
Notes on Writing
Portable Programs in C

(Nov 1990, 8th Revision)

A. Dolenc∗

A. Lemmke
Helsinki University of Technology

D. Keppel†

CS&E, University of Washington
and

G. V. Reilly‡

Dept. of Computer Science, Brown University

October 4, 1994

Abstract

This documents describes the features and non-features of different
C preprocessors, compilers, and environments. As such, it is an incom-
plete document, growing as information is gathered. It contains some
material concerning ANSI C but it is not a substitute for the Standard
itself; neither are related textbooks. We assume the reader is familiar with
the C programming language.

∗Internet: ado@sauna.hut.fi.
†Internet: pardo@cs.washington.edu.
‡Internet: gvr@cs.brown.edu.

1

2

Contents

1 Foreword 4

2 Introduction 4

3 Standardization Efforts 5
3.1 ANSI C . 5

3.1.1 Translation Limits . 5
3.1.2 Unspecified and Undefined Behavior 6

3.2 POSIX . 6

4 Preprocessors 6
4.1 Command Options . 7
4.2 #pragma and #elif . 7
4.3 Concatenation . 7
4.4 Token Substitution . 8
4.5 Miscellaneous . 8

5 The Language 8
5.1 The Syntax . 8
5.2 The Semantics . 9

6 Unix Flavors: System V and BSD 9

7 Header Files 10
7.1 ‘ctype.h’ . 10
7.2 ‘fcntl.h’ and ‘sys/file.h’ . 11
7.3 ‘errno.h’ . 11
7.4 ‘math.h’ . 11
7.5 ‘strings.h’ vs. ‘string.h’ . 12
7.6 ‘time.h’ and ‘types.h’ . 12
7.7 ‘varargs.h’ vs. ‘stdarg.h’ . 13
7.8 ‘sys/wait.h’ . 13

8 Run-time Library 14
8.1 Mathematical Functions . 14

8.1.1 cbrt and pow . 14
8.1.2 rand . 14

8.2 Memory allocation and initialization 14
8.2.1 alloca . 14
8.2.2 bcopy vs. memcpy and memmove 15
8.2.3 bzero vs. memset . 15
8.2.4 malloc and free . 15
8.2.5 realloc . 16

8.3 Miscellaneous . 16
8.3.1 scanf . 16
8.3.2 setjmp and longjmp . 16
8.3.3 Signal Handling . 17

9 Using Floating-Point Numbers 17
9.1 Machine Constants . 17
9.2 Floating-Point Arguments . 18
9.3 Floating-Point Arithmetic . 18
9.4 Exceptions . 19

C Portability Notes 3

10 VMS 19
10.1 File Specifications . 19
10.2 Miscellaneous . 20

11 General Guidelines 20
11.1 Types and Pointers . 20
11.2 Compiler Differences . 22

11.2.1 Conversion Rules . 22
11.2.2 Compiler Limitations . 22
11.2.3 ANSI C . 23
11.2.4 Miscellaneous . 23

11.3 Files . 25
11.3.1 General Guidelines . 25
11.3.2 Source Files . 25

11.4 Miscellaneous . 25
11.5 Writing Portable Code . 26

12 Further Reading 26

13 Acknowledgements 27

14 Trademarks 27

4

1 Foreword

We will call a program portable if adapting it to a new environment is easier than
rewriting it for that environment. This document is mainly for those who have
never ported a program to another platform — a specific hardware and software
environment — and, evidently, for those who plan to write large systems which
must be used across different vendor machines. If you have already done some
porting, you may not find the information herein very useful.

We suggest that [CEK+90] be read in conjunction with this document.1 Posters to
the newsgroup comp.lang.c have repeatedly recommended [Hor90] and [Koe89]
(none of the information herein has been taken from those two references).

Disclaimer: We will attempt to keep the information herein updated, but it
can happen that some of it may be incorrect at the time of reading. The code
fragments presented are intended to make applications “more” portable, meaning
that they may fail with some compilers and/or environments.

