complete
and careful documentation that it includes. Several of
the WEBs were written by Knuth himself and some
others were obviously carefully reviewed by him.

4.1.1 TEX. The TEX processor converts a plain
text file containing document markup into a device-
independent graphics metafile. It inputs a number of
other files in this process to get font charcteristics,
document styles, etc. The files associated with the
execution of the TEX processor are:

• ↔ terminal
Although TEX is often characterized as a batch
processor, it is used in an interactive mode most of
the time. Small errors can be corrected (but they
later have to be changed in the source file),
debugging commands can be issued, etc.

• ← → tex.fmt
Each installation of TEX normally has two
versions of TEX. The ‘ini’ version converts a
macro file into a smaller, binary version that has
been compiled and only has to be input. The TEX
processor inputs this binary file, while it is output
by the iniTEX processor.

• ← tex.pool
The pool file is a feature of the original WEB that
was designed to overcome the lack of portable,
efficient handling of varying length strings in
Pascal. This is input by iniTEX.

• ← source.tex
The source file is as described above. This
document may have structure. The top-level source
often is a list of commands that specify which style
is to be used and the order of other files to be input,
which are the majority of the document.

• ← style.*
The style file(s) can specify a large number of
items such as the macro processor (often LaTEX)
article/report/book/..., double column, two-sided
printing, etc. Several extensions are used, including
.tex, .sty and .cls.

• → source.dvi
The device-independent file is a graphics metafile.
The design of this format was based upon having
characters as the primary graphic element and is an
efficient representation of the document. It includes
a record of when it was created and appropriate
checksums for consistency.

38 Childs, Sametinger: Analysis of Literate Programs from the Viewpoint of Reuse

• ← *.tfm
The TEX font metric file contains size information
for each font used in creating the dvi file.
Additional information that is used includes
ligatures, kerning and spacing. The tfm file is
specific for a font and is not dependent upon the
printer that will eventually be used. The checksum
for each font is stored in the dvi file for later
consistency checks for each step of document
production.

• → source.log
The log file is a journal that includes a history of
the creation of the dvi file. This information is a
superset of the information that appears on the
screen as the TEX processor works.

4.1.2 METAFONT. The METAFONT pro-
cessor operates in a manner that is similar to the TEX
processor and at the same time is quite different.
METAFONT accepts as input a source file that is a
metadescription of a font (family). It does significant
graphics interpretations, solves equations, and handles
other items associated with the creation of a consistent
family of fonts. The primary outputs are the tfm files
that TEX uses as well as files that specify locations of
ink for each character in a font for specific printers.
The files associated with the execution of the
METAFONT processor are quite similar to those in
TEX. Significant parts of the input and output would
obviously be reused.

4.1.3 METAPOST. METAPOST is a close
relative to METAFONT. The METAPOST processor
inputs have file layouts much like METAFONT
sources. Instead of creating a font which has a family
of related glyphs constructed using common strokes,
serifs, etc., the output of METAPOST is book-quality
figures.

The programmer identifies each figure by a number
that is used as an extension for its file name. The
output is encapsulated PostScript. The METAPOST
processor can invoke TEX to create labels using the
same fonts as the intended document.

The input and output of METAPOST is obviously
quite similar to that in METAFONT. A significant
difference is that the two binary files (tfm and gf) are
possible with METAPOST but are usually not output.

4.1.4 DVItype. The DVItype processor was
created to serve two purposes. First, in the early days
when porting TEX was a common activity, it served as
a great debugging aid. Second, since it properly reads

all possible dvi files, it provided a big help creators of
programs to input dvi files and output printer files.
DVItype is a prime example of a program intended for
reuse. Since it accepts as input the output of TEX, the
potential for reuse is obvious.

The files associated with the execution of the
DVItype processor are:

• ↔ terminal
See terminal in TEX.

• ← source.dvi
See source.dvi in TEX.

• ← setup
Ports of DVItype often included the use of a setup
file to ease normal use.

• → source.tfm
See *.tfm in TEX.

4.2 WEB Systems
WEB systems support literate programming [16]. They
read WEB sources (code and documentation) and act as
front ends for the Pascal compiler and the TEX
formatting system. The tangle processor creates the
Pascal file which will eventually become the
executable program. The weave processor takes the
same WEB source and creates a TEX source file which
constitutes the documentation of the program.

4.2.1 The tangle Processor. The files asso-
ciated with the execution of the tangle processor are:

• ↔ terminal
See terminal in TEX.

• ← source.web
The WEB file contains both code and
documentation, i.e., a literate program.

