
Gradman - 1

Literate Programming
by Mike Gradman

Introduction
 Computer programming has often seen its share of code that is hard to understand
and read due to poor documentation and style. Unfortunately, this not so straightforward
code is found in most programs. Frequently, programmers write code that only they can
understand, not considering others who may work with the code or read through it. Even
if the programmer tries to clearly explain what he is doing through writing comments in
the code or uses good style, others may not be able to make sense out of the code. Nasty
bugs might pop up that would be hard to fix or a developer might need to know what is
going on inside a particular piece of code. He might have to nag the original programmer
to clarify points about the program if he is even reachable at all. Also, in the software
development process, either management, the designers, or programmers have to keep up
with many different kinds of documents, or artifacts throughout the lifecycle. For
example, something in the requirements for the application might either be
misunderstood or totally overlooked in the code as the developers have to refer to a
separate document to see what needs to be implemented. Similar inconsistencies can
occur due to the myriad of documents that are produced in the software life cycle. Most
of these problems occur due to a lack of proper understanding of the application being
developed or used or the code written for that application. A paradigm called “literate
programming” helps developers, teachers, and students in the process of solving various
problems and understanding their solutions, especially if they have to build on or
otherwise comprehend other people’s work.

Programming Languages: Conventional Attempts at Understanding Programs

Before Programming Languages
 In the early years of the Computer Age, programmers had to use machine
language to instruct the computers what they wanted them to do, which involved
commands such as moving values into registers, manipulating memory, or handling
control flow in a complicated manner. At that time, there was no essence of entities or
other abstractions that could give the layperson or even expert programmers a true
understanding of the problem at hand.

FORTRAN

Then, in the 1950’s, the first attempts to develop high-level programming
languages were made with the aim to allow the programmer to think more in terms of
what the program needed to do and how to do it. One of these first languages was
FORTRAN, with abstractions such as data types and control structures in the form of
simple English language (such as the DO-loop and the IF-THEN statement) which
represented common idioms that the programmer could grasp [Mac87]1. For example, if

1 Using a documentation style used in many IEEE journals … take first three letters of last name of first
author listed concatenated with the year of publication … article by Edward Jones and Robert Smith from
1998 would be listed as [Jon98]. References list uses this shorthand followed by the citation in MLA
format.

Gradman - 2

the programmer wanted to double the value of each element of a ten-element array A, he
would write:

 DO 100 I=1, 10
 A(I) = A(I) * 2
100 CONTINUE

Also, the IF-statement could clearly express limited forms of control such as taking the
absolute value of a variable named VALUE:

 IF (VALUE.LT.0)
 VALUE = -VALUE

Structures like these allowed the developer to state what he wanted to do in a clear and
concise fashion by 1950’s standards.

Also, the developer could break up his work and design pieces of the application
at a time by using subroutines [Mac87] and either try to understand each small part of the
program and how it fits in the whole (bottom-up design) or get the general idea of what
the program needs to do and then handle more specific matters as he develops the
application (top-down design). However, the control structures in FORTRAN were
primitive and produced code that was hard to follow (thanks to GOTO’s) along with and
difficult to comprehend [Mac87].

COBOL
 Another attempt in the late 1950’s was COBOL. This language’s main goal was
to produce code that resembled the English language in a natural-seeming form.
COBOL was meant to be a self-documenting language, code that made it clear on its own
what was being done in the program and thus easy to understand. However, the syntax
was very verbose which made it hard to program in the first place, especially due to
certain divisions of the code.

An example of the verbosity of COBOL’s “natural language” is a program that
reads customer records and computes average sales, that is sales per call [Bel89]. Several
pieces stand out. First, about ten lines of code spell out how the input file is formatted.
The file itself is a simple chart that has the customer information and total sales and
number of sales calls. More heinous though is the output file, which is another simple
chart. This chart summarizes the customer information and has the average sales per call
listed. It looks something like:

CUSTOMER LIST

CUSTOMER CUST. NAME ADDRESS CITY STATE ZIP AVG. SALES/CALL
00001 John Doe 1 Here St. Houston TX 77333 0931.11
00002 Mary Suarez 2 2nd Ave. New York NY 01931 4943.32

However, even this easy output chart takes over thirty lines of code to describe. Here is
just a small snippet from the code that describes the format of the output chart:

Gradman - 3

01 DETAIL-LINE.
 05 FILLER PIC X(2) VALUE SPACES.
 05 CUSTOMER-NUMBER PIC 9(5) VALUE ZEROS.
 05 FILLER PIC X(3) VALUESPACES.
 05 CUSTOMER-NAME PIC X(30) VALUE ZEROS.
 [some more code … snipped for space]
 05 CUSTOMER-SALES PIC 9999.99 VALUE ZEROS.
 05 FILLER PIC X(11) VALUE SPACES.