This document can be obtained via anonymous FTP from sauna.hut.fi [130.233.251.253] in
‘~ftp/pub/CompSciLab/doc’. The files ‘portableC.tex’, ‘portableC.sty’, ‘portableC.bib’,
and ‘portableC.ps.Z’ are the LaTEX source and style files, BibTEX and the compressed PostScript,
respectively. Alternatively, there is a site in the US from which one can obtain all four files,
cs.washington.edu [128.95.1.4] in ‘~ftp/pub/cport.tar.Z’. All files are in the public domain.
Comments, suggestions, flames, eggs, and requests for copies via e-mail should be directed to
ado@sauna.hut.fi.

2 Introduction

The aim of this document is to collect the experience of several people who have
had to write and/or port programs written in C to more than one platform.

In order to keep this document within reasonable bounds, we must restrict our-
selves to programs which must execute under Unix-like operating systems and
those which implement a reasonable Unix-like environment. The only exception
we will consider is VMS.

A wealth of information can be obtained from programs that have been written
to run on several platforms. This is the case of publicly available software such
as that developed by the Free Software Foundation and the MIT X Consortium.

When discussing portability, one focuses on two issues:

The language, which includes the preprocessor and the syntax and the seman-
tics of the language.

The environment, which includes the location and contents of header files and
the run-time library.

We include in our discussions the standardization efforts upon the language and
the environment. Special attention will be given to floating-point representations
and arithmetic, to limitations of specific compilers, and to VMS.

Our main focus will be boiler-plate problems. Systems programming, e.g., raw
I/O from terminals, and twisted code associated with bizarre interpretations of

1[CEK+90] can be obtained via anonymous FTP from cs.washington.edu in
‘~ftp/pub/cstyle.tar.Z’.

C Portability Notes 5

[X3J88] — henceforth referred to as the Standard — are not extensively covered
in this document.2

3 Standardization Efforts

All standards have a good side and an evil side. Due to the nature of this
document, we are forced to focus our attention on the latter.

The American National Standards Institute (ANSI) has recently approved of a
standard for the C programming language [X3J88]. The Standard concentrates on
the syntax and semantics of the language and specifies a minimum environment
(the name and contents of some header files and the specification of some run-time
library functions).
Copies of the ANSI C Standard (ANSI X3.159–1989) can be obtained from the
following address:

American National Standards Institute
Sales Department
1430 Broadway
New York, NY 10018
(Voice) (212) 642–4900
(Fax) (212) 302–1286

3.1 ANSI C

3.1.1 Translation Limits

We first bring to the reader’s attention the fact that the Standard states some
environmental limits. These limits are lower bounds, meaning that a correct
(compliant) compiler may refuse to compile an otherwise-correct program that
exceeds one of those limits.3

Below are the limits that we judge to be the most important. The ones related
to the preprocessor are listed first.

• 8 nesting levels of conditional inclusion.

• 8 nesting levels for #included files.

• 32 nesting levels of parenthesized expressions within a full expression. This
will probably occur when using macros.

• 1024 macro identifiers simultaneously. Can happen if one includes too
many header files.

• 509 characters in a logical source line. This is a serious restriction if it ap-
plies after preprocessing. Since a macro expansion always results in one line,
this affects the maximum size of a macro. It is unclear what the Standard
means by a logical source line in this context and in most implementations
this limit will probably apply before macro expansion.

2We regard this document as a living entity growing as needed and as information is gathered.
Future versions of this document may contain a lot of such information.

3Maybe there are people out there who still write compilers in FORTRAN after all. . . .

6

• 6 significant initial characters in an external identifier. Usually this con-
straint is imposed by the environment, e.g., the linker, and not by the
compiler.

• 127 members in a single structure or union.

