
The noweb Hacker’s Guide

Norman Ramsey∗

Department of Computer Science
Princeton University

September 1992
(Revised August 1994, December 1997)

Abstract

Noweb is unique among literate-programming tools in its pipelined ar-
chitecture, which makes it easy for users to change its behavior or to add
new features, without even recompiling. This guide describes the repre-
sentation used in the pipeline and the behavior of the existing pipeline
stages. Ordinary users will find nothing of interest here; the guide is
addressed to those who want to change or extend noweb.

∗Author’s current address is Division of Engineering and Applied Sciences, Harvard Uni-
versity, 33 Oxford St, Cambridge, MA 02138, USA; send email to nr@eecs.harvard.edu.

1

Contents

Introduction 3

The pipeline representation 3
Structural keywords . 3
Tagging keywords . 5

Programming languages . 5
Indexing and cross-reference concepts 6
Index information . 7
Cross-reference information . 9

Wrapper keywords . 12
Error keyword . 13
Lying, cheating, stealing keyword . 13

Standard filters 13
markup . 13
autodefs.* . 13
finduses . 14
noidx . 14

Standard back ends 15
nt . 15
mnt . 15
tohtml . 15
totex . 16
unmarkup . 16

Standard commands 16

Examples 18

List of Tables

1 Keywords used in noweb’s pipeline representation 4
2 Indexing keywords . 8
3 Cross-referencing keywords . 11

2

Introduction

Ramsey (1994) describes noweb from a user’s point of view, showing its simplic-
ity and examples of its use. The noweb tools are implemented as pipelines. Each
pipeline begins with the noweb source file. Successive stages of the pipeline im-
plement simple transformations of the source, until the desired result emerges
from the end of the pipeline. Figures 1 and 2 on page 16 show pipelines for
notangle and noweave. Pipelines are responsible for noweb’s extensibility,
which enables its users to create new literate-programming features without
having to write their own tools. This document explains how to change or ex-
tend noweb by inserting or removing pipeline stages. Readers should be familiar
with the noweb man pages, which describe the structure of noweb source files.

Markup, which is the first stage in every pipeline, converts noweb source
to a representation easily manipulated by common Unix tools like sed and
awk, simplifying the construction of later pipeline stages. Middle stages add
information to the representation. notangle’s final stage converts to code;
noweave’s final stages convert to TeX, LaTeX or HTML. Middle stages are called
filters, by analogy with Unix filters. Final stages are called back ends, by analogy
with compilers—they don’t transform noweb’s intermediate representation; they
emit something else.

The pipeline representation

In the pipeline, every line begins with an at sign and one of the keywords shown
in Table 1. The structural keywords represent the noweb source syntax directly.
They must appear in particular orders that reflect the structure of the source.
The tagging keywords can be inserted essentially anywhere (within reason),
and with some exceptions, they are not generated by markup. The wrapper
keywords mark the beginning and end of file, and they carry information about
what formatters are supposed to do in the way of leading and trailing boilerplate.
They are used by noweave but not by notangle, and they are inserted directly
by the noweave shell script, not by markup.

Structural keywords

The structural keywords represent the chunks in the noweb source. Each chunk
is bracketed by a @begin . . . @end pair, and the kind of chunk is either docs or
code. The @begin and @end are numbered; within a single file, numbers must
be monotonically increasing, but they need not be consecutive. Filters may
change chunk numbers at will.

Depending on its kind, a chunk may contain documentation or code. Doc-
umentation may contain text and newlines, represented by @text and @nl. It
may also contain quoted code bracketed by @quote . . . @endquote. Every @quote
must be terminated by an @endquote within the same chunk. Quoted code cor-
responds to the [[. . .]] construct in the noweb source.