• ← src_ch.ch
The change file can be used optionally to make
changes to the WEB file without acutally
modifying it. This is often used for porting a
system to various machines. Notice that the prefix
for the change file is not necessarily identical to the
prefix of the WEB file.

• → source.pas
The Pascal source code file contains all the code of
the WEB file. tangle collects the code, orders it
correctly and outputs it ready for compilation.

• → source.pool
The string pool file’s purpose is to make the
handling of variable-length strings less tedious.
(Standard Pascal does not have variable-length
strings.)

Childs, Sametinger: Analysis of Literate Programs from the Viewpoint of Reuse 39

4.2.2 The weave Processor. The files
associated with the execution of the weave processor
are identical to those of the tangle processor, except
that the main output is a TEX file.

4.2.3 CWEB and FWEB. Knuth defined and
created the WEB system and then Levy created the
CWEB system as a relatively direct translation [17,
20]. Although the CWEB system is based on Knuth’s
original WEB, reasonable assumptions were made
about the C language rather than Knuth’s lowest
common denominator assumptions about Pascal
(which Knuth made solely to make a portable,
maintainable system). Levy and Knuth now maintain
CWEB.

The FWEB system is a direct descendent of CWEB,
with changes that are more typical of reuse [1, 18].
FWEB is a significant extension of CWEB for a
specific reason. Krommes’ FWEB is multilingual,
crunching numbers in Fortran on supercomputers and
doing interpretive graphics using C and X-windows.
Thus Krommes built Fortran, Fortran 90, C and C++
support into FWEB.

There are several other WEB systems, but we feel
little could be gained by extending these studies to
them.

4.3 Expected Similarities
There are two types of relationships between the
mentioned programs that are reasons to expect reuse.
These are:

• The programs are part of a system and/or operate in
the same fashion.
TEX and METAFONT operate in similar fashions.
Also, TEX accepts as input the output of
METAFONT. The detailed description of the input
and output files of these programs is an area where
we expect significant reuse. Browsing the sources
of TEX and METAFONT in book form [12, 14]
reveals many chapters with the same title.
Similarities in these chapters are obvious even
from just turning the pages.
The tangle and weave programs are even more
similar as they share identical inputs. These will be
analyzed only in the context of different WEB
systems for different high-level languages (for space
reasons). The tangle and weave processors input
WEB source and change files. Sewell also noted
similarities in the way tables are allocated in
memory [25]. There was no black-box reuse in the
original WEB system. The file common.web is

appropriately named and contains sections that are
used by both tangle and weave in the CWEB (and
FWEB) systems.
DVItype is a program that inputs and interprets the
output of the TEX program.

• The programs were modified to create related
programs or to significantly extend the functiona-
lity of the original programs.
METAPOST is a modification of METAFONT as
the components of FWEB are modifications of
CWEB. These processors also utilize large arrays
that contain all the elements they are manipulating.
Regarding reuse from CWEB to FWEB, it is clear
that cweave and fweave should be closer than
ctangle and ftangle, because of Fortran’s unique
nature. A large part of the ftangle source is required
by the record (rather than stream) orientation of
Fortran.

Note that the CWEB and FWEB systems were written
using C, while all other programs above were based on
Pascal. Also in the CWEB distribution, the WEB files
use the terse extension of tt.w, as one might expect in
a UNIX-oriented system. We use the extension tt.web
in the discussion of all WEBs.

5 . Reuse Measures

We compared sources to determine measures of reuse.
These comparisons were done using the UNIX utility
diff. In most cases there was some preprocessing; this
will be discussed later. Reuse can be identified at a
number of different levels, i.e., words, phrases,
sentences, lines, paragraphs, sections and chapters. The
following list is a discussion of factors affecting reuse
at these levels. We use a bold font for the levels of
our primary results (lines and words) and an italic font
for levels that we used in indirect fashions (chapters).

• Words — Individual words seem to be a trivially
fine granularity. There will be some obvious reuse
of articles, keywords, ... Knuth reused many
sentences with some editing, such as inserting or
deleting a parenthetic expression. We feel that reuse
at the word level compared to reuse at a higher level
of granularity is indispensable.

• Phrases — A literate program can be viewed as a
system of structured pseudo-code. The meaning of a
section of code should be rather explicitly indicated
by the pseudo-code name of a section of code, like
@<Set initial values of key variables@>. This

40 Childs, Sametinger: Analysis of Literate Programs from the Viewpoint of Reuse

string, for example, appears 35 times in the source
of TEX. The first one is a place holder where code
goes and the rest define initializations. This type of
reuse is also reflected in word reuse counts.