• 31 parameters in one function call. This may cause trouble with functions
that accept a variable number of arguments. Therefore, it is advisable that
when designing such functions that either the number of parameters be
kept within reasonable bounds or that alternative interfaces be supplied,
e.g., using arrays.

It is really unfortunate that some of these limits may force a programmer to code
in a less elegant way. We are of the opinion that the remaining limits stated in
the Standard can usually be obeyed if one follows “good” programming practices.

However, these limits may break programs that generate C code such as compiler-
compilers and many C++ compilers.

3.1.2 Unspecified and Undefined Behavior

The following are examples of unspecified and undefined behavior:

1. The order in which the function designator and the arguments in a function
call are evaluated.

2. The order in which the preprocessor concatenation operators # and ## are
evaluated during macro substitution.

3. The representation of floating-point types.

4. An identifier is used that is not visible in the current scope.

5. A pointer is converted to something other than an integral or pointer type.

The list is long. One of the main reasons for explicitly defining what is not
covered by the Standard is to allow the implementor of the C environment to
make use of the most efficient alternative.

3.2 POSIX

The objective of the POSIX working group P1003.1 is to define a common in-
terface for Unix. Granted, the ANSI C standard does specify the contents of
some header files and the behavior of some library functions but it falls short of
defining a useful environment. This is the task of P1003.1.

We do not know how far P1003.1 addresses the problems presented in this doc-
ument as at the moment we lack proper documentation. Hopefully, this will be
corrected in a future release of this document.

4 Preprocessors

Preprocessors can behave differently in several ways. For those who need them,
there are good publicly available preprocessors that are ANSI C–compliant. One
such preprocessor is the one distributed with the X Window System developed
by the MIT X Consortium.

C Portability Notes 7

4.1 Command Options

The interpretation of the -I command option can differ from one system to an-
other. Besides, it is not covered by the Standard. For example, the directive
#include "dir/file.h" in conjunction with -I.. would cause most prepro-
cessors in a Unix-like environment to search for ‘file.h’ in ‘../dir’, but under
VMS, ‘file.h’ is only searched for in the subdirectory ‘dir’ in the current work-
ing directory.

4.2 #pragma and #elif

Directives are very much the same in all preprocessors, except that some prepro-
cessors may not know about the defined operator in a #if directive nor about
the #pragma and #elif directives.

The #pragma directive should pose no problems even to old preprocessors if it
comes indented.4 Furthermore, it is advisable to enclose them with #ifdefs in
order to document under which platform they make sense:

#ifdef <platform-specific-symbol>
#pragma ...

#endif

Beware of #pragma directives that alter the semantics of the program and consider
the case when they are not recognized by a particular compiler. Evidently, if the
behavior of the program relies on their correct interpretation then, in order for
the program to be portable, all target platforms must recognize them properly.

4.3 Concatenation

Concatenation of symbols has two variants. One is the old K&R [KR78] style
that simply relied on the fact that the preprocessor substituted comments such
as /**/ for nothing. Obviously, that does not result in concatenation if the
preprocessor includes a space in the output. The ANSI C Standard defines the
operators ## and (implicit) concatenation of adjacent strings. Since both styles
are a fact of life it is useful to include the following in one’s header files:5

#ifdef __STDC__
define GLUE(a,b) a##b
#else
define GLUE(a,b) a/**/b
#endif

If needed, one could define similar macros to GLUE several arguments.6

4Old preprocessors only take directives that begin with # in the first column.
5Some have suggested using #if STDC instead of simply #ifdef STDC to test if the

compiler is ANSI-compliant because of compilers that are not, but define STDC equal to
zero.

6GLUE(a,GLUE(b,c)) would not result in the concatenation of a, b, and c.