3

Structural keywords

@begin kind n Start a chunk
@end kind n End a chunk
@text string string appeared in a chunk
@nl A newline appeared in a chunk
@defn name The code chunk named name is being defined
@use name A reference to code chunk named name
@quote Start of quoted code in a documentation chunk
@endquote End of quoted code in a documentation chunk

Tagging keywords

@file filename Name of the file from which the chunks came
@line n Next text line came from source line n in current file
@language language Programming language in which code is written
@index ... Index information.
@xref ... Cross-reference information.

Wrapper keywords

@header formatter options First line, identifying formatter and options
@trailer formatter Last line, identifying formatter.

Error keyword

@fatal stagename message A fatal error has occurred.

Lying, cheating, stealing keyword

@literal text Copy text to output.

Table 1: Keywords used in noweb’s pipeline representation

Code, whether it appears in quoted code or in a code chunk, may contain
text and newlines, and also definitions and uses of code chunks, marked with
@defn and @use. The first structural keyword in any code chunk must be @defn.
@defn may be preceded or followed by tagging keywords, but the next struc-
tural keyword must be @nl; together, the @defn and @nl represent the initial
<<chunk name>>= that starts the chunk (including the terminating newline).

A few facts follow from what’s already stated above, but are probably worth
noting explicitly:

• Quoted code may not appear in code, nor may it appear in @defn or @use.
noweave back ends are encouraged to give [[. . .]] special treatment when
it appears in defn or use, so that the text contained therein is treated as
if it were quoted code.

4

• The text in chunks may be distributed among as many @text keywords
as desirable. Any number of empty @text keywords are permitted. In
particular, it is not realistic to expect that a single line will be represented
in a single @text (see the discussion of finduses on page 14).

• markup will sometimes emit @use within @quote . . . @endquote, for ex-
ample from a source like [[<<chunk name>>]].

• No two chunks have the same number.

• Because later filters can change chunk numbers, no filter should plant
references to chunk numbers anywhere in the pipeline.

Tagging keywords

The structural keywords carry all the code and documentation that appears in
a noweb source file. The tagging keywords carry information about that code
or documentation. The @file keyword carries the name of the source file from
which the following lines come. The @line keyword give the line number of
the next @text line within the current file (as determined by the most recent
@file keyword). The only guarantee about where these appear is that markup
introduces each new source file with a @file that appears between chunks.
Most filters ignore @file and @line, but nt respects them, so that notangle
can properly mark line numbers if some noweb filter starts moving lines around.

Programming languages

To support automatic indexing or prettyprinting, it’s possible to indicate the
programming language in which a chunk is written. The @language keyword
may appear at most once between each @begin code and @end code pair. Stan-
dard values of @language and their associated meanings are:

5

awk awk
c C
c++ C++
caml CAML
html HTML
icon Icon
latex LATEX source
lisp Lisp or Scheme
make A Makefile
m3 Modula-3
ocaml Objective CAML
perl A perl script
python Python
sh A shell script
sml Standard ML
tex plain TEX
tcl tcl

If the @language keyword catches on, it may be useful to create an automatic
registry on the World-Wide Web.

I have made it impossible to place @language information directly in a noweb
source file. My intent is that tools will identify the language of the root chunks
using any of several methods: conventional names of chunks, being told on
a command line, or identifying the language by looking at the content of the
chunks. (Of these methods, the most practical is to name the root chunks after
the files to which they will be extracted, and to use the same naming conventions
as make to figure out what the contents are.) A noweb filter will tag non-root
chunks with the appropriate @language by propagating information from uses
to definitions.

Indexing and cross-reference concepts

The index and cross-reference commands use labels, idents, and tags. A label is
a unique string generated to refer to some element of a literate program. They
serve as labels or “anchor points” for back ends that are capable of implementing
their own cross-reference. So, for example, the LATEX back end uses labels as
arguments to \label and \ref, and the HTML back end uses labels to name
and refer to anchors. Labels never contain white space, which simplifies parsing.
The standard filters cross-reference at the chunk level, so that each label refers
to a particular code chunk, and all references to that chunk use the same label.

An ident refers to a source-language identifier. Noweb’s concept of identifier
is general; an identifier is an arbitrary string. It can even contain whitespace.
Identifiers are used as keys in the index; references to the same string are as-
sumed to denote the same identifier.