 [Bel89].

This code describes the formatting for each row of the table and must be specified
correctly in order for the chart to properly appear. Also from this same example, the code
to populate a line of the table looks like:

FORMAT-DETAIL-LINE-MODULE
 MOVE I-CUSTOMER-NUMBER TO CUSTOMER-NUMBER.
 MOVE I-CUSTOMER-NAME TO CUSTOMER-NAME.
 [same for rest of fields of table]

 DIVIDE I-TOTAL-SALES BY I-SALES-CALLS
 GIVING AVERAGE-SALES.
 MOVE AVERAGE-SALES TO CUSTOMER-SALES.

 MOVE DETAIL-LINE TO 0-PRINTER-RECORD.
 MOVE 1 TO LINE-SPACING.
 PREFORM PRINTING-MODULE.

 [Bel89].

Again, the syntax is very verbose and must be written exactly for the program to work.
In other languages, such as C or Pascal, this routine would be much clearer by the use of
mathematical notation and assignment statements (In C, the division would be done by a
statement like “average_sales = i_total_sales / i_sales_calls”).

From the customer sales example, one can see that COBOL’s “natural language”
was really hard to understand and use instead of the program being self-documenting and
easy to comprehend. Thus, even though the ideals established for COBOL were in the
direction of making code easier to understand, the realization of that goal fell well short
of its expectations.

Procedural Programming
 Over the next twenty to thirty years, other languages appeared which made code
easier to understand and work with. Algol provided more intuitive control structures
such as the FOR and WHILE loops and the IF-ELSE statement, eliminating the need for
the GOTO’s which would have made code harder to follow. Pascal and Ada added

Gradman - 4

facilities to declare abstract data types (ADT’s) [Mac87], adding yet another way to make
applications easier to design and understand. For example, in Pascal a programmer can
declare new data types using the “type” keyword:

 {Example taken from [Mac87] and modified with comments}

type
 { a person type }

person =
 record
 name: string;
 age: 16..100; {age can be from 16 to 100}
 salary: 10000..100000; {salary in dollars}
 sex: (male, female); {an employee is either male or female}
 birthdate: date; {date is also an ADT}
 hiredate: date;
 end;

 string = packed array [1..30] of char;

 { a date type }
 date = record
 mon: month; {month is an ADT}
 day: 1..31;
 year: 1900..2000;
 end;

 {months of the year}

 month = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec);

The programmer can declare variables of these types and give them values they
understand like this:

 var

 newhire: person; {newhire is a person}

begin
 {new person is a female of age 25 and was hired on June 1, 2000}
 {which is easy to see from the code below}
 newhire.age = 25;
 newhire.sex = female;
 newhire.hiredate.mon = Jun;
 newhire.hiredate.day = 1;
 newhire.hiredate.day = 2000;
end.

Gradman - 5

These languages are classified as “procedural”, which encourages the use of procedures
and functions to implement common tasks which must be done repeatedly in the code.
Procedural programming also encourages both top-down and bottom-up design. Like
with COBOL, the aim was clear, self-documenting code. However, with more complex
problems, the ability to comprehend the code declined sharply. Numerous procedure or
function calls could make the code resemble FORTRAN to an extent as control would
jump all over the place:

{this is “pseudocode”, code that doesn’t necessary follow the syntax of any }
{programming language, but is used to convey ideas to the reader }

program jumps;
{A, B, C, and D are procedures}
procedure A;
begin
 if (some condition is true) then
 C; {procedure C is called}
 else if (something else is true) then
 B;
 else if (yet another thing is true) then
 D;
 else
 writeln(“We’re done!”);
end;

procedure B;
begin
 if (proposition is true) then
 D;
 else
 C;
end;

procedure C;
begin
 if (case is true) then
 set values such no conditions in procedure A will be satisfied;
 A;
 else
 D;
end;

Gradman - 6

procedure D;
begin
 if (some situation did occur) then
 do some processing;
 B; {things may have changed … so let’s call B again}
end;
{ main program }
begin
 A;
end.