8

4.4 Token Substitution

Some preprocessors perform token substitution within quotes while others do
not. Therefore, this is intrinsically non-portable. The Standard disallows it but
provides a mechanism to obtain the same results. The following should work with
ANSI-compliant preprocessors or with the ones that perform token substitution
within quotes:

#ifdef __STDC__
define MAKESTRING(s) # s
#else
define MAKESTRING(s) "s"
#endif

4.5 Miscellaneous

• We would not trust the following to work on all preprocessors:

#define D define
#D this that

The Standard does not allow such a syntax (see §3.8.3 ¶20 in [X3J88]).

• Many preprocessors ignored, or still ignore, text after the #else, #elif, and
#endif directives. However, the Standard forbids anything but comments
after these directives.

• Some preprocessors will consider it an error to #undef something that has
not been #defined, although it is allowed to do so.

• Finally, we must add that the Standard has fortunately included a #error
directive with obvious semantics. Indent the #error since old preprocessors
do not recognize it.

5 The Language

5.1 The Syntax

The syntax defined in the Standard is a superset of the one defined in K&R [KR78].
It follows that if one restricts oneself to the former, there should be no problems
with an ANSI C–compliant compiler with respect to syntax. The semantics are,
however, another problem altogether and is covered superficially in the next sec-
tion.

The Standard extends the syntax with the following:

1. The inclusion of the keywords const, enum, signed, void, and volatile.

2. The inclusion of additional constant suffixes to indicate their type.

3. The ellipsis (“...”) notation to indicate a variable number of arguments.

4. Function prototypes.

C Portability Notes 9

5. Trigraph notation for specifying otherwise-unobtainable characters in re-
stricted character sets.

We encourage the use of the reserved words const and volatile since they aid
in documenting the code. It is useful to add the following to one’s header files if
the code must be compiled by a non-conforming compiler as well:

#ifndef __STDC__
define const
define volatile
#endif

However, one must then make sure that the behavior of the application does not
depend on the presence of such keywords. (Evidently, programs that contain
identifiers with those names must be modified to conform to the Standard.)

The trigraph notation can bring unexpected results when a program is compiled
by an ANSI-compliant compiler, e.g., strings such as "??!" will produce "|".
Watch out!

5.2 The Semantics

The syntax does not pose any problem with regard to interpretation because it can
be defined precisely. However, programming languages are always described using
a natural language, e.g., English, and this can lead to different interpretations of
the same text.

Evidently, [KR78] does not provide an unambiguous definition of the C language
otherwise there would have been no need for a standard. Although the Standard
is much more precise, there is still room for different interpretations in situations
such as f(p=&a, p=&b, p=&c). Does this mean f(&a,&b,&c) or f(&c,&c,&c)?
Even “simple” cases such as a[i] = b[i++] are compiler-dependent [CEK+90].

As stated in the Introduction, we would like to exclude such topics. The reader
is instead directed to the Usenet newsgroups comp.std.c or comp.lang.c where
such discussions take place and from where the above example was taken. The
Journal of C Language Translation7 could, perhaps, be a good reference. Another
possibility is to obtain a clarification from the Standards Committee and the
address is:

X3 Secretariat, CBEMA
311 1st St NW Ste 500
Washington DC, USA

Finally, we mention that a complete list of the differences between “ordinary” C
and ANSI C can be found in the Second Edition of K&R [KR88]. A slightly less
up-to-date list can also be found in [HS87].

6 Unix Flavors: System V and BSD

A long time ago (1969), Unix said “papa” for the first time at AT&T (then called
Bell Laboratories, or Ma Bell for the intimate) on a PDP-7. Everyone liked Unix
very much and its widespread use we see today is probably due to the relative

7Address is 2051, Swans Neck Way, Reston, Virginia 22091, USA.

10

simplicity of its design and of its implementation. (It is written, of course, mostly
in C.)

However, these facts also contributed to everyone developing their own dialect. In
particular, the University of Berkeley at California distribute the so-called BSD8

Unix whereas AT&T now distribute (sell) System V Unix. All other versions of
Unix are descendants of one of these major dialects.