6

Tags are the strings used to identify components for cross-reference in the
final document. For example, Classic WEB uses consecutive “section numbers”
to refer to chunks. Noweb, by default, uses “sub-page references,” e.g., “24b”
for the second chunk appearing on page 24. The HTML back end doesn’t use
any tags at all; instead, it implements cross-referencing using the “hot link”
mechanism.

The final step of cross-referencing involves generating tags and associating a
tag with each label. All the existing back ends rely on a document formatter to
do this job, but that strategy might be worth changing. Computing tags within
a noweb filter could be lots easier than doing it in a formatter. For example,
a filter that computed sub-page numbers by grubbing in .aux files would be
pretty easy to write, and it would eliminate a lot of squirrely LATEX code.

Index information

I’ve divided the index keywords into several groups. There seems to be a
plethora of keywords, but most of them are straightforward representations of
parts of a document produced by noweave. Readers may want to have a sample
of noweave’s output handy when studying this and the next section.

Definitions, uses, and @ %def @index defn, @index use, and @index nl
are the only @index keywords that appear in markup’s output, and thus which
can appear in any program. They may appear only within the boundaries of a
code chunk (@begin code . . . @end code). @index defn and @index use sim-
ply indicate that the current chunk contains a definition or use of the identifier
ident which follows the keyword. The placement of @index defn need not bear
a relationship to the text of the definition, but @index use is normally followed
by a @text that contains the source-code text identified as the use.1

Instances of @index defn normally come from one of two sources: either a
language-dependent recognizer of definitions, or a hand-written @ %def line.2 In
the latter case, the line is terminated by a newline that is neither part of a code
chunk nor part of a documentation chunk. To keep line numbers accurate, that
newline can’t just be abandoned, but neither can it be represented by @nl in a
documentation or code chunk. The solution is the @index nl keyword, which
serves no purpose other than to keep track of these newlines, so that back ends
can produce accurate line numbers.

Following a suggestion by Oren Ben-Kiki, @index localdefn indicates a
definition that is not to be visible outside the current file. It may be produced
by a language-dependent recognizer or other filter. Because I have questions
about the need for @index localdefn, there is officially no way to cause markup
to produce it.

1This property can’t hold when one identifier is a prefix of another; see the description of
finduses on page 14.

2The @ %def notation has been deprecated since version 2.10.

7

Definitions, uses, and @ %def

@index defn ident The current chunk contains a definition of ident
@index localdefn ident The current chunk contains a definition of

ident , which is not to be visible outside this file
@index use ident The current chunk contains a use of ident
@index nl ident A newline that is part of markup, not part of

the chunk

Identifiers defined in a chunk

@index begindefs Start list of identifiers defined in this chunk
@index isused label The identifier named in the following

@index defitem is used in the chunk labelled
by label

@index defitem ident ident is defined in this chunk, and it is used in
all the chunks named in the immediately
preceding @index isused.

@index enddefs End list of identifiers defined in this chunk

Identifiers used in a chunk

@index beginuses Start list of identifiers used in this chunk
@index isdefined label The identifier named in the following

@index useitem is defined in the chunk
labelled by label

@index useitem ident ident is used in this chunk, and it is defined in
each of the chunks named in the immediately
preceding @index isdefined.

@index enduses End list of identifiers used in this chunk

The index of identifiers

@index beginindex Start of the index of identifiers
@index entrybegin label ident Beginning of the entry for ident , whose

first definition is found at label
@index entryuse label A use of the identifer named in the last

@index entrybegin occurs at the
chunk labelled with label .

@index entrydefn label A definition of the identifer named in
the last @index entrybegin occurs at
the chunk labelled with label .

