Software—Concepts and Tools (1996) 18: 35-46

Software—Concepts and Tools
© Springer-Verlag 1997

Analysisof Literate Programsfrom the Viewpoint of Reuse

Bart Childs

Department of Computer Science, Texas A&M University, USA

e-mail: bart@cs.tamu.edu

Johannes Sametinger

CD Laboratory of Software Engineering, University of Linz, A-4040 Linz, Austria

e-mail: sametinger@swe.uni-linz.ac.at

Abstract. Donald Knuth createdthe WEB system for
literate programming when he wrote the secordsion of
TEX, a book-quality formatting systenbevy later created
CWEB, which is basedon Knuth's WEB using the C
programming language and supporting developmesihg
the C andC++ programminglanguages Krommes’' FWEB
is basedon CWEB and supports several programming
languages We analyzesome parts of thesesystemsfrom
the viewpoint of reuse.

We make reuse comparisons of falementsof the TEX
system: TEX, METAFONT, DVItype and METAPOST. We
also comparethe primary filters (tangle and weave of
CWEB and FWEB. We analyze the code and integral
documentation, considering similarities ofiapters,lines
and words.

With this study we demonstratethat both code and

documentation can and should be reused systematically and

that thereis a needfor methodsand tools for doing so.
Literate programming andoftwarereuseare by no means
in contradiction. However, current literate programming
systemsdo not explicitly support software reuse, even
though reuse was common in their development.

Keywords: softwarereuse,literate programming, TEX,
WEB, case study

1. Introduction

The literate programmershouldkeepin mind that the
humanreaderis as important as the machine reader.
Human readers are necessaryrf@intenancectivities,
an areaof prime importancein the study of software
engineering. We agresith Knuth's claim that literate
programmingis a processwhich should lead to more
carefully constructedprograms with better, relevant
‘systems documentatiorj16]. We take Knuth's style
of literate programming as prototypic#tl. was usedin

writing the secondversion of the TEX typesetting
system [11, 12] and its relatedmponentsThis WEB
system, as he used it, leads to

¢ top-down and bottom-up programmingthrough a
structured pseudocode,

e programming in sections, generally a screetess
of integrated documentation and code (wrssetion
in this use is similar to a paragraph in prose),

* typesetdocumentatior(after all, it was for andin
TEX),

* pretty-printed code wherne keywordsarein bold,
user-supplied names in italics, etc., and
extensive reading aids which are automatically
generated, including table of contents and index.

The value of eachof theseitems dependson the pro-
grammer, as always. For example, the indentioned
in the last item canbe supplementedby user-supplied
entries in addition to those automatically generated
(which are similato compiler crossreferencdists). If
the authordoesnot furnish these,the modifier literate
cannotbe justified, in our opinion. For example,in
TEX [12] Knuth enterednearly a thousandextraindex
entries, of which more than 600 were unique.
Pappasstatedthat a literate programmingapproach
providesbenefits in writing reusablecode [23]. He
emphasizedhat reusablesoftwarerequires‘more than
just following codingguidelines”.Further,"if a soft-
ware componentgives a programmerthe impression
that it will take almost asnuchtime to understand..
as it will to write ... (it) will not be reused!"We feel
that the quality, locality and integration of docu-
mentation that igrovidedby Knuth's style of literate
programming could have a dramatic effect on reuse.

36 Childs, Sametinger: Analysis of Literate Programs from the Viewpoint of Reuse

We have chosen Knuth's sourcesfor his TEX

system and descendent literate programming systems as

examples because:

e they are in the public domain,

« they are commonly available,

» they are well documented,

« they are consistent and complete,

e theyarewritten in Knuth's WEB (and descendent
systems) for literate programming,

< they areof reasonablesize for our plannedinvesti-
gation, i.e., big enoughfor seriousinvestigation
and small enoughto completethe investigation
within a reasonable amount of time, and

e Knuth is an experienced,careful, accurate and
meticulous literate programmer.

In Chapter2 we discuss some of Knuth's design
decisionsin order to clarify some frequentmisunder-
standings Chapter3 containsinformation about soft-
ware reuseand why we believe that reusein literate
programming is important. In Chaptem& presentan
overviewof the systemswe consideredfor investiga-
tion. In Chapter5 we explain how the results were
obtained andhen we presentthe resultsin Chapter6.
Discussionsand interpretationsfollow in Chapter7.
Finally, a short summary appears in Chapter 8.

2. A View of some of Knuth’s Design
Decisions

We wish to enableunderstandingf some of Knuth's
decisionsbecausehe resultsof them have often been
misunderstood and misused what we view as unjust
criticism.

Knuth released the firstersionof TEX in 1978. It
waswritten in the SAIL languageand was generally
availableonly on DEC 10's and 20's. An enthuastic
following developedn the academicand researchiab
communities with such machines (and a few ports were
madeto other systems.)A numberof limitations in
the original TEX systemandthe fact that DEC halted
manufactureof the 36-bit systemsled to the decision
to rewriteand extendTEX. Knuth includedportability
as a prime concern and believed that “systems
documentation” would be a significant factor.

Knuth surveyeda numberof usersand concluded
that Pascalwas the best languagechoice becauseit
seemedto be everybodys secondbest languageand
most versions of Pascalhad the facilities to be a
reasonabléhost for writing a ‘systemsprogram’. (C

was not commonly available at that time, 1980.)
Knuth honored many of the ‘standard aspects of

Pascal,used some common extensionsthat were of

great benefit, and extendedPascalwith some WEB

features Therehavebeena numberof poststo news
groups of like “literate programmingis brain dead
because | don't like programming imaonolith”. It is

obvious that the only reason KnighWEB did not use
include files is that it was na@tommonin Pascal(s)n

1980! Featuresof the WEB system that enhanced
portability included macros, facilities for converting
long, readablevariable namesto arbitrary compiler
limitations, and many others.