The differences between these two major flavors should not upset most application
programs. In fact, we would even say that most differences are just annoying.

BSD Unix has an enhanced signal handling capability and implements sockets.
However, all Unix flavors differ significantly in their raw I/O interface (that is,
the ioctl system call), and this should be avoided if possible.

The reader interested in knowing more about the past and future of Unix can
consult [Man89, Int90].

7 Header Files

Many useful system header files are in different places in different systems, or they
define different symbols. We will assume henceforth that the application has been
developed on a BSD-like Unix and must be ported to a System V-like Unix or
VMS or a Unix-like system with header files that comply with the Standard.

In the following sections, we show how to handle the most simple cases that arise
in practice. Some of the code that appears below was derived from the header
file ‘Xos.h’ which is part of the X Window System distributed by MIT. We have
added changes, e.g., to support VMS.

Many header files are unprotected in many systems, notably those derived from
BSD version 4.2 and earlier. By “unprotected” we mean that an attempt to
include a header file more than once will either cause compilation errors (e.g.,
due to recursive or nested includes) or, in some implementations, warnings from
the preprocessor stating that symbols are being redefined. It is good practice to
protect header files.

7.1 ‘ctype.h’

‘ctype.h’ provides almost the same functionality on all systems, except that
some symbols must be renamed.

#ifdef SYSV
define _ctype_ _ctype
define toupper _toupper
define tolower _tolower
#endif

Under Sys V, toupper and tolower are also defined and will check the validity of
their arguments and perform the conversion only if necessary. Under BSD-derived
systems, one must normally remember to check the validity of the arguments. The
following solution might be acceptable to most:

#ifdef SYSV
define TOUPPER(c) toupper(c)

8Berkeley Software Distribution

C Portability Notes 11

#else /* !SYSV */
define TOUPPER(c) (islower(c)?toupper(c):(c))
#endif

The definitions in ‘<ctype.h>’ are not portable across character sets.

7.2 ‘fcntl.h’ and ‘sys/file.h’

Many files that a BSD-like system expects to find in the ‘sys’ directory are placed
in ‘/usr/include’ in System V. Other systems, such as VMS, do not even have
a ‘sys’ directory.9

The symbols used in the open function call are defined in different header files in
the two types of systems:

#ifdef SYSV
include <fcntl.h>
#else
include <sys/file.h>
#endif

In some systems, e.g., BSD 4.3 and SunOS, it does not make a difference which
one is used because both define the O xxxx symbols.

7.3 ‘errno.h’

The semantics of the error number may differ from one system to another and
the list may differ as well (e.g., BSD systems have more error numbers than
System V). Some systems, e.g., SunOS, define the global symbol errno which
will hold the last error detected by the run-time library. This symbol is not
declared in most systems, although it is required by the Standard that such a
symbol be defined (see §4.1.3 of [X3J88]). It is, of course, available in all Unix
implementations.

The most portable way to print error messages is to use perror.

7.4 ‘math.h’

System V has more definitions in this header file than BSD-like systems. The
corresponding library has more functions as well. This header file is unprotected
under VMS and Cray, and in that case we must do it ourselves:

#if defined(CRAY) || defined(VMS)
ifndef __MATH__
define __MATH__
include <math.h>
endif
#endif

9Under VMS, since a path such as ‘<sys/file.h>’ will evaluate to ‘sys:file.h’, it is
sufficient to equate the logical name ‘sys’ to ‘sys$library’.

12

7.5 ‘strings.h’ vs. ‘string.h’

Some systems cannot be treated as System V or BSD, but are really special cases,
as one can see in the following:

#ifdef SYSV
ifndef SYSV_STRINGS
define SYSV_STRINGS
endif
#endif

#ifdef _STDH_ /* ANSI C Standard header files */
ifndef SYSV_STRINGS
define SYSV_STRINGS
endif
#endif

#ifdef macII
ifndef SYSV_STRINGS
define SYSV_STRINGS
endif
#endif

#ifdef vms
ifndef SYSV_STRINGS
define SYSV_STRINGS
endif
#endif

#ifdef SYSV_STRINGS
include <string.h>
define index strchr
define rindex strrchr
#else
include <strings.h>
#endif

As one can easily observe, System V-like Unix systems use different names for
index and rindex and place them in different header files. Although VMS sup-
ports better System V features, it must be treated as a special case.