@index entryend End of the entry started by the last
@index entrybegin

@index endindex End of the index of identifiers

Table 2: Indexing keywords

8

Identifiers defined in a chunk The keywords from @index begindefs to
@index enddefs are used to represent a more complex data structure giving
the list of identifiers defined in a code chunk. The constellation represents a
list of identifiers; one @index defitem appears for each identifier. The group
also tells in what other chunks each identifier is used; those chunks are listed
by @index isused keywords which appear just before @index defitem. The
labels in these keywords appear in the order of the corresponding code chunks,
and there are no duplicates.

These keywords can appear anywhere inside a code chunk, but filters are
encouraged to keep these keywords together. The standard filters guarantee that
only @index isused and @index defitem appear between @index begindefs
and @index enddefs. The standard filters put them at the end of the code
chunk, which simplifies translation by the LATEX back end, but that strategy
might change in the future.

It should go without saying, but the keywords in these and all similar groups
(including some @xref groups) must be properly structured. That is to say:

1. Every @index begindefs must have a matching @index enddefs within
the same code chunk.

2. @index isused and @index defitem may appear only between matching
@index begindefs and @index enddefs.

3. The damn things can’t be nested.

Identifiers used in a chunk The keywords from @index beginuses to
@index enduses are the dual of @index begindef to @index enddef; the
structure lists the identifiers used in the current code chunk, with cross-references
to the definitions. Similar interpretations and restrictions apply. Note that an
identifier can be defined in more than one chunk, although we expect that to
be an unusual event.

The index of identifiers Keywords @index beginindex to @index endindex
represent the complete index of all the identifiers used in the document. Each
entry in the index is bracketed by @index entrybegin . . . @index entryend.
An entry provides the name of the identifier, plus the labels of all the chunks
in which the identifier is defined or used. The label of the first defining chunk
is given at the beginning of the entry so that back ends needn’t search for it.

Filters are encouraged to keep these keywords together. The standard filters
put them almost at the very end of the noweb file, just before the optional
@trailer.

Cross-reference information

The most basic function of the cross-referencing keywords is to associate labels
and pointers (cross-references) with elements of the document, which is done
with the @xref ref and @xref label keywords. The other @xref keywords

9

all express chunk cross-reference information that is emitted directly by one or
more back ends.

Chunk cross-reference introduces the idea of an anchor , which is a label that
refers to an “interesting point” we identify with the beginning of a code chunk.
The anchor is the place we expect to turn when we want to know about a code
chunk; its exact value and interpretation depend on the back end being used.
The standard LATEX back end uses the sub-page number of the defining chunk
as the anchor, but the standard HTML back end uses some @text from the
documentation chunk preceding the code chunk.

Basic cross-reference @xref label and @xref ref are named by analogy
with the LATEX \label and \ref commands. @xref label is used to associate
a label with a succeeding item. Items that can be so labelled include

@defn Labels the code chunk that begins with this @defn.
@use Labels this particular use.
@index defn Labels this definition of an identifier.
@index use Labels this use of an identifier.
@text Typically labels part of a documentation chunk.
@end docs Typically labels an empty documentation chunk.

I haven’t made up my mind whether this should be the complete set, but these
are the ones used by the standard filters. Most back ends use the chunk as the
basic unit of cross-reference, so the labels of @defn are the ones that are most
often used. The HTML back end, however, does something a little different—it
uses labels that refer to documentation preceding a chunk, because the typical
HTML browser (Mosaic) places the label3 at the top of the screen, and using
the label of the @defn would lose the documentation immediately preceding a
chunk. The labels used by this back end usually point to @text, but they may
point to @end docs when no text is available.

@xref ref is used to associate a reference with a succeeding item. Such
items include

@defn, @use Refers to the label used as an anchor for this
chunk.

@index defn,
@index use

Refers to the label used as an anchor for the
first chunk in which this identifier is defined.

Linking previous and next definitions of a code chunk @xref prevdef
and @xref nextdef may appear anywhere in a code chunk, and they give the
labels of the preceding and succeeding definitions of that code chunk, if any.
Standard filters currently put them at the beginning of the code chunk, following
the initial @defn, so the information can be used on the @defn line, à la Fraser
and Hanson (1995).