Knuth's design decisions webmsedon making the
TEX system portable to a wideariety of systems.He
accomodated a number of characteristics itiay seem
perversetoday. For example, he programmedusing
long variable names that were generally words from the
dictionary connectedby underscoresBecauseof the
existenceof Pascalcompilers with arbitrary require-
ments, the filter that extractscode (tangle produced
codethat was all uppercaseno underscoresat most
eight characters long, and unique in the first seven.

Knuth makes a token payment to the fipstsonto
find an error. Updatesto the TEX systemsare issued
periodically. The errors that have been found and
correctedare widely distributedand its evolution has
beenwell documentedalso[15]. We will not address
theseerrors,but that could be a fertile areaof study.
(Incidentally, Knuth hasdoubledthe ‘token paymeni
with successive revisions of£K and now maintains it
at a rather significant level.)

3. Software Reuse

Software reuseis the processof creating software
systemsfrom existing software rather than building
them from scratch. Reusable software has many
benefits,including the following most common ones
[5, 19, 22]:

* reduction of development time and redundant work

« easeof documentation,maintenanceand modifi-
cation

« improvement ofsoftwareperformanceand software
quality

e encouragementof expertise sharing and inter-
communication among designers

« smaller programming teams ftire constructionof
more complex software systems

Childs, Sametinger: Analysis of Literate Programs from the Viewpoint of Reuse 37

In the context of literate programming we amterested
in technical aspectsrather than in managemental,
cultural, organizational,economicalor legal issues,
which, without any doubt, have a big influence on
successfulreuse of software. Technical aspects of
software reuse have many facets, too, e.g., adéume
vsinstitutionalized reuse, black box rewsawhite box
reuse, codeeusevs designreuse,and codescavenging
Vs as-is reuse. Since Mcllroy’s vision of standard
catalogsin 1969, the term software componenthas
playeda major role in the context of softwarereuse.
Many definitions andtaxonomiesof software compo-
nents exist, e.g., in [4, 27].

We believe thathe ideaof literate programmingis
important inachievingwell-documentedand structured
software systems. Thguestionthat arisesis: How do
literate programmingand softwarereusefit together?
Donald Knuth proposescreatingeachsoftwaresystem
asa pieceof literature.Canthis literaturebe cut into
components and reused in various contekg&luating
this reusequestionis necessantoward our goal of
determining to whaextentreusablecomponentsould
have beenextractedfrom theseliterate systemswith
minimal effort.

4. The Subject Systems

The TEX system and th&/EB processorsvere written

in the originaWEB. We describe these programs rather

superficially. A descriptionof most of the inputs and
outputsis also furnishedto enhancaunderstandinghe
functions of theprograms.The — indicatesthat a file
is input, - indicatesthat a file is output, and -
indicates interactivity (the terminalincethe original
WEB includeda numberof featuresthat were designed
to compensatdor Pascaldeficiencies,some of these
files would not be includedif the systemwere written
in another language, say C. Fatample the pool file
was used becauseof string handling deficienciesin
standard Pascal.

We studied the following versions of the codes:
TEX 3.141, METAFONT 2.71, METAPOST 0.63,
DVltype 3.4, CWEB 2.99++, and FWEB 1.30a.

4.1 TheTgEX System

We studied fouMWEBSs from the TEX system:TEX, a
book-quality formatting system [11, 12]; META-
FONT, a systemthat enablesa programmer/artisto
create damily of fonts for TEX [13, 14]; DVltype, a
prototypicalreaderof dvi files that are the output of
TEX [10]; and METAPOST, a close relative of

METAFONT that enableghe creationof high-quality
graphicsas encapsulatedPostScriptfiles [7, 8]. An

outstanding feature of thegK systemis the complete
and carefuldocumentatiorthat it includes. Severalof

the WEBSs were written by Knuth himself and some
others were obviously carefully reviewed by him.

4.1.1 TgX. The TEX processorconvertsa plain
text file containingdocumentmarkupinto a device-
independengraphicsmetafile. It inputs a number of
other files in this processto get font charcteristics,
documentstyles, etc. The files associatedwith the
execution of the X processor are:

* o terminal
Although TEX is often characterizedas a batch
processor, it is used in an interactivede most of
the time. Small errors can be corrected(but they
later have to be changedin the source file),
debugging commands can be issued, etc.

¢ « - tex.fmt
Each installation of TEX normally has two
versionsof TEX. The ‘ini’ version converts a
macrofile into a smaller, binary version that has
been compiled andnly hasto beinput. The TEX
processor inputs this binary fileshile it is output
by the iniTEX processor.

e « tex.pool
Thepoolfile is a featureof the original WEB that
was designedto overcomethe lack of portable,
efficient handling of varying length strings in
Pascal. This is input by ingX.

* < source.tex
The source file is as described above. This
document may havstructure.The top-level source

often is a list of commands that specify which style
is to be used and the order of other files to be input,

which are the majority of the document.

e < style.*
The style file(s) can specify a large number of
items suchasthe macro processor(often LaTEX)
article/report/book/...,double column, two-sided
printing, etc. Several extensions are useduding
tex, .styand.cls.

e - source.dvi
The device-independeriile is a graphicsmetafile.
The designof this format was basedupon having
characters as the primagyaphicelementandis an
efficient representation of trelocumentlt includes
a record of when it was createdand appropriate
checksums for consistency.

38 Childs, Sametinger: Analysis of Literate Programs from the Viewpoint of Reuse

e < *tfm
The TeX font metric file containssize information
for each font used in creating the dvi file.
Additional information that is wused includes
ligatures, kerning and spacing. The tfm file is
specificfor a font andis not dependenupon the
printer that willeventuallybe used.The checksum
for eachfont is storedin the dvi file for later
consistencychecks for each step of document
production.

e - source.log
Thelog file is a journal that includesa history of
the creationof the dvi file. This information is a
supersetof the information that appearson the
screen as thegX processor works.