• Sentences — This was considered but discarded in
part due to Knuth’s attention to detail and
consistency. For example, the TEX book has a lion
that decorates the beginning of each chapter, while
the METAFONT book has a lioness. In an error
message where all relevant help that Knuth could
anticipate has already been given, he suggests the
TEX user emulate Hercule Poirot and at the same
point suggests that the METAFONT user emulate
Miss Marple. Strict sentence comparisons would
not sense the similarities, but word and phrase
comparisons would.

• Lines — Lines pose the same problems as
sentences. We use lines in the sense that they
appear in common editors like vi and emacs. The
use of existing tools like diff is also advantageous.
We have observed that in many cases where a code
is reused, but edited, the original line structure is
often kept. This obviously contributes to high
reuse indicators.

• Paragraphs — Paragraphs are consecutive lines
separated by blank lines, headings, etc. We feel this
is adequately covered by line reuse in the previous
item. If we also calculated the lengths of runs of
identical lines, then this would be a better indicator
than paragraphs per se. This is discussed in more
detail in [6].

• Sections — In a book model, WEBs are
characterized as having chapters, sections and
paragraphs. In the FWEB model, Krommes
introduced major sections to enable finer
granularity. The titles of major sections appear in
the table of contents with the enclosing chapters,
but indented. Knuth used the terms section and
module interchangeably and called what we call
chapters ‘major sections’. We avoid the use of
‘module’ to avoid conflict with its use in Ada,
Fortran 90, Modula-2, etc.

• Chapters — A chapter may contain sections, and
its title appears in the table of contents. The output
of a chapter (in the typeset documentation) always
starts on a new page. The title of the chapter is
presented in bold type, but not with the great
emphasis that is normal in books. We did not
expect to find identical chapters, except for the
titles.

We base our comparisons on lines and words because
of the simplicity of calculating these. We found it
difficult to take semantic information into account.
Comparing lines and words gives a good indication of
reuse. Obviously, high line reuse indicates much reuse;
low line reuse with high word reuse also indicates
much reuse, but with local modification. Finally, if
both line and rd reuse are low, then apparently there
was not much reuse. The folloeing subtle differences
affect these measures of reuse:

• Single words can be exchanged (such as TEX,
METAFONT, DVItype, etc.).

• Nonbreaking blanks (often called a hard space) may
appear where a space is to be output.

• Line breaks can be changed.
• The order of chapters and sections can be different.
• User-supplemented index entries can be different.
• Sentences can be changed in syntax (e.g., word

ordering) without any change in the semantics.

We compared chapter titles of the systems under
consideration to find the candidate sections for
comparing line and word reuse. This gives a first
indication of similarities. For example, TEX consists
of 55 chapters, while METAFONT contains 52.
Twenty-six chapter titles are identical. These chapters
have been investigated in detail. There is likely some
reuse in the other chapters, but we have concentrated on
those with identical titles.

We copied each chapter to a unique file and used
diff. This yields add, change and delete information that
can be applied to change file a to file b. An indication
of how much of file a is reused in file b is the total
number of lines in a less the number of lines that need
to be changed or deleted to create b. The reuse level (of
file a in b) is shown in Figure 1.

As empty lines are considered to be equal, the reuse
level, naturally, is greater than zero, if empty lines
appear in both files. Thus, it is crucial that empty
lines be eliminated before the reuse level is determined.
Of course, for two equal files the result of R is 100.

R = (1 – (E / T)) × 100
 R reuse level from comparing lines. 0 means no

reuse, 100 means everything (all lines) of file a
had been reused in file b.

 E number of (edited) lines to be changed or deleted
from file a in order to get contents of file b

 T total number of lines of file a

Figure 1. Reuse Measurement.

Childs, Sametinger: Analysis of Literate Programs from the Viewpoint of Reuse 41

When empty lines are eliminated then, R is usually
zero for nominally different files.

Lines can be similar and differ by as little as a word

or punctuation. Therefore, we replaced each blank by a

newline, and the values of R increased, as expected.

Our definition of word reuse, Rw is based upon these

one-word-per-line files. Obviously, different files can

have non-zero reuse levels because the same words can

appear in both files. We denote Rl and Rw as reuse

levels considering lines and words, respectively.

Rw is usually slightly higher than Rl. Sometimes,

however, Rw is significantly higher than Rl. This is

the case when reused text has been modified

extensively, which leads to differing lines (lowering

Rl) while retaining many of the same words (lowering

Rw less than Rl.)