3The HTML terminology calls a label an “anchor.”

10

Basic cross-reference

@xref label label Associates label with tagged item.
@xref ref label Cross-reference from tagged item to item

associated with label .

Linking previous and next definitions of a code chunk

@xref prevdef label The @defn from the previous definition of
this chunk is associated with label .

@xref nextdef label The @defn from the next definition of
this chunk is associated with label .

Continued definitions of the current chunk

@xref begindefs Start “This definition is continued in . . . ”
@xref defitem label Gives the label of a chunk in which the

definition of the current chunk is
continued.

@xref enddefs Ends the list of chunks where definition
is continued.

Chunks where this code is used

@xref beginuses Start “This code is used in . . . ”
@xref useitem label Gives the label of a chunk in which this

chunk is used.
@xref enduses Ends the list of chunks in which this code

is used.
@xref notused name Indicates that this chunk isn’t used

anywhere in this document.

The list of chunks

@xref beginchunks Start of the list of chunks
@xref chunkbegin label name Beginning of the entry for chunk name,

whose anchor is found at label .
@xref chunkuse label The chunk is used in the chunk labelled

with label .
@xref chunkdefn label The chunk is defined in the chunk

labelled with label .
@xref chunkend End of the entry started by the last

@xref chunkbegin

@xref endchunks End of the list of chunks

Converting labels to tags

@xref tag label tag Associates label with tag .

Table 3: Cross-referencing keywords

11

Continued definitions of the current chunk The keywords ranging from
@xref begindefs to @xref enddefs appear in the first definition of each code
chunk. They provide the information needed by the “This definition is continued
in . . . ” message printed by the standard LATEX back end. They can appear
anywhere in a code chunk, but standard filters put them after all the @text and
@nls, so that back ends can just print out text.

Chunks where this code is used The keywords from @xref beginuses to
@xref enduses are the dual of @xref begindefs to @xref enddefs; they show
where the current chunk is used. As with @xref begindefs . . . @xref enddefs,
they appear only in the first definition of any code chunk, and they come at the
end. Sometimes, as with root chunks, the code isn’t used anywhere, in which
case @xref notused appears instead of @xref beginuses . . . @xref enduses.
The name of the current chunk appears as an argument to @xref notused
because some back ends may want to print a special message for unused chunks—
they might be written to files, for example.

The list of chunks The list of chunks, which is defined by the keywords
@xref beginchunks . . . @xref endchunks, is the analog of the index of identi-
fiers, but it lists all the code chunks in the document, not all the identifiers.

Filters are encouraged to keep these keywords together. The standard filters
put them at the end of the noweb file, just before the index of identifiers.

Converting labels to tags None of the existing back ends actually computes
tags; they all use formatting engines to do the job. The LATEX back end uses an
elaborate macro package to compute sub-page numbers, and the HTML back
end arranges for “hot links” to be used instead of textual tags. Some people
have argued that literate-programming tools shouldn’t require elaborate macro
packages, that they should use the basic facilities provided by a formatter.
Nuweb, for example, uses standard LATEX commands only, but goes digging
through .aux files to find labels and compute sub-page numbers. Doing this
kind of computation in a real programming language is much easier than doing
it with TEX macros, and I expect that one day noweb will have a tag-computing
filter, the results of which will be expressed using the @xref tag keyword.

The rules governing @xref tag are that it can appear anywhere. None of
the standard filters or back ends does anything with it.

Wrapper keywords

The wrapper keywords, @header and @trailer, are anomalous in that they’re
not generated by markup or by any of the standard filters; instead they’re in-
serted by the noweave shell script at the very beginning and end of file. The
standard TEX, LATEX, and HTML back ends use them to provide preamble and
postamble markup, i.e., boilerplate that usually has to surround a document.
They’re not required (sometimes you don’t want that boilerplate), but when

12

they appear they must be the very first and last lines in the file, and the for-
matter names must match.