412 METAFONT. The METAFONT pro-
cessor operates in a manner tisasimilar to the TEX
processorand at the same time is quite different.
METAFONT acceptsasinput a sourcefile thatis a
metadescriptiorof a font (family). It doessignificant
graphicsinterpretationssolvesequationsand handles
other items associated with the creatara consistent
family of fonts. The primary outputsarethe tfm files
that TEX uses as well as files thapecify locationsof
ink for eachcharacterin a font for specific printers.
The files associatedwith the execution of the
METAFONT processorare quite similar to thosein
TEX. Significant partsof the input and output would
obviously be reused.

4.1.3 METAPOST. METAPOST is a close
relativeto METAFONT. The METAPOST processor
inputs have file layouts much like METAFONT
sourcesinsteadof creatinga font which hasa family
of relatedglyphs constructedusing common strokes,
serifs, etc., the output IETAPOST is book-quality
figures.

The programmer identifiesachfigure by a number
that is usedas an extensionfor its file name. The
output is encapsulatedPostScript. The METAPOST
processorcaninvoke TEX to createlabels using the
same fonts as the intended document.

The input andbutput of METAPOST is obviously
quite similar to that in METAFONT. A significant
differenceis that the two binary files (tfm andgf) are

possible with METAPOST but are usually not output.

4.1.4 DVlItype. The DVlitype processorwas
createdto servetwo purposeskFirst, in the early days

when porting EX was a common activity, it served as

a greatdebuggingaid. Secondsinceit properly reads

all possibledvi files, it provideda big help creatorsof
programsto input dvi files and output printer files.
DVltype is a prime examplef a programintendedfor
reuse Since it accepts as input the outp@fTgX, the
potential for reuse is obvious.

The files associatedwith the execution of the
DVitype processor are:

~ terminal

Seeterminalin TEX.

e sourcedvi
Seesourcedvi in TEX.

e setup
Ports of DVItypeoften includedthe useof a setup
file to ease normal use.

e - sourcetfm

See *.tfm in EX.

4.2 WEB Systems

WEB systems support literate programming [THjey
readWEB sourcegcodeand documentationpndact as
front ends for the Pascal compiler and the TgEX
formatting system. The tangle processorcreatesthe
Pascal file which will eventually become the
executableprogram. The weave processortakes the
sameWEB source and createsTEX sourcefile which
constitutes the documentation of the program.

4.2.1 The tangle Processor. The files asso-
ciated with the execution of thiengleprocessor are:

* o terminal
Seeterminalin TEX.

e~ sourceweb
The WEB file contains both code and
documentation, i.e., a literate program.

e < src_ch.ch
The changefile can be used optionally to make
changes to the WEB file without acutally
modifying it. This is often used for porting a
system to variousnachinesNotice that the prefix
for the change file is not necessarily identicathte
prefix of the WEB file.

e source.pas
The Pascal source code fidentainsall the codeof
the WEB file. tangle collectsthe code, orders it
correctly and outputs it ready for compilation.

e - source.pool
The string pool file’'s purposeis to make the
handling of variable-length strings less tedious.
(Standard Pascal does not have variable-length
strings.)

Childs, Sametinger: Analysis of Literate Programs from the Viewpoint of Reuse 39

4.2.2 The weave Processor. The files
associatedvith the executionof the weave processor
areidentical to those of the tangle processorgexcept
that the mairoutput is a EX file.

4.2.3 CWEB and FWEB. Knuth defined and
createdthe WEB system and then Levy createdthe
CWEB systemas a relatively direct translation [17,
20]. Although the CWEBsystemis basedon Knuth's
original WEB, reasonableassumptionswere made
about the C languagerather than Knuth's lowest
common denominator assumptions about Pascal
(which Knuth made solely to make a portable,
maintainablesystem).Levy andKnuth now maintain
CWEB.

The FWEB system is a diredescendenvf CWEB,
with changesthat are more typical of reuse[1, 18].
FWEB is a significant extension of CWEB for a
specific reason. Krommes’ FWEB is multilingual,
crunchingnumbersin Fortranon supercomputersnd
doing interpretive graphicsusing C and X-windows.
Thus Krommedbuilt Fortran, Fortran90, C andC++
support into FWEB.

Thereare severalother WEB systems,but we feel
little could be gainedby extendingthese studiesto
them.

4.3 Expected Similarities

There are two types of relationships between the
mentionedprogramsthat are reasonsto expectreuse.
These are:

e The programs are part of a system andfmeratein
thesame fashion.
TeX and METAFONT operatén similar fashions.
Also, TEX accepts as input the output of
METAFONT. The detaileddescriptionof the input
and output files of thesprogramsis an areawhere
we expectsignificant reuse.Browsing the sources
of TEX andMETAFONT in book form [12, 14]
reveals many chapters with the same title.
Similarities in these chaptersare obvious even
from justturning the pages.
The tangle and weave programs are even more
similar as theyshare identical input3.hese willbe
analyzedonly in the context of different WEB
systems for different high-level languages épace
reasons).The tangle and weave processorsinput
WEB sourceand changefiles. Sewell also noted
similarities in the way tables are allocated in
memory [25].Therewas no black-boxreusein the
original WEB system. The file common.webis

appropriatelynamedand containssectionsthat are
usedby both tangle andweavein the CWEB (and
FWEB) systems.
DVltype is a program that inputndinterpretsthe
output ofthe TEX program.

 The programs were modified to create related
programsor to significantly extendthe functiona-
lity of the original programs.
METAPOST isa modificationof METAFONT as
the componentsof FWEB are modifications of
CWEB. Theseprocessorsalso utilize large arrays
that contain all the elements they ananipulating.
Regarding reuséom CWEB to FWEB, it is clear
that cweave and fweave should be closer than
ctangle and ftangle becauseof Fortran’s unique
nature. A large part of thigangle sourceis required
by the record (rather than stream) orientation of
Fortran.