7.6 ‘time.h’ and ‘types.h’

When using ‘time.h’, one must also include ‘types.h’. The following code does
the trick:

#ifdef macII
include <time.h> /* on a Mac II we need this one as well */
#endif

#ifdef SYSV
include <time.h>
#else

C Portability Notes 13

ifdef vms
include <time.h>
else
ifdef CRAY
ifndef __TYPES__ /* it is not protected under CRAY */
define __TYPES__
include <sys/types.h>
endif
else
include <sys/types.h>
endif /* of ifdef CRAY */
include <sys/time.h>
endif /* of ifdef vms */
#endif

The above is not sufficient in order for the code to be portable since the structure
that defines time values is not the same in all systems. Different systems have
vary in the way time t values are represented. The Standard, for instance, only
requires that it be an arithmetic type. Recognizing this difficulty, the Standard
defines a function called difftime to compute the difference between two time
values of type time t, and mktime which takes a string and produces a value of
type time t.

7.7 ‘varargs.h’ vs. ‘stdarg.h’

In some systems the definitions in both header files are contradictory. For in-
stance, the following will produce compilation errors, e.g., under VMS:

#include <varargs.h>
#include <stdio.h>

This is because ‘<stdio.h>’ includes ‘<stdarg.h>’ which in turn redefines all the
symbols (va start, va end, etc.) in ‘<varargs.h>’. This is incorrect behavior
because Standard header files should not include other Standard header files.
Furthermore, the method used in ‘<varargs.h>’ for defining variadic functions
is incompatible with the Standard (see §11.2.3 for more information on variadic
functions).

The solution we adopt is to always include ‘<varargs.h>’ last and not to define
in the same module both functions that use ‘<varargs.h>’ and functions that
use the ellipsis notation.

7.8 ‘sys/wait.h’

This one is lacking in some systems (e.g., Altos and Xenix). HP-UX does define
it but one must use macros to access the fields of the wait struct, instead of
using the names of the fields. The wait struct uses bit-fields and if the platform
does not define it one must do it oneself and care must be taken with respect to
byte ordering (see Byte ordering in §11.1).

14

8 Run-time Library

This section admittedly contains very little information if compared to [Hor90].
We direct the reader to that reference for more information.

Time and time again, it happens that the target platform does not have all
the library functions needed by a given application. This is particularly true
with mathematical functions. We would like to remind the reader that the
sources to 4.3BSD are publicly available, and may be obtained at several sites,
e.g., funic.funet.fi [128.214.6.100] in ‘~ftp/pub/bsd-sources’, the contents
of which are cloned from uunet.uu.net. Read the copyright notices before using
them.

8.1 Mathematical Functions

8.1.1 cbrt and pow

cbrt(x) evaluates the cube root of its argument, that is, x1/3. pow(x,y) eval-
uates xy. Some systems implement neither of these, or just the latter. In that
case, one can define pow as a function of exp and log, and if one has pow but not
cbrt, one can write the latter as a function of the former:

#define pow(x,y) (exp(log(x)*(y)))
#define cbrt(x) (pow((x),1./3.))

Thus defined, pow only admits strictly positive arguments. If the argument x is
negative, then a result can be evaluated if y is an integer and one must implement
such a function oneself (a predicate which determines if y is an integer is usually
not available).

The definitions given above are a “poor man’s” solution to the problem but ac-
ceptable in many situations. In order to obtain numerically robust and accurate
results one must investigate other alternatives such as obtaining the source code
for the 4.3BSD implementation via anonymous FTP as mentioned at the begin-
ning of this Section.