Error keyword

The error keyword @fatal signifies that a fatal error as occurred. The pipeline
stage originating such an error gives its own name and a message, and it also
writes a message to standard error. Filters seeing @fatal must copy it to their
output and terminate themselves with error status. Back ends seeing @fatal
must terminate themselves with error status. (They should not write anything
to standard error since that will have been done.)

Using @fatal enables shell scripts to detect that something has gone wrong
even if the only exit status they have access to is the exit status of the last stage
in a pipeline.

Lying, cheating, stealing keyword

The @literal keyword is used to hack output directly into noweave back ends,
like totex and tohtml. These back ends simply copy the text to their output.
Tangling back ends ignore @literal. The @literal keyword is used by Master
Hackers who are too lazy to write new back ends. Its use is deprecated. It
should not exist.

Standard filters

All the standard filters, unless otherwise noted, read the noweb keyword format
on standard input and write it on standard output. Some filters may also use
auxiliary files.

markup

Strictly speaking, markup is a front end, not a filter, but I discuss it along
with filters because it generates the output that is massaged by all the fil-
ters. markup’s output represents a sequence of files. Each file is represented by
a “@file filename” line, followed by a sequence of chunks. markup numbers
chunks consecutively, starting at 0. It also recognizes and undoes the escape
sequence for double brackets, e.g. converting “@<<” to “<<”. The only tagging
keywords found in its output are @index defn or @index nl; despite what’s
written about it, @index use never appears.

autodefs.*

I’ve written half a dozen language-dependent filters that use simple heuristics
(“fuzzy parsing” if you prefer) to try to identify interesting definitions of iden-
tifiers. Many of these doubtless rely on my own idiosyncratic coding styles, but
all of them provide good value for little effort. None of them does anything

13

more complicated than scan individual @text lines in code chunks, spitting
out @index defn and @index localdefn lines after the @text line whenever it
thinks it’s found something. All the filters are written in Icon and use a central
core defined in icon/defns.nw. The C filter is the most complicated; it actu-
ally tries to understand parts of the C grammar for declarations. None of these
filters has any command-line options.

finduses

Using code contributed by Preston Briggs, this filter makes two passes over its
input. The first pass reads in all the @index defn and @index localdefn lines
and builds an Aho-Corasick recognizer for the identifiers named therein. The
second pass copies the input, searching for these identifiers in each @text line
that is code. When it finds an identifier, finduses breaks the @text line into
pieces, inserting @index use immediately before the @text piece that contains
the identifier just found.4 finduses assumes that previous filters will not have
broken @text lines in the middle of identifiers.

The -noquote command-line option prevents finduses from searching for
uses in quoted code. If finduses is given arguments, it takes those arguments
to be file names, and it reads lists of identifiers (one per line) from the files so
named, rather than from its input. This technique enables finduses to make a
single pass over its input; noweave uses it to implement the -indexfrom option.

finduses shouldn’t be run before filters which, like the autodefs filters,
expect one line to be represented in a single @text. Filters (or back ends) that
have to be run late, like prettyprinters, should be prepared to deal with lines
broken into pieces and with @index and @xref tags intercalated.

noidx

noidx computes all the index and cross-reference information represented by
the @index and @xref keywords.

The -delay command-line option delays heading material until after the
first chunk, and brings trailing material before the last chunk. In particular, it
causes the list of chunks and the index of identifiers to be emitted before the
last chunk.

The -docanchor n option sets the anchor for a code chunk to be either:

1. If a documentation chunk precedes the code chunk and is n or more lines
long, n lines from the end of that documentation chunk.

2. If a documentation chunk precedes the code chunk and is fewer than n
lines long, at the beginning of that documentation chunk.

4The behavior described would duplicate @text pieces whenever one identifier was a prefix
of another. This event is rare, and probably undesirable, but it can happen if, for example,
the C++ names MyClass and MyClass::Function are both considered identifiers. In this case,
whatever identifier is found first is emitted first, and only the unemitted pieces of longer
identifiers are emitted.