Note that theCWEB and FWEB systemswere written
using Cwhile all other programs above webbasedon
PascalAlso in theCWEB distribution, the WEB files
use the terse extensioftt.w, asone might expectin
a UNIX-oriented system.We usethe extensiontt.web
in the discussion of all WEBSs.

5. Reuse Measures

We comparedsourceso determinemeasuref reuse.
Thesecomparisonsvere doneusing the UNIX utility
diff. In most casesherewas somepreprocessingthis
will be discussedater. Reusecan be identified at a
number of different levels, i.e., words, phrases,
sentences, lines, paragraphs, sectionscaagtersThe
following list is a discussiorof factorsaffectingreuse
at theselevels.We usea bold font for the levels of
our primaryresults (linesandwords)andan italic font
for levelsthat we used in indirect fashions (chapters).

¢ Words — Individual words seemto be a trivially
fine granularity. Therewill be someobviousreuse
of articles, keywords, ... Knuth reused many
sentencesvith someediting, such as inserting or
deleting a parenthetic expressidvie feelthat reuse

at the word level compared to reuse at a higher level

of granularity is indispensable.

e Phrases— A literate programcanbe viewed as a
system oftructured pseudo-codEhe meaning o
section of code shoulde ratherexplicitly indicated
by the pseudo-codeameof a sectionof code,like
@<Set initial values of key variables@> This

40

Childs, Sametinger: Analysis of Literate Programs from the Viewpoint of Reuse

string, for example, appears 8hesin the source
of TEX. The firstoneis a placeholderwherecode
goes and the redefine initializationsThis type of
reuse is also reflected word reuse counts.

Sentences— This was consideredbut discardedin

part due to Knuth's attention to detail and

consistencyFor example, th@ X book has a lion
that decoratethe beginningof eachchapter,while

the METAFONT book has a lioness.In an error

messageavhereall relevanthelp that Knuth could

anticipatehasalreadybeengiven, he suggeststhe

TEX useremulateHercule Poirot andat the same
point suggestghat the METAFONT useremulate
Miss Marple. Strict sentencecomparisonswould

not sensethe similarities, but word and phrase
comparisons would.

Lines — Lines pose the same problems as
sentencesWe use lines in the sensethat they
appearin commoneditorslike vi and emacs The

use of existingools like diff is also advantageous.

We have observetthatin many caseswherea code
is reusedbut edited,the original line structureis
often kept. This obviously contributesto high
reuse indicators.

Paragraphs— Paragraphsare consecutivelines
separated bhlank lines, headings, et/e feelthis
is adequatelycoveredby line reusein the previous
item. If we also calculatedthe lengths of runs of
identical linesthen this would be betterindicator
than paragraphger se This is discussedn more
detail in [6].

Sections — In a book model, WEBs are
characterizedas having chapters, sections and
paragraphs.In the FWEB model, Krommes
introduced major sections to enable finer
granularity. The titles of major sectionsappearin
the table of contentswith the enclosingchapters,
but indented. Knuth used the terms section and
module interchangeablyand called what we call
chapters‘major sections’. We avoid the use of
‘module’ to avoid conflict with its use in Ada,
Fortran 90, Modula-2, etc.

Chapters— A chaptermay contain sections,and
its title appears in the table of contentée output
of a chapter(in the typesetdocumentationplways
startson a new page.The title of the chapteris
presentedin bold type, but not with the great
emphasisthat is normal in books. We did not
expectto find identical chapters,exceptfor the
titles.

R=(1-E/T)x 100
R reuselevel from comparinglines. 0 meansno
reuse, 100 means everything (all lineg)ile a
had been reused fite b.
E number of (edited) lines to be changedieleted
from file ain order to get contents 6fe b
T total number of lines dile a

Figure 1. Reuse Measurement.

We baseour comparison®n lines and words because
of the simplicity of calculating these. We found it
difficult to take semanticinformation into account.
Comparing linesandwords gives a good indication of
reuse. Obviously, high line reuse indicates mreakse;
low line reusewith high word reuse also indicates
much reuse,but with local modification. Finally, if
both line and rd reuseare low, then apparentlythere
was not much reuse.The folloeing subtle differences
affect these measures of reuse:

« Single words can be exchanged(such as TEX,
METAFONT, DVltype, etc.).

* Nonbreaking blanks (often callechard space)may
appear whera space is to be output.

e Line breaks can be changed.

e The order of chapters and sections can be different.

« User-supplemented index entries can be different.

e Sentencesan be changedin syntax (e.g., word
ordering)without any change in the semantics.

We compared chapter titles of the systems under
consideration to find the candidate sections for
comparingline and word reuse. This gives a first
indication of similarities. For example, TEX consists
of 55 chapters, while METAFONT contains 52.
Twenty-six chaptertitles are identical. Thesechapters
havebeeninvestigatedn detail. Thereis likely some

reuse in the other chapters, but we have concentrated on

those withidentical titles.

We copied eachchapterto a uniquefile and used
diff. This yieldsadd changeanddeleteinformationthat
can beapplied to changgle a to file b. An indication
of how much of file ais reusedin file b is the total
number ofiines ina less the number dines that need
to be changed ateleted to create The reuselevel (of
file ain b) is shown in Figure 1.

As empty lines are consideredlie equal,the reuse
level, naturally, is greaterthan zero, if empty lines
appearin both files. Thus, it is crucial that empty
lines be eliminated before the reuse levaletermined.
Of course for two equalfiles the resultof R is 100.

Childs, Sametinger: Analysis of Literate Programs from the Viewpoint of Reuse 41

TEXZ

consideringhe syntacticroutines.
METAFONT:

actually-contreldhe activities.

@* \[24} Introduction to the syntactic routines.

Let's pause a moment now and try to look at the Big Picture.