This program is hard to follow as the reader must constantly jump from one procedure’s
code to another in order to try to understand it. Following sequentially in a piece of
program code is usually clearer than hopping from place to place. Complex code might
actually contain situations like this and could hinder the person’s understanding of any
part of the application which tries to use this code or he otherwise must work with it.

Object-Oriented Programming
 Another attempt which is still in progress for understandable code is the
object-oriented paradigm. Object-oriented programming gives a more concrete way of
thinking about entities and their relationships. Unlike the procedural model where
objects are just passive data, objects act on each other through methods. Object-oriented
programming explicitly provides more powerful facilities for understanding such as
polymorphism, inheritance, and abstract classes [Arn96]. Adherents to the
object-oriented paradigm may also see other relationships between classes such as
aggregation which also aid in the design and programming process. It is the power of
these facilities that attempts not just to integrate software development process into a
single object model that evolves with the project. But again, just like with any of these
other paradigms, complex projects are naturally hard to understand and document,
especially those with many classes or complex inheritance hierarchies.

Style Conventions
 With all of the approaches described so far came the idea of style conventions.
These rules guide the programmer into writing code where others who read the code
should be able to understand it more. For example, commenting complex pieces of code
gives developers and maintainers a good clue to what the actual code does and how it
does it. Also, giving variables meaningful names tells a person what a piece of data
represents and helps him or her make sense out of the calculations that are done and
appropriately coined functions that do what their name implies. Other conventions such
as indenting and spacing also aid the understanding process by laying out the code in
visual chunks [Dow93]. Unfortunately, many programmers just want to get their
application to work, not giving a care about whether anyone will be able to understand
the code at all. Others might just think making their code readable is not worth the extra
effort. Even those that follow these rules may follow them poorly or at best be
inconsistent at their efforts. Clearly, another approach is needed in conjunction with the

Gradman - 7

conventional approaches discussed to make code clearer so that it may be understood by
programmers, maintainers, and even users.

Literate Programming 101
 Literate programming solves many of the problems that occur by using
conventional means without taking away from the ideals of the ordinary approaches. But
first, a crash course in literate programming will give the necessary background to
understand the advantages of this paradigm.

Definition and Rationale of Literate Programming
 Literate programming is a paradigm of solving problems that combines
documentation with program code in such a way that it is easy to read and understand by
human beings, often with the aid of automated tools. Don Knuth, famous for his work
in the field, sees programming as a work of art and by looking at programs as books,
developers will better document their code and make it easy for themselves and others to
understand. This approach encourages the programmer to use good practice and clear
explanations to get ideas across to the reader [Knu92]. The paradigm provides several
major features:

• Integrated Feel for Design Strategies: Ability to program effectively in
either top-down or bottom-up fashion through the use of structured
pseudocode [Chi95].

• Divide and Conquer: Code in small pieces where most snippets of code
(including both actual program source and documentation) are less than a
page long [Chi95].

• Cognitive Reinforcement of Concepts: Typeset documentation in a pretty-
printed format where the constructs of the programming language are clearly
displayed in good style [Chi95].

• Think about Readability: A table of contents and index are generated along
with other reading aids [Chi95]. The typeset document is then effectively a
hardcopy hypertext with pointers to related sections.

• Design Alternatives: The opportunity to discuss alternative solutions and
make suggestions regarding maintenance and possible extensions [Chi92].

• Problem Description and Solution: Include all visual aids and mathematics
to enhance communication of the problem and its understanding [Chi92].

• Augment Programming Language: Provide enhanced features for the
underlying programming language.

• Environments: Provide a near ideal setting for literate programming through
user-friendly environments. Examples include Emacs web-mode [Mot90] and
Osterbye’s Smalltalk browser [Ost95].

WEB Process for Literate Programming
 Most of these features become evident by looking at how the literate
programming process works. A popular model of literate programming is Don Knuth’s
WEB [Knu92]. Pieces of code are self-contained nodes that have relationships to each
other and can be navigated through a web of such nodes. These nodes can have either
documentation notes, macro definitions, and/or code. Using a special syntax, the