14

3. If no documentation chunk precedes the code chunk, at the beginning of
the code chunk, just as if -docanchor had not been used.

This option is used to create anchors suitable for the HTML back end.

Standard back ends

nt

The nt back end implements notangle. It extracts the program defined by a
single code chunk (expanding all uses to form their definitions) and writes that
program on standard output. Its command-line options are:

-t Turn off expansion of tabs.
-tn Expand tabs on n-column boundaries.
-Rname Expand the code chunk named name.
-Lformat Use format as the format string to emit line-number

information.

See the man page for notangle for details on the operation of nt.

mnt

mnt (for Multiple NoTangle) is a back end that can extract several code chunks
from a single document in a single pass. It is used to make the noweb shell
script more efficient. In addition to the -t and -L options recognized by nt, it
recognizes -all as an instruction to extract and write to files all of the code
chunks that conform to the rules set out in the noweb man page. It also accepts
arguments, as well as options; each argument is taken to be the name of a code
chunk that should be emitted to the file of the same name. Unlike nt, mnt has
the function of cpif built in—it writes to a temporary file, then overwrites an
existing file only if the temporary file is different.

tohtml

This back end emits HTML. It uses the formatter html with @header and
@trailer to emit suitable HTML boilerplate. For other formatters (like none)
it emits no header or trailer. Its command-line options are:

-delay Accepted, for compatibility with other back ends,
but ignored.

-localindex Produces local identifier cross-reference after each
code chunk.

-raw Wraps text generated for code chunks in a LATEX
rawhtml environment, making the whole docu-
ment suitable for processing with latex2html.

15

markup: Convert to pipeline representation
nt: Extract desired chunk to standard output

Figure 1: Stages in pipeline for notangle

markup: Convert to pipeline representation
autodefs.c: Find definitions in C code

finduses -noquote: Find uses of defined identifiers
noidx: Add index and cross-reference information

totex: Convert to LATEX

Figure 2: Stages in pipeline for noweave -index -autodefs c

totex

totex implements both the plain TEX and LATEX back ends, using @header tex
and @header latex to distinguish them. When using a LATEX header, totex
places the optional text following the header inside a \noweboptions command.

On the command line, the -delay option makes totex delay filename markup
until after the first documentation chunk; this behavior makes the first docu-
mentation chunk a “limbo” chunk, which can usefully contain commands like
\documentclass. The -noindex option suppresses output relating to the index
of identifiers; it is used to implement noweave -x.

unmarkup

unmarkup attempts to be the inverse of markup—a document already in the
pipeline is converted back to noweb source form. This back end is useful pri-
marily for trying to convert other literate programs to noweb form. It might also
be used to capture and edit the output of an automatic definition recognizer.

Standard commands

The standard commands are all written as Bourne shell scripts (Kernighan and
Pike 1984). They assemble Unix pipelines using markup and the filters and
back ends described above. They are documented in man pages, and there is no
sense in repeating that material here. I do show two sample pipelines in Figures
1 and 2. The source code is available in the shell directory for those who want
to explore further.

16

awk ’BEGIN { line = 0; capture = 0
format = sprintf("’"$format"’",’"$width"’)

}
function comment(s) {

’"$subst"’
return sprintf(format,s)

}

function grab(s) {
if (capture==0) print
else holding[line] = holding[line] s

}

/^@end doc/ { capture = 0; holding[++line] = "" ; next }
/^@begin doc/ { capture = 1; next }

/^@text / { grab(substr($0,7)); next}
/^@quote$/ { grab("[[") ; next}
/^@endquote$/ { grab("]]") ; next}

/^@nl$/ { if (capture !=0) {
holding[++line] = ""

} else if (defn_pending != 0) {
print "@nl"
for (i=0; i<=line && holding[i] ~ /^ *$/; i++) i=i
for (; i<=line; i++)
printf "@text %s\n@nl\n", comment(holding[i])

line = 0; holding[0] = ""
defn_pending = 0

} else print
next

}

/^@defn / { holding[line] = holding[line] "<"substr($0,7)">="
print ; defn_pending = 1 ; next }

{ print }’

Figure 3: awk command used to transform documentation to comments
$subst, $format, and $width are shell variables used to adapt the script for
different languages. executing $subst eliminates comment-end markers (if any)
from the documentation, and the initial sprintf that creates the awk variable
format gives the format used to print a line of documentation as a comment.