The FeX program consists of three main parts: syntactic routines,
semantic routines, and output routines. The chief purpose of the
syntactic routines is to deliver the user's input to the semantic routines,
enhe-tekenata-timd he-semantic routines act as an interpreter

r esponding to these-tekenghich may be regarded as commands. And the
output routines argeriodically called on te-convertbex-and-glue
Hsts-inte-acompact-set-ef-nstructioribat-will be-sent

te-atypesetteMe havediscussed the basic data structures-and-utility
routinesof \FeX\; so we are good and ready to plunge into-the+ealaetivity by

@* \36] Introduction to the syntactic routines.

Let's pause a moment now and try to look at the Big Picture.

The YR program consists of three main parts: syntactic routines,
semantic routines, and output routines. The chief purpose of the
syntactic routines is to deliver the user's input to the semantic routines,
while-parsing-expressions-andocating-operators-and-opeidrals.
semantic routines act as an interpretesponding to these-eperators,
which may be regarded as commands. Andadbput routines are

periodically caIIed on te—predummpact—fen%deserrpﬂeﬂbate&rbe

discussed the basic data structures-and-robthe-details-ef semantic
eperationsso we are good and ready to plunge into-the-paiBi-that

We have

Figure 2. Sample paragraph comparison.

Whenempty lines are eliminatedthen, R is usually
zero fornominally different files.

Lines can be similar and differ by as litds a word
or punctuationTherefore, we replaceghchblank by a
newline, and the valuesof R increasedas expected.
Our definition of word reuse,R,, is basedupon these
one-word-per-linefiles. Obviously, different files can
havenon-zero reuse levels becaube samewords can
appearin both files. We denoteR, and R, as reuse
levels considering lines amebrds, respectively.

Ry is usually slightly higherthan R;. Sometimes,
however,R, is significantly higher than R,. This is
the case when reused text has been modified
extensively,which leadsto differing lines (lowering
R)) while retaining manyof the samewords (lowering
Ry less tharR.)

We will demonstratehe suggestedkind of reuse
evaluation by studying the first paragraphof the
chapter “Introduction to the syntactic routines” TEX
and METAFONT. The text of TEX in Figure 2
contains 12 lines and 128 words. The text of
METAFONT contains 13 lines and 135 words.
Identical lines are markedwith ‘=*. Wordsthat do not
appear in both systems are strikbnough.(Words are

takento be any sequenceof charactersdelimited by
whitespace.Yo transformthe text of TEX to the text
of METAFONT, 9 lines or 30 words have to be
changedThisresultsin a line andword reuseof R| =
25.0% andR,, = 76.6%. Note that the high difference
between R, and R, indicates modification and
polishing of the source.

Note that somesingle words (that, be, of and the)
are consideredas being reused.This may sometimes
result in a slightly higheR,, thanis justified (evenif

these words were actually reused when editing the text).

Not considering these four words woulgsultin R, =
73.4%.

Note that despités high similarity, thereareonly
threeidentical lines in the METAFONT paragraph.
The first linewould have beenidentical exceptfor the
inclusion of the chapter number.

6. Results

We presentthe resultsof most of our comparisonsn
tabularform. The tablescontainreuselevelsfor lines
andwords, lengths,andin somecasesare indexedby
chaptertitle. Detailedcomparison®f someitems are
included.We usethe following notationin presenting

42 Childs, Sametinger: Analysis of Literate Programs from the Viewpoint of Reuse

TeX - METAFONT | lines words

LTEX | 21,541 | 122,137

LMETAFONT | 20,481 | 109,307
RTEX/METAFONT | 14.3% | 21.5%
RTEX(33.4%)/METAFONT | 42.8% 60.7%

Table 1. Reuse level of X in METAFONT.

theresults of the comparisons and computihg reuse
level:

* Lfile a— lengthof file a, i.e., the numberof non-
empty lines

* Rfjle affile b — reuselevel of file ain file b, i.e.,
how much offile awas reused ifile b (in percent).

* Riile a(x.x%)/file b— reuselevel of file ain file b
by considering onlyk.x percentof the lines of file
a. (Thesearethe lines of the chaptersthat appear
with the same titlén file b.)

6.1 TgEX and METAFONT
TeX containsabout21,500lines and 122,000 words.
METAFONT consists of about 20,500 lines and

110,000 words. X and METAFONT arelivided into
55 and52 chapters,respectively;26 of thesechapter
pairshave matching titles. These chapteamntain33.4
percent of the lines of thEgX system.Table 1 shows
the resulting reuselevels. 14.3% of the lines and
21.5% of the words of TEX are reused in
METAFONT. Of the 26 chapters withnatchingtitles,
42.8% of the lines and60.7% of the words are reused
in the corresponding chapters in METAFONT.

Table2 comparesn detail the chaptershat appear
in both systems.The first two columns presentthe
reuse levels of lines and words. The riglib columns
specify thetotal numberof lines/wordsof the various
chaptersin the TEX system. Rememberthat the
definition of reusestatedearlierindicatesthat all these
chapters areesused The resultsin thesetablesindicate
the extent of reusewithin these chapters.The high
reusevaluesof the chaptersentitled ‘Character Set’,
‘Input and Output’ and ‘Reporting Errors’ were
expected (see Section 4).

TEX and METAFONT contain lines (even
paragraphs)in which the only difference is a
replacement of the word TEX with the word