We will demonstrate the suggested kind of reuse

evaluation by studying the first paragraph of the

chapter “Introduction to the syntactic routines” of TEX

and METAFONT. The text of TEX in Figure 2

contains 12 lines and 128 words. The text of

METAFONT contains 13 lines and 135 words.

Identical lines are marked with ‘=‘ . Words that do not

appear in both systems are striken through. (Words are

taken to be any sequence of characters delimited by

whitespace.) To transform the text of TEX to the text

of METAFONT, 9 lines or 30 words have to be

changed. This results in a line and word reuse of Rl =

25.0% and Rw = 76.6%. Note that the high difference

between Rl and Rw indicates modification and

polishing of the source.
Note that some single words (that, be, of and the)

are considered as being reused. This may sometimes
result in a slightly higher Rw than is justified (even if
these words were actually reused when editing the text).
Not considering these four words would result in Rw =
73.4%.

Note that despite its high similarity, there are only
three identical lines in the METAFONT paragraph.
The first line would have been identical except for the
inclusion of the chapter number.

6 . Results

We present the results of most of our comparisons in
tabular form. The tables contain reuse levels for lines
and words, lengths, and in some cases are indexed by
chapter title. Detailed comparisons of some items are
included. We use the following notation in presenting

TEX:

 @* \[21] Introduction to the syntactic routines.
= Let's pause a moment now and try to look at the Big Picture.
 The \TeX\ program consists of three main parts: syntactic routines,
= semantic routines, and output routines. The chief purpose of the
= syntactic routines is to deliver the user's input to the semantic routines,
 one token at a time. The semantic routines act as an interpreter
 responding to these tokens, which may be regarded as commands. And the
 output routines are periodically called on to convert box-and-glue
 lists into a compact set of instructions that will be sent
 to a typesetter. We have discussed the basic data structures and utility
 routines of \TeX\, so we are good and ready to plunge into the real activity by
 considering the syntactic routines.

METAFONT:
 @* \ [30] Introduction to the syntactic routines.
= Let's pause a moment now and try to look at the Big Picture.
 The \MF\ program consists of three main parts: syntactic routines,
= semantic routines, and output routines. The chief purpose of the
= syntactic routines is to deliver the user's input to the semantic routines,
 while parsing expressions and locating operators and operands. The
 semantic routines act as an interpreter responding to these operators,
 which may be regarded as commands. And the output routines are
 periodically called on to produce compact font descriptions that can be
 used for typesetting or for making interim proof drawings. We have
 discussed the basic data structures and many of the details of semantic
 operations, so we are good and ready to plunge into the part of \MF\ that
 actually controls the activities.

Figure 2. Sample paragraph comparison.

42 Childs, Sametinger: Analysis of Literate Programs from the Viewpoint of Reuse

the results of the comparisons and computing the reuse
level:

• Lfile a – length of file a, i.e., the number of non-
empty lines

• Rfile a/file b – reuse level of file a in file b, i.e.,
how much of file a was reused in file b (in percent).

• Rfile a(x.x%)/file b – reuse level of file a in file b
by considering only x.x percent of the lines of file
a. (These are the lines of the chapters that appear
with the same title in file b.)

6.1 TEX and METAFONT
TEX contains about 21,500 lines and 122,000 words.
METAFONT consists of about 20,500 lines and

110,000 words. TEX and METAFONT are divided into
55 and 52 chapters, respectively; 26 of these chapter
pairs have matching titles. These chapters contain 33.4
percent of the lines of the TEX system. Table 1 shows
the resulting reuse levels. 14.3% of the lines and
21.5% of the words of TEX are reused in
METAFONT. Of the 26 chapters with matching titles,
42.8% of the lines and 60.7% of the words are reused
in the corresponding chapters in METAFONT.

Table 2 compares in detail the chapters that appear
in both systems. The first two columns present the
reuse levels of lines and words. The right two columns
specify the total number of lines/words of the various
chapters in the TEX system. Remember that the
definition of reuse stated earlier indicates that all these
chapters are reused. The results in these tables indicate
the extent of reuse within these chapters. The high
reuse values of the chapters entitled ‘Character Set’,
‘Input and Output’ and ‘Reporting Errors’ were
expected (see Section 4).

TEX and METAFONT contain lines (even
paragraphs) in which the only difference is a
replacement of the word TEX with the word

TEX - METAFONT lines words

LTEX 21,541 122,137

LMETAFONT 20,481 109,307

RTEX/METAFONT 14.3% 21.5%

RTEX(33.4%)/METAFONT 42.8% 60.7%

Table 1. Reuse level of TEX in METAFONT.