Gradman - 8

programmer creates such sections and links them together in a WEB file, an example for
the “Hello, World” program, shown as Figure 1 in the Appendix. The WEB syntax is
rather simple. Commands can be used to create sections of code or documentation such
as the ones listed in Figure 2 of the Appendix. Code sections can have natural language
descriptions (or tags, denoted by pointy brackets such as “< tag >” within the typeset
documentation outputted for readers of the program code) of a part of the program, which
refer to a section named uniquely with that tag, which explains in more detail that piece
of code, also through documentation, macros, or program source. The sections of code
may appear in any order in the WEB file. The programmer can also specify typesetting
directives to guide the way the human readable documentation will appear. The
documentation includes the code in a form called “pretty-print”, a style that reflects the
syntactic structure of the language with keywords highlighted, identifiers italicized, and
spacing and indentation to clearly mark data, control, and other program structures. An
example of the pretty-printed documentation in Figure 3 of the Appendix. This kind of
typeset document is programmed using an underlying formatting language, such as TeX
in the case of WEB. Two applications process the WEB file, one to prepare the code for
the underlying programming language’s compiler (Tangle, example output shown as
Figure 4 in Appendix) and the other to generate the pretty-printed typeset document
(Weave) [Knu92]. Many literate programming tools are based on the WEB model.
Anyone who uses the WEB in any way is a “reader” of that WEB, whether he is a
programmer, client, manager, student or user of the application that the WEB implements
and documents.

Advantages of Literate Programming
 Literate programming has many aspects that really shine. The paradigm has
many general strengths attributed mostly because Weave produces a form of the code that
is more readable and understandable for humans. Also, software engineers can find
literate programming to be useful in design and communication with other parties and
each other. Furthermore, students can learn essential programming and design skills by
using this paradigm by orienting themselves to solve the problem, rather than orienting
themselves on just learning how to code. Literate programming helps readers understand
applications and how they are implemented in these ways.

General Strengths
The Typeset Document
 Most of the general advantages of literate programming come from the Woven
document (an example is shown in Figure 3 of the Appendix), in that the code in its
typeset form is simple to understand. Each section of code is clearly explained in the
documentation that accompanies it. The reader can digest small pieces of source and
through the help of the various reading aids navigate the WEB to get a better
understanding of the application. Pretty-printing in the form of indentation of code,
boldfacing of keywords in the program, allowing the inclusion of captions, and other
enhancements provided by the text formatter used also assists in the reader’s scanning of
the document by cognitively reinforcing the distinct concepts in the code.

Gradman - 9

Use of Natural Language
Another major strength of the WEB model is the extensive use of natural

language. People tend to understand information best that is presented to them in plain
English. The natural language description of pieces of code gives a clear overview of
what the section does, how it is implemented in the accompanying code, or hints or
information to the user of the program. Literate programming encourages the use of
structured pseudocode as natural language through the use of tags within the code to
describe what the piece of source does; recall that each tag is a pointer to another section
that elaborate on the action specified in the tag, establishing a concrete relationship
between two sections of code [Knu92]. A clear example of this aspect of literate
programming involves programming design languages (PDL’s). PDL’s are essentially
pseudocode that express clear ideas about what is being done using natural language
[Bro90]. The example below shows how such pseudocode translates easily into an
equivalent code snippet in the literate programming paradigm:

Pseudocode for Binary Search (fast algorithm to find an element in a sorted list):
 DO WHILE first is less than last and not found
 find the middle element
 IF the middle element is the largest
 THEN BEGIN
 found the item, return it
 ELSE
 IF target is larger than the middle item
 THEN reset the lower limit
 ELSE reset the upper limit
 ENDIF
 ENDIF
 ENDDO
[Bro90].

Literate Equivalent for Binary Search:
 begin
 < Initialize binary search variables >
 while < Not done and not found >
 do begin
 < Find the middle component >
 if < Middle component is target >
 then < Found the item >
 else
 if < Target is larger than middle >
 then < Reset lower bound >
 else < Reset upper bound >
 end
 end
[Bro90].

Gradman - 10

As you can see, the translation from pseudocode to literate programming code is fairly
straightforward. Thus, literate programs can be treated as a kind of pseudocode that is
written in easy to understand natural language. Effectively, literate programming gives a
simple way of programming and documenting mostly through the use of natural
language.

Flexible for Presentation

Also, WEB files can be used to generate documentation for various audiences or
purposes. All a presenter needs to do is first Weave a template typeset document from
the WEB file. Then, he just edits this template as appropriate for his situation:

• A professor at a University might use the Woven template to put together a
journal article that has all of the pertinent code, explanations, and graphics he
wishes to present.

• A software project team could maintain a truly living design document
throughout the software life cycle, making necessary changes throughout the
process. The project group might use multiple copies of the template as a
new version is created. User documentation can come from one copy of the
template and project artifacts such as requirements, code, or test data can
derive from another.