17

Examples

I don’t give examples of the pipeline representation; it’s best just to play with
the existing filters. In particular,

noweave -v options inputs >/dev/null

prints (on standard error) the pipeline used by noweave to implement any set of
options. In this section, I give examples of a few nonstandard filters I’ve thrown
together for one purpose or another.

This one-line sed command makes noweb treat two chunk names as identical
if they differ only in their representation of whitespace:

sed -e ’/^@use /s/[\t][\t]*/ /g’ -e ’/^@defn /s/[\t][\t]*/ /g’

This little filter, a Bourne shell script written in awk (Aho, Kernighan, and
Weinberger 1988), makes the definition of an empty chunk (<<>>=) stand for a
continuation of the previous chunk definition.

awk ’BEGIN { lastdefn = "@defn " }
/^@defn $/ { print lastdefn; next }
/^@defn / { lastdefn = $0 }
{ print }’ "$@"

To share programs with colleagues who don’t enjoy literate programming,
I use a filter, shown in Figure 3, that places each line of documentation in a
comment and moves it to the succeeding code chunk. With this filter, notangle
transforms a literate program into a traditional commented program, without
loss of information and with only a modest penalty in readability.

As a demonstration, and to help convert nuweb programs to noweb, I wrote
a a 55-line Icon program that makes it possible to abbreviate chunk names
using a trailing ellipsis, as in WEB; it appears in the noweb distribution as
icon/disambiguate.nw.

Kostas Oikonomou of AT&T Bell Labs and Conrado Martinez-Parra of the
Univ. Politecnica de Catalunya in Barcelona have written filters that add pret-
typrinting to noweb. Oikonomou’s filters prettyprint Icon and Object-Oriented
Turing; Martinez-Parra’s filter prettyprints a variant of Dijkstra’s language of
guarded commands. These filters are in the noweb distribution in the contrib
directory.

It’s also possible to do useful or amusing things by writing new back ends.
Figure 4 shows an awk script that gives a count of the number of lines of code
and of documentation in a group of noweb files.

References

Aho, A. V., B. W. Kernighan, and P. J. Weinberger (1988). The AWK Pro-
gramming Language. Reading, MA: Addison-Wesley.

18

Fraser, C. W. and D. R. Hanson (1995). A Retargetable C Compiler: Design
and Implementation. Redwood City, CA: Benjamin/Cummings.

Kernighan, B. W. and R. Pike (1984). The UNIX Programming Environment.
Englewood Cliffs, NJ: Prentice-Hall.

Ramsey, N. (1994, September). Literate programming simplified. IEEE Soft-
ware 11 (5), 97–105.

BEGIN { bogus = "this is total bogosity"
codecount[bogus] = -1; docscount[bogus] = -1

}
/^@file / { thisfile = $2 ; files[thisfile] = 0 }
/^@begin code/ { code = 1 }
/^@begin docs/ { code = 0 }
/^@nl/ {
if (code == 0)
docscount[thisfile]++

else
codecount[thisfile]++

}
END {
printf " Code Docs Both File\n"
for (file in files) {
printf "%5d %5d %5d %s\n",

codecount[file], docscount[file],
codecount[file]+docscount[file], file

totalcode += codecount[file]
totaldocs += docscount[file]

}
printf "%5d %5d %5d %s\n",

totalcode, totaldocs, totalcode+totaldocs, "Total"
}

Figure 4: Back end for counting lines of code and documentation
The BEGIN code forces codecount and docscount to be associative arrays; with-
out it the increment operator would fail.

19