Common EX & METAFONT Chapters

R Ru T Tw

Introduction

63.1%| 82.4% 377 3,152

Character Set

81.6%| 76.9% 206 1,097

Input and Output

81.1%| 93.4% 301 2,333

String Handling

71.5%| 90.2% 246 1,574

On-line and off-line Printing

58.4%| 72.0% 291 1,581

Reporting Errors

82.7%| 93.3% 359 2,022

Packed Data

61.3%| 82.7% 124 767

Dynamic Memory Allocation

72.1%| 85.1% 265 1,822

Memory layout

69.7% | 75.9% 195 1,014

The hash table

19.4%| 53.2% 309 1,368

The command codes

0.0%| 19.9% 163 1,367

Saving and restoring equivalents

3.1% 8.4% 291 1,803

Token lists

16.8% | 34.7% 161 1,027

Intro to the syntactic routines

26.7%| 61.4% 86 645

Input stacks and states

47.8%| 60.1% 429 3,121

Maintaining the input stacks

47.5%| 73.5% 139 729

Getting the next token

24.1%| 39.2% 465 2,653

Expanding the next token

7.3%| 18.3% 477 2,772

Conditional processing

17.1%| 38.1% 345 1,433

File names 62.8% | 84.6% 433 2,565
Font metric data 25.8%| 46.1% 802 4,949
(Un)dumping the tables 30.1%| 53.6% 435 1,696
The main program 56.7%| 83.4% 208 1,073
Debugging 71.9%| 89.2% 64 344
System-dependent changes 80.0%| 97.6% 10 83
Index 64.3% | 96.4% 14 137
Total 42.8%| 60.7%| 7,195 43,127

Table 2. Reuse level of X in METAFONT by chapters.

Childs, Sametinger: Analysis of Literate Programs from the Viewpoint of Reuse 43

DVltype - TEX lines words
LDvitype | 2,136 13,606
LTEX | 21,541| 122,137
RDVItype/TEX | 18.8%| 32.1%
RDVItype(34.9%)/TEX | 53.8%| 75.2%

Table 3. Reuse level of DVitype in gX.

METAFONT. Also, there exist sentenceghat have
beenimproved by a changeof word ordering or by
inserting or deleting single words. Additionally,
METAFONT hasmany index entriesthat are not in
TEX, but these do not affect the reuse level.

We investigatedseveral disturbancesthat did not
raisethe reuselevel as much as we had expectedFor
example,we removedindex entries and replacedthe
words TgX and METAFONT with the stringxx. The
total reuselevel for lines increasedfrom 14.3% to
14.8%, and for words from 21.5% to 21.6%. The
levels for similar chaptersincreasedfrom 42.8% to
44.7% and from 60.7% to 61.3%.

The numbersin the table, therefore, are a lower
bound of the reuse level. Thiact is also expressedn
the rathehigh difference betweeR andR,,.

The examplein Figure 2 clearly demonstratesiow
much care was taken in adaptiegised text.

6.2 DVltypeand TEX

Six of the 15 chaptertitles in DVItype arein TEX.

The descriptionsof the characterset and the device-
independentile format havea reuselevel of about70

percent(similar to Table 2). Thesetwo chapterscom-
prise one fourth of DVItype. There are other chapters
not appearingn TEX but in other tools like gftodvi

and gftype (whictwe did not include for space reasons).

Table 3presents the reuse levels of DVitype Xl
When Knuth createda data structure, he would
immediately writeroutines tooutput the datastructure
with appropriate annotations. DVItype has that
functionality. We note that similar patterns are
commonin todays books on languagesfor object-
oriented programming. Also, this is common in
application libraries in a number of areas.

METAFONT - METAPOST| lines words

LMETAFONT | 20,481 109,307

LMETAFONT | 20,460 104,375

RMETAFONT/METAPOST | 63.4% 67.0%

RMETAFONT(80,8%) 78.5% 85.1%
IMETAPOST

Table 4. Reuse level of METAFONT in METAPOST

cweave - fweave lines words
Loweave 3,726| 18,456

Lfweave 6,103 24,640
Reweave/fweave 8.8% | 39.6%
Reweave(60.6%)fweave 14.6%| 64.8

Table 5. Reuse level ofweavein fweave

6.3 METAFONT and METAPOST

The highest reuse in our studies resulted from

comparing METAFONTand METAPOST. More than
60 percentof METAFONT (20,000 lines and more
than 100,000 words) is reused in METAPOST.
METAFONT has 52 chapters; METAPO®ias 49. Of
thesechapters44 with the sametitle appearin both

and 24 have a reuselevel higher than 90 percent.
Exceptfor threechaptersall the otherchaptershavea
reuselevel higher than 70 percent.Theseresults are
presented ifable 4.

6.4 CWEB and FWEB
The differences of the reusevels of cweavein fweave
shouldbe noted becauseof the difference betweenR,
and Ry. This indicatestext scavenging,significant
reuse and slight modifications (see Table 5). The
results are similar fortangleandftangle(see Table 6).
Note thatfweaveand ftangle are significantly larger
than cweaveand ctangle respectively.The reasonfor
this is thatFWEB deals withFortranand severalother
languages, where&WEB deals with C and C++.
CWEB and FWEB employ black-box reuse in
extracting common parts of the tangle and weave
processors.These were collected in commonweb.
Thus, besides comparing tangle and weave
investigatingcommornweb revealssome more reuse.
All the chaptersn CWEB'’s commonpart also appear
in FWEB. The difference between R, and R, is
noticeable (se&able 7).

7 . Discussion

Code and documentationvere reusedin the systems
studied. This was done primarily by code and

ctangle - ftangle lines | words
Lctangle 1,283 6,528

Lftangle 5,649 22,335
Rctangle/ftangle 6.2% | 29.4%
Rctangle(58.9%)/ftangle 10.6% | 49.8%

Table 6. Reuse level ottanglein ftangle

44 Childs, Sametinger: Analysis of Literate Programs from the Viewpoint of Reuse

L CWEB's.common. 1,143} 6,726

L FWEB's commop, 4,070:17,703:

R CWEB's common (10096)12.9% 45.7%
FWEB’s common :

Table 7. Reuse level of CWEB commonweb in
FWEB’s commonweb.

documentation scavenging. There are significant

differences between line and word reuse due to extensive

word-smithing on many segments of code and
documentationto presentinformation in the best
possible manner.

Each system was created as a self-contained,
homogeneous work. Tachieve this, reuseplartsfrom
other systems sources were reworked and adapted
carefully. Such adaptationsincluded changing the
systemname(e.g., TEX to METAFONT), changing
the word order or modifying single words for better
layout results. Often these adaptationswere real
improvements, likehe additionof index entries.This
is white-boxreuseat its best. Black-box reuseoffers
large productiongains. This was donein the CWEB
and FWEB systems. The lengths of CWEB's
commonweb, ctangleweb and cweaveneb are 54,
162, and 52 kilobytes, respectively.