• A computer science teacher can explain key concepts through using literate
programs as handouts. The students would see these teaching aids as like
lecture nodes, appearing as code with explanations accompanying each piece
of program that the teacher thinks is relevant or sections that explain general
concepts and contain no code at all.

Literate Programming Can Be Fun

Don Knuth states one other rather important general advantage of literate
programming: it can be fun [Knu92]! An implementor gets to build a WEB, which is
like a work of art. He sees the program develop right before his eyes. Literate
programming is a rare breed that can both be fun and useful!

Software Engineering Advantages
 Besides its general advantages, software developers find literate programming to
be very useful. Literate programming supports and encourages incremental design
without forcing the developers to resort to a particular methodology. Also, the software
team can clearly communicate clearly with various readers of the literate program.
Software engineers can take full advantage of the plethora of language-independent tools
available online, thus freeing the team to use whatever programming language is best for
the project and whatever text formatter will make the documentation as clear and
understandable as possible.

Design Process

The software engineer might develop a program by creating a WEB file with a
problem statement, add requirements at a later time, code at a later point, and maybe later
testing information as is done incrementally in the lawn service example in [Dun95].
Also within the coding process, literate programming supports both top-down and

Gradman - 11

bottom-up design through the allowing any ordering of sections of code in the WEB file
[Knu92]. Both of these styles of design have their uses as in the conventional approaches
to programming as they help ease the design process into smaller pieces, ultimately
resulting in the realization of the entire application. Literate programming also
encourages work upstream in the software life cycle. Developers can start off with a
WEB consisting of a problem statement and its constituent parts. They can do the
requirements and high level analysis in there and then let the project grow in this WEB
right from project inception. This process would result in a better understanding of what
the application and its problem domain. As the software life cycle continues, a better
understanding of the project means a smoother ride downstream in the form of fewer
feature changes, more predictable testing, and simpler debugging work.

Communication with Others
 The use of literate programming gives the parties involved in the software process
a better understanding of the application and its innards. The literate programming
paradigm encourages communication through clear and understandable documentation
accompanying the code which may contain natural language pseudocode in the form of
tags referring to other sections. Two main groups of readers can benefit from the WEB
for the project: those internal to the project and the clients. Internally, developers can
explain what the code is supposed to do using literate programming so others who work
with the code should be able to understand it:

• Other programmers: They need to see what particular pieces of code do,
what variables, types, or functions they need to use, or get a general feel for
the project if they are unfamiliar with the code.

• Testers: Given clear-cut cases and key variables by the literate program,
these workers can develop more effective test data and try to figure out more
ways to break the code. Thus, literate programming will help the testers
uncover more hard-to-find bugs in the code.

• Maintenance Technicians: These are those people that may have to look at
the code years down the road. They will more likely never have looked at the
system before, especially if they are maintaining a variety of applications.
Also, the system may have been handed to them by the developers and thus
have to get a thorough idea of how this unfamiliar system works and is built.
The clear explanations and code in the WEB will tell the maintenance
technicians what they need to know about the software.

Literate programming also benefits the customers of the software project. The

developers can draft the documentation using the Woven output from the WEB file.
They can add documentation-only sections that contain instructions, explanations, and
tutorials that include text, charts, and graphics. The customer can then ask questions or
make clarifications during the development process based off of this clear documentation
from the developer. Changes resulting either from customer feedback or negative results
from usability testing may cause changes to need to be made to the documentation which
can be directly done in the WEB file. Literate programming reinforces and encourages
the need for communication between customer and developer through the Woven
documentation.

Gradman - 12

Language Independence
 In the early days of literate programming, tools usually assumed a certain
underlying programming language and a specific text formatting language, such as
Knuth’s WEB [Knu92]. This limitation severely limited any software project that wanted
to use literate programming as it restricted their choice of programming language to one
that might not be the most appropriate for their application or leave the documentation in
an undesirable format. However, as literate programming evolved, so did the tools, and
researchers realized the need for language-independent tools. Soon came some tools
that supported a group of languages such as FWEB (could handle C/C++, Java, and
Fortran, but only supported TeX typesetting) and Noweb (only could typeset in HTML,
Tex, or LaTeX, but was programming language independent) [Tho97]. But now there are
tools out there that are truly language independent such as VAMP [Van92], AOPS
[Shu93], FunnelWeb [Lee94], and SPIDER [Ram95]. The use of a language-independent
tool now can free up software projects from any restrictions caused by literate
programming while allowing them to fully reap the paradigm’s benefits.