Common TEX & METAFONT Chapters Rl Rw Tl Tw
Introduction 63.1% 82.4% 377 3,152
Character Set 81.6% 76.9% 206 1,097
Input and Output 81.1% 93.4% 301 2,333
String Handling 71.5% 90.2% 246 1,574
On-line and off-line Printing 58.4% 72.0% 291 1,581
Reporting Errors 82.7% 93.3% 359 2,022
Packed Data 61.3% 82.7% 124 767
Dynamic Memory Allocation 72.1% 85.1% 265 1,822
Memory layout 69.7% 75.9% 195 1,014
The hash table 19.4% 53.2% 309 1,368
The command codes 0.0% 19.9% 163 1,367
Saving and restoring equivalents 3.1% 8.4% 291 1,803
Token lists 16.8% 34.7% 161 1,027
Intro to the syntactic routines 26.7% 61.4% 86 645
Input stacks and states 47.8% 60.1% 429 3,121
Maintaining the input stacks 47.5% 73.5% 139 729
Getting the next token 24.1% 39.2% 465 2,653
Expanding the next token 7.3% 18.3% 477 2,772
Conditional processing 17.1% 38.1% 345 1,433
File names 62.8% 84.6% 433 2,565
Font metric data 25.8% 46.1% 802 4,949
(Un)dumping the tables 30.1% 53.6% 435 1,696
The main program 56.7% 83.4% 208 1,073
Debugging 71.9% 89.2% 64 344
System-dependent changes 80.0% 97.6% 10 83
Index 64.3% 96.4% 14 137
Total 42.8% 60.7% 7,195 43,127

Table 2. Reuse level of TEX in METAFONT by chapters.

Childs, Sametinger: Analysis of Literate Programs from the Viewpoint of Reuse 43

METAFONT. Also, there exist sentences that have
been improved by a change of word ordering or by
inserting or deleting single words. Additionally,
METAFONT has many index entries that are not in
TEX, but these do not affect the reuse level.

We investigated several disturbances that did not
raise the reuse level as much as we had expected. For
example, we removed index entries and replaced the
words TEX and METAFONT with the string xxx. The
total reuse level for lines increased from 14.3% to
14.8%, and for words from 21.5% to 21.6%. The
levels for similar chapters increased from 42.8% to
44.7% and from 60.7% to 61.3%.

The numbers in the table, therefore, are a lower
bound of the reuse level. This fact is also expressed in
the rather high difference between Rl and Rw.

The example in Figure 2 clearly demonstrates how
much care was taken in adapting reused text.

6.2 DVItype and TEX
Six of the 15 chapter titles in DVItype are in TEX.
The descriptions of the character set and the device-
independent file format have a reuse level of about 70
percent (similar to Table 2). These two chapters com-
prise one fourth of DVItype. There are other chapters
not appearing in TEX but in other tools like gftodvi
and gftype (which we did not include for space reasons).
Table 3 presents the reuse levels of DVItype in TEX.

When Knuth created a data structure, he would
immediately write routines to output the data structure
with appropriate annotations. DVItype has that
functionality. We note that similar patterns are
common in today’s books on languages for object-
oriented programming. Also, this is common in
application libraries in a number of areas.

6.3 METAFONT and METAPOST
The highest reuse in our studies resulted from
comparing METAFONT and METAPOST. More than
60 percent of METAFONT (20,000 lines and more
than 100,000 words) is reused in METAPOST.
METAFONT has 52 chapters; METAPOST has 49. Of
these chapters, 44 with the same title appear in both
and 24 have a reuse level higher than 90 percent.
Except for three chapters, all the other chapters have a
reuse level higher than 70 percent. These results are
presented in Table 4.

6.4 CWEB and FWEB
The differences of the reuse levels of cweave in fweave
should be noted because of the difference between Rl
and Rw. This indicates text scavenging, significant
reuse and slight modifications (see Table 5). The
results are similar for ctangle and ftangle (see Table 6).

Note that fweave and ftangle are significantly larger
than cweave and ctangle, respectively. The reason for
this is that FWEB deals with Fortran and several other
languages, whereas CWEB deals with C and C++.

CWEB and FWEB employ black-box reuse in
extracting common parts of the tangle and weave
processors. These were collected in common.web.
Thus, besides comparing tangle and weave,
investigating common.web reveals some more reuse.
All the chapters in CWEB’s common part also appear
in FWEB. The difference between Rl and Rw is
noticeable (see Table 7).