The following question arises: Would the
demonstratediegreeof reuseand adaptatiorhave been
possiblewithout scavengingcodeand documentation?
Our answetto that questionis simple no! We believe
that it is obvious that writing and documenting a
software system from scratch will le&al different pro-
gramand documentatiorstructurethan building it by
reusing existing componentsand that documentation
quality is likelythe key component to being ablelie
effectivein reuse.lt shouldbe notedthat eachof the
codes studied were relativedglf-contained.

Object-oriented development systems were not
readily andwidely availableat the time TEX and the
original WEB system were built. If they had been
implementedin an object-orientedmanner, classes
would likely havebeenreusedby building subclasses,
not by direct modifications. Documentationneedsa
similar approach to adaptati@md reusewithout direct
modification, e.g., by means of object-oriented
documentation [24].

Knuth's WEB has an include facility which could
have been usedto facilitate more black-box reuse.
However, he chosewhite-box reusein a number of
instanceswhere black-box reuse would have been
easily possible. For example,a chapter could have

beendoneseparatelythat included documentationand
routine interfaces for tfm files. Theutines couldchave
been used i black-boxfashion. However,they were
integratedand edited (convertedinto white-box). Code
and documentationcould have been developedthat
included data structures,input routines and output
routinesMETAFONT would not use the inpubutine
and TEX and DVitype would not use the output
routine. As we mentionedearlier, he improved (and
specialized) documentationand added index entries
(apparently to make it more usable).

WEB systemsinclude adaptationfeaturesthrough
change files. This allows changing code and/or
documentationwhile maintaining a canonical form.
This is a ratherlimited way of adaptationput proved
to be effective for porting purposes.Porting was
additionallysupported by index entries for sectidhat
might have to behangeddueto systemdependencies.
For example,in TEX 61 such index entries were
supplied. The primary intent of changefiles was to
supportportability andto keepthe baseversionsof
major programsintact. This was successfuland new
releaseof TEX programsoften requirethe changeof
only one line in the changefile, the one which
includesthe version in the banner.

We pose a question of what would be the changes in

rewriting some of the standardworks in a literate
fashion.KernighanandRitchie€ s (K&R) guide to the
C programming language is not a standardjtbistan
authoritativeguide [9]. The title of Appendix B is
“Standard Library”. Paragraphsfrom this section
should be otentral importance in black-box reuse.

We note thaK&R tried to maintainthe brevity of
the firstedition. Whenwe created literate versions’ of
paragraphsfrom this appendix, we had the same
feelings that are reflected by two quotes from
Thimbleby [26].

| was surprised how the original commentary
(which looked all right embeddedn code)looked
insubstantial when set apart in the literstide.

A literate programming style is nap my mind,
what literate programmingis all about. How
literate programming is done, and heasilyit can
be done and redone, changeswlay one programs.
It provides new incentives. Thei® an incentiveto
make code and documentation consistent (by
developingcode and documentationconcurrently).
There is an incentive to explain, and hence
understandvhat you are doing ...

We agree with Thimblebys statements. Literate
programming is moréhan justintegratingsourcecode

Childs, Sametinger: Analysis of Literate Programs from the Viewpoint of Reuse 45

and documentation. The care withich documentation
is done may well affect how much black-box reuse
should be done in each application.

We have studied literate programs from the
viewpoint of reuse andbserved the following:

* The TeX and WEB systems were implementeda
literate manner.Theseare medium-sizedsystems.
We believe that literate programming is an
excellent methodology for the developmeifitiarge
software systems.

« Significantreusewascommonin the investigated
systems, even though mostly white-box reuse.
Some black-boxeusewas donein the CWEB and
FWEB systems. The absenceor low degree of
black-box reuse was due to the choice of the
programming language (Pascal) more than to
literate programming. Reuse and literate
programming can coexist comfortably.

* The examplespresentedshow that both code and
documentatiorwere reused modified, extendedand
adapted.

« Hobbys reuseof METAFONT, Levy's reuse of
WEB, and Krommes reuseof CWEB are ample
proof that excellent documentation aidgfie reuse
of software.

e Levy and Krommes' newer WEB systems
demonstrateéhat reusablditerate componentsvere
extractedfrom Knuth’'s WEB. Significant reuseof
elementsof TEX arein todays word processors.
The hyphenationalgorithm from TgX is widely
(re)used.This was obviously donein a white-box
fashion.

We note that emphasizingreusemakesit difficult to
produce softwareystems as self-containédoks (such
as Knuths Computersand Typesettingseries[11, 12,
13, 14]. Significant effort was madeto keep these
volumesin harmony. The lion wittHerculePoirot (in
TEX) and the lioness with Miss Marple (in
METAFONT) are probably the most obvioegample.
When softwaresystemsare written like this and with
so much care, itanreally be a pleasureto readthem.
Bentley commented about tipdeasureof readingthem
in much the same fashion one would read an
entertainingnovel [2]. Knuth haspointedout that the
readingaids of the WEB style also makesit more
tractable to read portion of a codevithout readingthe
whole code.We feel this is a significant advantagen
maintenance activities (and maintenance is the
dominant cost factor of software).

Building software systems out of reusable parits
lead to thinner books with more references,which
makes sequential readitess pleasant. But will help
in making readingmore efficient. We arguethat code
and documentatiormust be designedfor reuse.Some
effort would be necessaryn orderto extractcommon
information in the systems wevestigated angbrovide
it in away that it could be reused(otherthan by text
scavenging)The advantagesf theseefforts would be
similar to thoseachievedwhenreusingpure code(see
Section 3), e.g.:

« Errorsneededo be correctedonly onceratherthan
redundantly.