Literate Programming in the Classroom
CS/1 Experiment
 In the conventional introductory computer science course, a student learns how to
program, but not how to actually solve programming problems. Most of the problems
experienced by novices are a result of not understanding how to put the pieces together
for particular programs [Chi95]. At the introductory level, students are only interested in
getting code to work, not how to think out the problem they are trying to solve or
effective ways of documenting their programs. For them, the finished product is all that
matters [Chi95]. Studies show that an effective teacher presents concepts on how to
solve problems [Chi95]. Students need to be shown that the important lesson to be
learned in programming is design. Bart Childs performed an experiment with beginning
students, exposing them to literate programming and thus emphasizing the problem
solving skills rather than the program itself, though they were responsible for learning the
syntax and constructs of Pascal [Chi95]. The students were taught iterative design
techniques and were required to turn in labs twice to make sure they were understanding
the problem solving process and then able to convert it into code [Chi95] such as in the
lawn service example from [Dun95].
 The results from this experiment confirmed that literate programming aids
beginning students in learning how to solve problems and ultimately to program better.
Most importantly, students’ problem solving skills increased. Those who were
unfamiliar with Pascal performed better than those were already familiar with the
language because they were able to “[use] the literate programming paradigm to capture
and document their problem solving process” [Chi95]. Also, students were able to learn
the three languages necessary to program in WEB, WEB itself, Pascal, and LaTeX
[Chi95]. The students exposed to literate programming performed significantly better in
their subsequent data structures course than those who didn’t get taught using the literate
programming paradigm [Chi95]. Childs also hypothesized that this paradigm might
improve the software process [Chi95]. Overall, the students were able to understand the
key concepts of problem solving and documenting their code through the design process
and using them for their own benefit.

Gradman - 13

Problem-Solving vs. Program-Oriented Approach
 Literate programming emphasizes a problem-solving approach from the start,
rather than a program-oriented one [Chi95]. The real emphasis on developing software is
understanding the problem and designing a solution for it, not the coding itself. Starting
with a top-down approach to get a high-level understanding of the problem and then
using bottom-up to fill in the details where specific details may be needed to build bigger
pieces is how this thought process works in many cases. Emphasizing the importance of
the design process early on in a programmer’s education would take him a long way.
The student would spend more time thinking about the problem and how to solve it, then
implement it, as is actually done in software projects. Also, by getting a core
understanding of the design process early on, the student would learn and master the key
concepts to be a good programmer much sooner than on who does not have experience
with literate programming. A beginning student who only learns how to program, but not
how to solve problems will gradually pick up the problem-solving approach, but probably
much later than the student who learned how to solve problems using literate
programming. The software development process stresses analyzing and understanding
the problem and how to progressively come up with a solution in the form of a well-
documented program. This new breed of programmers would view the whole software
life cycle as a single unit and the living entity, the application being developed, grows
through the WEB and the people that develop it.
 Furthermore, experience with the literate programming can help people approach
problems in whatever their fields may be. Literate programming encourages the
developer to get an understanding of the problem, get deeper into the design, and then
iteratively code the application and document his path to that solution for both him and
readers of the WEB to understand. With each problem a person faces in his field, he has
to be able to first understand what needs to be done. Next, he has to develop a blueprint
for how to solve the problem, similar to the design phase of the software engineering
process. Finally, he has to implement his solution in a way that people themselves will
understand how to use and maintain where applicable, including appropriate
documentation where necessary. A course emphasizing literate programming would thus
also be a great course to teach problem solving techniques that anyone can use later in
their field of study.

Disadvantages of Literate Programming
 Just as with any other paradigm, literate programming does have its shortcomings.
For small programs (one or two pages worth of code) or programs that may be used once
and then thrown away, using literate programming may be overkill. Having to write a
WEB file complete with textual descriptions for the documentation and really short
sections for pieces of code might be too much of a hassle and take longer to get right than
just writing the application in a conventional manner. However, even for small
applications, the programmer and other readers may have to understand and work with
the code at some point in the future. Thus, the work put into the documentation and
chunking of code into sections will pay off. Another problem with literate programming
is that the developer has to learn three languages in order to use the paradigm: the
underlying programming language, and the underlying typesetting language, and the