7 . Discussion

Code and documentation were reused in the systems
studied. This was done primarily by code and

DVItype - TEX lines words
LDVItype 2,136 13,606

LTEX 21,541 122,137

RDVItype/TEX 18.8% 32.1%

RDVItype(34.9%)/TEX 53.8% 75.2%

Table 3. Reuse level of DVItype in TEX .

METAFONT - METAPOST lines words
LMETAFONT 20,481 109,307
LMETAFONT 20,460 104,375

RMETAFONT/METAPOST 63.4% 67.0%
RMETAFONT(80,8%)

/METAPOST
78.5% 85.1%

Table 4. Reuse level of METAFONT in METAPOST.

cweave - fweave lines words
Lcweave 3,726 18,456
Lfweave 6,103 24,640

Rcweave/fweave 8.8% 39.6%
Rcweave(60.6%)fweave 14.6% 64.8

Table 5. Reuse level of cweave in fweave.

ctangle - ftangle lines words
Lctangle 1,283 6,528
Lftangle 5,649 22,335

Rctangle/ftangle 6.2% 29.4%
Rctangle(58.9%)/ftangle 10.6% 49.8%

Table 6. Reuse level of ctangle in ftangle.

44 Childs, Sametinger: Analysis of Literate Programs from the Viewpoint of Reuse

documentation scavenging. There are significant
differences between line and word reuse due to extensive
word-smithing on many segments of code and
documentation to present information in the best
possible manner.

Each system was created as a self-contained,
homogeneous work. To achieve this, reused parts from
other systems sources were reworked and adapted
carefully. Such adaptations included changing the
system name (e.g., TEX to METAFONT), changing
the word order or modifying single words for better
layout results. Often these adaptations were real
improvements, like the addition of index entries. This
is white-box reuse at its best. Black-box reuse offers
large production gains. This was done in the CWEB
and FWEB systems. The lengths of CWEB’s
common.web, ctangle.web and cweave.web are 54,
162, and 52 kilobytes, respectively.

The following question arises: Would the
demonstrated degree of reuse and adaptation have been
possible without scavenging code and documentation?
Our answer to that question is simple no! We believe
that it is obvious that writing and documenting a
software system from scratch will lead to different pro-
gram and documentation structure than building it by
reusing existing components and that documentation
quality is likely the key component to being able to be
effective in reuse. It should be noted that each of the
codes studied were relatively self-contained.

Object-oriented development systems were not
readily and widely available at the time TEX and the
original WEB system were built. If they had been
implemented in an object-oriented manner, classes
would likely have been reused by building subclasses,
not by direct modifications. Documentation needs a
similar approach to adaptation and reuse without direct
modification, e.g., by means of object-oriented
documentation [24].

Knuth’s WEB has an include facility which could
have been used to facilitate more black-box reuse.
However, he chose white-box reuse in a number of
instances where black-box reuse would have been
easily possible. For example, a chapter could have

been done separately that included documentation and
routine interfaces for tfm files. The routines could have
been used in a black-box fashion. However, they were
integrated and edited (converted into white-box). Code
and documentation could have been developed that
included data structures, input routines and output
routines. METAFONT would not use the input routine
and TEX and DVItype would not use the output
routine. As we mentioned earlier, he improved (and
specialized) documentation and added index entries
(apparently to make it more usable).

WEB systems include adaptation features through
change files. This allows changing code and/or
documentation while maintaining a canonical form.
This is a rather limited way of adaptation, but proved
to be effective for porting purposes. Porting was
additionally supported by index entries for sections that
might have to be changed due to system dependencies.
For example, in TEX 61 such index entries were
supplied. The primary intent of change files was to
support portability and to keep the base versions of
major programs intact. This was successful, and new
releases of TEX programs often require the change of
only one line in the change file, the one which
includes the version in the banner.

We pose a question of what would be the changes in
rewriting some of the standard works in a literate
fashion. Kernighan and Ritchie’s (K&R) guide to the
C programming language is not a standard, but it is an
authoritative guide [9]. The title of Appendix B is
“Standard Library”. Paragraphs from this section
should be of central importance in black-box reuse.

We note that K&R tried to maintain the brevity of
the first edition. When we created ‘ literate versions’ of
paragraphs from this appendix, we had the same
feelings that are reflected by two quotes from
Thimbleby [26].

I was surprised how the original commentary
(which looked all right embedded in code) looked
insubstantial when set apart in the literate style.