* Improvementsof the documentationwould affect
all systems, e.g., more index entries, style.

e Parts of theTEX systemscould be reusedin other
software systems also (including code and
documentation without the need of direct
modifications).

The documentationshould have the same degree of
black-boxreuseas code.Currenttechniquesand tools
do not sufficiently suppothis.

8. Conclusions

We have investigated somgX and WEB systemsfor
reuse. Thessystems have been implementeditesate
programs. Thereforeif they incorporate reuse, they
illustrate reuseof both codeanddocumentationMost
of this reuse was of the white-box variety. We
determined reusevels by investigating thehaptersof
the systems with the same @miliar) titles. Thenwe
made a comparisonbasedon lines and words. The
different results achieved by compariliges and words
indicate that most reusedcomponentswere carefully
edited and adapted.The processis not uniqueto the
study of literate programs.
We conclude the following:

« White-boxreuseis importantandwas commonin
these codes.
e White-box reuse impacts on both code and

documentation and cannot be ingnored with either.

e The only examplesof black-box reusein these
systems was in the newer WEB systems.

Knuth hadan include facility in WEB. Although this
was not in an object-orientedsystem, he could have
used this facility to ddolack-boxreusein a numberof
instances. He chose white-box reuse. In several

46 Childs, Sametinger: Analysis of Literate Programs from the Viewpoint of Reuse

instanceswhere black-box reuse was an option, he
made thalocumentation specific to its context.

The firstauthorportedthe TEX systemsto several
computer systemsand is convinced that Knuth's
attention to detail helped considerably. He also
acknowledges that todaysystems are quite different.

These systems aappropriatefor further study that
might lead to a better understandingof whereit is
appropriateto do white-box or black-box reuse. For
example, these questions remain open:

e Isit possibleto determinethe effect of documen-
tation on successfulreuse? (It obviously does
facilitate reuse.)

* Does literate programming affect the levelrefise?
(This could not be answeredby studying these
systemsbecauseno programmingteam was ever
involved.)

* Does object-oriented programming reduce the
importance of white-box reuse?

e Does object-oriented programming change the
requirements of associated documentation?

Acknowledgement¥Ve are particularly grateful for
the constructivecriticism of the reviewers,which has
greatly improved this papand ourpresentatiorof the
material.

References

1. Avenarius A, Oppermans (January1990) FWEB: A
Literate ProgrammingSystemfor Fortran 8X. ACM
SIGPLAN Notices, Vol. 25, No. 1, pp. 52-58

2. Bentley J (May1986) ProgrammingPearls—Literate
Programming. Communicationsof the ACM, Vol.
29, No. 5, pp. 364-369

3. Biggerstaff TJ, Perlis AJ (1989) Software
Reusability, Vol. I: Concepts and Models, ACM
Press

4. Booch G (1987) Software Componentswith Ada:
Structures,Tools, and Subsystems.Benjamin/Cum-
mings Publishing Company, Inc., Menlo Park, CA

5. Braun C (1994) Reuse. In [21] pp. 1055-1069

6. Childs B, SametingerJ (November 1996) Reuse
Measurementwith Line and Word Runs. TOOLS
Pacific ‘96, Melbourne, Australia

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Hobby J (April 1992) A User's Manual for
METAPOST. Computing Science Technical Report
No. 162, AT&T Bell Laboratories

Hobby J (September 1992) Introduction to
METAPOST.EuroTgX ‘92 Proceedings,pp. 21-26,

TEX Users Group

Kernighan BW, Ritchie DM (1988) The C
Programming Language. 2nd ed., Prentice Hall,
Engelwood Cliffs, NJ

Knuth DE, Fuchs DRApril 1986) TeXware. Stanford

Computer Science Report 1097
Knuth DE (1986) The TgX Book. Volume A of

Computers & Typesetting, AW
Knuth DE (1986) TeX: The Program.Volume B of

Computers & Typesetting, AW

Knuth DE (1986) The METAFONT Book. Volume C of
Computers & Typesetting, AW

Knuth DE (1986)METAFONT: The Program.Volume

D of Computers & Typesetting, AW

Knuth DE (July 1989)The Errors of TEX. Software—

Practiceand Experience,Vol. 19, No. 7, pp. 607—
685

Knuth DE (1992) Literate Programming. Stanford
University Centerfor the Study of Languagesand
Information, Leland Stanford Junior University
Knuth DE, Levy S (1993) The CWEB System of
Structured Documentation, Version 3.0. AW
Krommes J (Feb. 1990WEB (Krommes)vs. FWEB
(Avenariusand Oppermann).TgX-hax, Vol. 90, No.

19

KruegerW (June 1992) Software Reuse.Computing
Surveys, Vol. 24, pp. 131-183

Levy S (January1993) Literate Programming and
CWEB. Journal on Computer Languadél. 10, No.
1, pp. 67-70

Marciniak JJ (Editor-in-Chief) (1994) Encyclopedia
of Software Engineering. Vol. 1, John Wiley & Sons
Mili H, Mili F, Mili A (June 1995) ReusingSoftware:
Issues and Research Directions. IEEE Transactions
Software Engineering, Vol. 21, No. 6, pp. 528-562
Pappas TL (Frank) (5—-8 March 1990) Literate
Programming for Reusability: A Queue Package
Example. Proceedings of the Eighth Annual
Conferenceon Ada Technology, Atlanta, GA, pp.
500-514

Sametinger J (January 1994) Object-Oriented
Documentation. ACM Journal of Computer
Documentation, Vol. 18, No. 1, pp. 3-14

Sewell W (1989) Weaving a Program: Literate
Programming in WEB, Van Nostrand Reinhold
Thimbleby H (June 1989) A Review of Donald C.
Lindsay’s Text File Difference Utility diff.
Communicationsof the ACM, Vol. 32, No. 6, pp.
752-755

Wegner P (July 1984) Capital-Intensive Software
Technology, IEEE Softwaréyol. 1, No. 3, reprinted
in [3]