Gradman - 14

WEB syntax that ties them together. But with even beginning students in general having
no trouble learning the three languages needed [Chi95], experienced programmers should
be able to pick up the literate programming paradigm easily. Also, WEB ties together the
features of the two languages and blends them together into “a combination of languages
[that] proves to be much more than either single language by itself. WEB does not make
the other languages obsolete; on the contrary it enhances them” [Knu92]. One other
disadvantage of literate programming is merely a fallacy: “it is difficult to find software
that is truly independent of programming language and typesetting language and that is
also easy to understand”. This statement is just a misconception as there are language
independent tools out there. Most literate programmers are well-versed enough anyway
and should be able to learn these tools, especially those like Spider that allow the user to
customize how the WEB file is Woven and Tangled based on either underlying language
or other special situations [Ram95]. The major hurdle for literate programming right now
is that the paradigm is not a well-known concept. Fewer papers have been written than
there should be on the subject and most interest currently still seems to be restricted to the
academic community. This lack of publicity may be occurring because few organizations
currently use literate programming and/or it just does not generate the hype that
object-oriented programming or the World Wide Web do. However, given time and
word of mouth, enough people can learn for themselves how powerful and fun literate
programming is.

Conclusion – The Future of Literate Programming?
 With some more exposure to literate programming, developers, programmers,
students, and application users can take advantage of this powerful and intuitive
paradigm that continues to evolve.

Modifications to Existing Paradigm

Where might literate programming head? David Cordes and Marcus Brown
propose to modify the existing paradigm to make literate programming a more practical
methodology. One of their proposals is to provide a multilevel table of contents to allow
the programmer to layout his structure of sections more naturally and clearly instead of
the current scheme which numbers all sections as top-level [Cor91]. The reader of the
WEB can also see this hierarchical display of the sections and thus understand more
about the code. Another of their proposals is to add a GUI interface to help the user
select WEB commands more easily (new users would not even have to learn the
commands!) and traversing relationships between entities in the WEB [Cor91]. A
debugger would also help developers in writing and maintaining the code [Cor91]. An
enhanced index would give the WEB reader clear information about the use of variables
in the code [Cor91]. Besides these enhancements, Cordes and Brown also proposed
some restrictions to the current paradigm to make code easier to understand and write
such as limiting the structure of the code within a section and reducing the number of
WEB commands [Cor91]. These features would help literate programming on its way to
becoming more of a practical paradigm and as a result may become more popular.

Gradman - 15

True Natural Language Systems
 Literate programming would hit its peak when natural language processing (NLP)
makes some major breakthroughs, both in understanding (NLU) and generation (NLG).
Then, programmers and readers of the typeset documentation will be able to clearly
understand the code and what it should do. All would be in plain English and the code
itself would truly be self-documenting though documentation for most sections would
still probably be recommended.

Natural Language Understanding
 On the NLU front, a system might be feasible within a matter of years that takes
natural language in the form of high level instructions (maybe just a description of what
the program does would be enough in the far future), parses it, and generates code in a
conventional language that may be compiled and executed as well as the typeset
documentation. Recent progress has been made on the LogiMOO and NALIGE
projects. LogiMOO is a virtual world where the users may move around and perform
actions using a form of restricted natural language that is then translated into a dialect of
Prolog to execute [Tar99]. NALIGE is a natural language interface to the underlying
operating system. At the prompt, the user enters a natural language command that which
NALIGE translates into code that the operating system executes [Man94]. These projects
attempts are the first steps to realizing a true natural programming language to enhance
the literate programming paradigm.

Natural Language Generation
 Work is proceeding on an intelligent system called “dynamic hypertext” that uses
NLG to produce online documents. The system bases the pages it builds on schema it
gathers from user responses and tendencies [Dal98]. Literate programming can take
advantage of this approach in a similar system using a technique that may or may not
resemble WEB. The literate program file would contain source code and a baseline
documentation with some information about what the expected user might be like. The
source code is Tangled as is done presently. For the “Weaving” process, the baseline
documentation and the expected user information then get sent to an NLG system which
constructs and stores initial schema that is used to build the initial documentation in an
online hypertext format. Then as the user navigates each page, the NLG system updates
its schema based on his responses and tendencies that it picks up. Finally, the NLG
system uses these schema to build the next page. The NLG system’s goal would be to
display the literate program in a clear fashion that is geared towards the characteristics of
the user and aid him in the understanding and problem solving process. Until natural
language work reaches this point however, literate programming should serve well as-is
to describe the work being done in the program in a natural and clear way for all readers.