A literate programming style is not, to my mind,
what literate programming is all about. How
literate programming is done, and how easily it can
be done and redone, changes the way one programs.
It provides new incentives. There is an incentive to
make code and documentation consistent (by
developing code and documentation concurrently).
There is an incentive to explain, and hence
understand what you are doing ...

We agree with Thimbleby’s statements. Literate
programming is more than just integrating source code

CWEB’s common-FWEB’s common lines words

L CWEB’s common 1,143 6,726

L FWEB’s common 4,070 17,703

R CWEB’s common (100%)/
FWEB’s common

12.9% 45.7%

Table 7. Reuse level of CWEB’s common.web in
FWEB’s common.web.

Childs, Sametinger: Analysis of Literate Programs from the Viewpoint of Reuse 45

and documentation. The care with which documentation
is done may well affect how much black-box reuse
should be done in each application.

We have studied literate programs from the
viewpoint of reuse and observed the following:

• The TEX and WEB systems were implemented in a
literate manner. These are medium-sized systems.
We believe that literate programming is an
excellent methodology for the development of large
software systems.

• Significant reuse was common in the investigated
systems, even though mostly white-box reuse.
Some black-box reuse was done in the CWEB and
FWEB systems. The absence or low degree of
black-box reuse was due to the choice of the
programming language (Pascal) more than to
literate programming. Reuse and literate
programming can coexist comfortably.

• The examples presented show that both code and
documentation were reused, modified, extended and
adapted.

• Hobby’s reuse of METAFONT, Levy’s reuse of
WEB, and Krommes’ reuse of CWEB are ample
proof that excellent documentation aids in the reuse
of software.

• Levy and Krommes’ newer WEB systems
demonstrate that reusable literate components were
extracted from Knuth’s WEB. Significant reuse of
elements of TEX are in today’s word processors.
The hyphenation algorithm from TEX is widely
(re)used. This was obviously done in a white-box
fashion.

We note that emphasizing reuse makes it difficult to
produce software systems as self-contained books (such
as Knuth’s Computers and Typesetting series [11, 12,
13, 14]. Significant effort was made to keep these
volumes in harmony. The lion with Hercule Poirot (in
TEX) and the lioness with Miss Marple (in
METAFONT) are probably the most obvious example.
When software systems are written like this and with
so much care, it can really be a pleasure to read them.
Bentley commented about the pleasure of reading them
in much the same fashion one would read an
entertaining novel [2]. Knuth has pointed out that the
reading aids of the WEB style also makes it more
tractable to read a portion of a code without reading the
whole code. We feel this is a significant advantage in
maintenance activities (and maintenance is the
dominant cost factor of software).

Building software systems out of reusable parts will
lead to thinner books with more references, which
makes sequential reading less pleasant. But it will help
in making reading more efficient. We argue that code
and documentation must be designed for reuse. Some
effort would be necessary in order to extract common
information in the systems we investigated and provide
it in a way that it could be reused (other than by text
scavenging). The advantages of these efforts would be
similar to those achieved when reusing pure code (see
Section 3), e.g.:

• Errors needed to be corrected only once rather than
redundantly.

• Improvements of the documentation would affect
all systems, e.g., more index entries, style.

• Parts of the TEX systems could be reused in other
software systems also (including code and
documentation without the need of direct
modifications).

The documentation should have the same degree of
black-box reuse as code. Current techniques and tools
do not sufficiently support this.

8 . Conclusions

We have investigated some TEX and WEB systems for
reuse. These systems have been implemented as literate
programs. Therefore if they incorporate reuse, they
illustrate reuse of both code and documentation. Most
of this reuse was of the white-box variety. We
determined reuse levels by investigating the chapters of
the systems with the same (or similiar) titles. Then we
made a comparison based on lines and words. The
different results achieved by comparing lines and words
indicate that most reused components were carefully
edited and adapted. The process is not unique to the
study of literate programs.

We conclude the following:

• White-box reuse is important and was common in
these codes.

• White-box reuse impacts on both code and
documentation and cannot be ingnored with either.

• The only examples of black-box reuse in these
systems was in the newer WEB systems.

Knuth had an include facility in WEB. Although this
was not in an object-oriented system, he could have
used this facility to do black-box reuse in a number of
instances. He chose white-box reuse. In several

46 Childs, Sametinger: Analysis of Literate Programs from the Viewpoint of Reuse

instances where black-box reuse was an option, he
made the documentation specific to its context.

The first author ported the TEX systems to several
computer systems and is convinced that Knuth’s
attention to detail helped considerably. He also
acknowledges that today’s systems are quite different.