Closing Statement
How ever the paradigm of literate programming evolves, its goal will remain the same:
give everyone a version of the code that is well-documented, laid out, and presented, so
they may work with it and most importantly, understand it!

Gradman - 16

Appendix

“Raw” Source Code for “Hello, World” Program

#include <stdio.h>
main()
{
 printf(“hello world\n”);
}

Figure 1: WEB file text for “Hello, World”

Source: Cordes, David, and Marcus Brown. “The Literate-Programming Paradigm.”
Computer 24.6 (1991): 54.

Gradman - 17

Figure 2: Basic WEB Command Set

Source: Cordes, David, and Marcus Brown. “The Literate-Programming Paradigm.”
Computer 24.6 (1991): 54.

Gradman - 18

Figure 3: Woven document for “Hello, World”

Source: Cordes, David, and Marcus Brown. “The Literate-Programming Paradigm.”
Computer 24.6 (1991): 55.

Gradman - 19

Figure 4: C Program Generated from Tangle for “Hello, World”

Source: Cordes, David, and Marcus Brown. “The Literate-Programming Paradigm.”
Computer 24.6 (1991): 55.

Gradman - 20

References

[Arn96] Arnold, Ken, and James Gosling. The Java Programming Language. Reading,

 MA: Addison-Wesley, 1996.

[Bel89] Belcher, Linda K. The COBOL Handbook: A Modular Approach. Belmont,

 CA: Wadsworth, 1989.

[Bro90] Brown, Marcus, and David Cordes. “A Literate Programming Design

 Language.” Proceedings, CompEuro (1990): 548-549.

[Chi92] Childs, Bart. “Literate Programming, A Practitioner’s View.” TUGboat 13.3
 (1992): 261-268.

[Chi95] Childs, Bart, Deborah Dunn, and William Lively. “Teaching CS/1 Courses in a

 Literate Manner.” Proceedings. TUGboat 16.3 (1995): 300-309.

[Cor91] Cordes, David, and Marcus Brown. “The Literate-Programming Paradigm.”

 Computer 24.6 (1991): 52-61.

[Dal98] Dale, Robert, et. al. “Integrating Natural Language Generation and Hypertext to

 Produce Dynamic Documents.” Interacting with Computers 11 (1998): 109-135.

[Dow93] Dowd, Kevin. High Performance Computing. Sebastopol, CA: O’Reilly &

 Associates, 1993.

[Dun95] Dunn, Deborah Lynn. “Literate Programming as a Mechanism for Improving

 Problem Solving Skills.” Diss. Texas A&M University, 1995.

[Knu92] Knuth, Donald E. Literate Programming. CSLI, 1992.

[Lee94] Lee, Christopher. “Literate Programming – Propaganda and Tools.” Web page.

 http://www.cs.cmu.edu/~vaschelp/Programming/Literate/literate.html.
 October 17, 1994.

[Mac87] MacLennan, Bruce J. Principles of Programming Languages. 2nd ed. New

 York: Oxford UP, 1987.

[Man94] Manaris, Bill Z., Robert Glanville, and Timothy E. Gillis. “Developing Natural

Language Interfaces through NALIGE.” Proceedings. Sixth International
Conference on Tools with Artificial Intelligence (1994): 260-266.

[Mot90] Motl, Mark Bentley. “A Literate Programming Environment Based on an

 Extensible Editor.” Texas A&M University, 1990.

Gradman - 21

[Ost95] Osterbye, Kasper. “Literate Smalltalk Programming Using Hypertext.” IEEE
 Transactions on Software Engineering 21.2 (1995): 138-145.

[Ram95] Ramsey, Norman. “Weaving a Language Independent WEB.” 1995 version of

paper originally published in Communications of the Association for
Computing Machinery 32 (1989): 1051-1055.

[Shu93] Shum, Stephen, and Curtis Cook. “AOPS: An Abstraction-Oriented

 Programming System for Literate Programming.” Software Engineering Journal
 8.3 (1993): 113-120.

[Tar99] Tarau, Paul. “LogiMOO: An Extensible Multi-User Virtual World with Natural
 Language Control.” The Journal of Logic Programming 38 (1999): 331-353.

[Tho97] Thompson, David B.. “The Literate Programming FAQ.” Newsgroup posting:

 comp.programming.literate. August 15, 1997.

[Van92] Van Ammers, Eric W., and Mark R. Kramer. “VAMP: A Tool for Literate

 Programming Independent of Programming Language and Formatter.”
 Proceedings. CompEuro (1992): 371-376.