These systems are appropriate for further study that
might lead to a better understanding of where it is
appropriate to do white-box or black-box reuse. For
example, these questions remain open:

• Is it possible to determine the effect of documen-
tation on successful reuse? (It obviously does
facilitate reuse.)

• Does literate programming affect the level of reuse?
(This could not be answered by studying these
systems because no programming team was ever
involved.)

• Does object-oriented programming reduce the
importance of white-box reuse?

• Does object-oriented programming change the
requirements of associated documentation?

Acknowledgements: We are particularly grateful for
the constructive criticism of the reviewers, which has
greatly improved this paper and our presentation of the
material.

References
1 . Avenarius A, Oppermann S (January 1990) FWEB: A

Literate Programming System for Fortran 8X. ACM
SIGPLAN Notices, Vol. 25, No. 1, pp. 52–58

2 . Bentley J (May 1986) Programming Pearls—Literate
Programming. Communications of the ACM, Vol.
29, No. 5, pp. 364–369

3 . Biggerstaff TJ, Perlis AJ (1989) Software
Reusability, Vol. I: Concepts and Models, ACM
Press

4 . Booch G (1987) Software Components with Ada:
Structures, Tools, and Subsystems. Benjamin/Cum-
mings Publishing Company, Inc., Menlo Park, CA

5 . Braun C (1994) Reuse. In [21] pp. 1055–1069
6 . Childs B, Sametinger J (November 1996) Reuse

Measurement with Line and Word Runs. TOOLS
Pacific ‘96, Melbourne, Australia

7 . Hobby J (April 1992) A User’s Manual for
METAPOST. Computing Science Technical Report
No. 162, AT&T Bell Laboratories

8 . Hobby J (September 1992) Introduction to
METAPOST. EuroTEX ‘92 Proceedings, pp. 21–26,
TEX Users Group

9 . Kernighan BW, Ritchie DM (1988) The C
Programming Language. 2nd ed., Prentice Hall,
Engelwood Cliffs, NJ

10. Knuth DE, Fuchs DR (April 1986) TEXware. Stanford
Computer Science Report 1097

11. Knuth DE (1986) The TEX Book. Volume A of
Computers & Typesetting, AW

12. Knuth DE (1986) TEX: The Program. Volume B of
Computers & Typesetting, AW

13. Knuth DE (1986) The METAFONT Book. Volume C of
Computers & Typesetting, AW

14. Knuth DE (1986) METAFONT: The Program. Volume
D of Computers & Typesetting, AW

15. Knuth DE (July 1989) The Errors of TEX. Software—
Practice and Experience, Vol. 19, No. 7, pp. 607–
685

16. Knuth DE (1992) Literate Programming. Stanford
University Center for the Study of Languages and
Information, Leland Stanford Junior University

17. Knuth DE, Levy S (1993) The CWEB System of
Structured Documentation, Version 3.0. AW

18. Krommes J (Feb. 1990) FWEB (Krommes) vs. FWEB
(Avenarius and Oppermann). TEX-hax, Vol. 90, No.
19

19. Krueger W (June 1992) Software Reuse. Computing
Surveys, Vol. 24, pp. 131-183

20. Levy S (January 1993) Literate Programming and
CWEB. Journal on Computer Language, Vol. 10, No.
1, pp. 67-70

21. Marciniak JJ (Editor-in-Chief) (1994) Encyclopedia
of Software Engineering. Vol. 1, John Wiley & Sons

22. Mili H, Mili F, Mili A (June 1995) Reusing Software:
Issues and Research Directions. IEEE Transactions on
Software Engineering, Vol. 21, No. 6, pp. 528–562

23. Pappas TL (Frank) (5–8 March 1990) Literate
Programming for Reusability: A Queue Package
Example. Proceedings of the Eighth Annual
Conference on Ada Technology, Atlanta, GA, pp.
500–514

24. Sametinger J (January 1994) Object-Oriented
Documentation. ACM Journal of Computer
Documentation, Vol. 18, No. 1, pp. 3–14

25. Sewell W (1989) Weaving a Program: Literate
Programming in WEB, Van Nostrand Reinhold

26. Thimbleby H (June 1989) A Review of Donald C.
Lindsay’s Text File Difference Utility diff.
Communications of the ACM, Vol. 32, No. 6, pp.
752–755

27. Wegner P (July 1984) Capital-Intensive Software
Technology, IEEE Software, Vol. 1, No. 3, reprinted
in [3]