It should be mentioned that if the argument y is zero then implementations differ
on the result. The 4.3BSD implementation returns always 1.0; others may return
undefined values, flag an error, or return not-a-number.

8.1.2 rand

rand returns a pseudo-random integer in the range 0 to RAND MAX, which is guar-
anteed only to be at least 32,767. Do not rely on rand returning results over a
much wider range.

8.2 Memory allocation and initialization

8.2.1 alloca

alloca(n) allocates the amount of bytes specified by n and returns a pointer to
the allocated memory. This space is — for all practical purposes — automatically
deallocated (freed) when the block scope is exited. More specifically, the storage
is deallocated no sooner than the exit from the block scope; the implementation
is allowed to do the freeing at function exit, upon the next call to alloca, or at

C Portability Notes 15

any other moment deemed appropriate. The example below illustrates incorrect
usage of alloca:

foo ()
{
char *sto;

{
sto = alloca (10);
use (sto); /* Correct. */

}
use (sto); /* Error: storage may have been freed. */

}

Conceptually, the space is allocated on a stack, so allocation can be as fast as
just adjusting the stack pointer if the machine has one, and several regions can
be freed at once by simply readjusting the stack pointer. However, it is hard to
implement alloca both portably and efficiently. alloca is not available on all
platforms and as such is not required by the Standard. However, there are public
domain implementations that work in a wide variety of cases, but which can be
slow and which can delay freeing arbitrarily10.

Thus, while it is very desirable to use alloca when it is available, because of
efficiency considerations, it is highly recommended that the code be written so
that malloc and free can easily replace it, if and when necessary.

8.2.2 bcopy vs. memcpy and memmove

bcopy(s1,s2,n) copies the string s1 into s2, whereas memcpy(s1,s2,n) copies s2
into s1. bcopy can be found in BSD-like systems, and some implementations
handle overlapping strings, while others do not. memcpy and memmove are im-
plemented in the other camp (System V); memcpy does not handle overlapping
strings, whereas memmove does.

The normal solution is to use macros.

8.2.3 bzero vs. memset

bzero(s,n) is equivalent to memset(s,0,n). The former is implemented in BSD-
like systems, whereas the latter is implemented in System V-like systems and is
required by the Standard.

See also Initialization in §11.2.4.

8.2.4 malloc and free

malloc is available in all C implementations and its behavior is very well defined
except in boundary conditions. Not all implementations accept a zero-sized re-
quest. There are other minor differences such as the return type being char * in
some implementations and void * in others.

In a similar vein, some implementations of free do not accept NULL as an ar-
gument. Worse, though, is that some implementations allowed the caller to use
the pointer even after it had been freed so long as no other call to malloc was
performed. Relying on such behavior is bad.

10A public domain implementation of alloca can be obtained from the Free Software Foun-
dation (GNU); try prep.ai.mit.edu in ‘~ftp/pub/gnu’.

16

8.2.5 realloc

realloc(sto,n) takes a pointer to a region allocated with malloc and grows
or shrinks the region so that it is of size n. The return value from realloc is
a pointer to the resized storage; if the storage was grown “in place”, the return
value is the same as sto. If the region was moved, then the old contents are copied
to the new storage (if n is smaller than the old size, then only the first n units
are copied). If the region is grown, the new storage at the end is uninitialized
and may contain garbage.

Under ANSI C:

• If sto == NULL, then realloc acts like malloc.

• If n == 0, then realloc acts like free.

• If sto == NULL and n == 0, the results are undefined.

For non-ANSI versions of realloc, specifying NULL as the storage or 0 as the new
size causes undefined behavior. Thus, it is recommended that portable programs,
even those written in ANSI C, not use these features. If it is necessary to rely on
those features, use a macro or write a function that can be configured to check
for those cases explicitly.

8.3 Miscellaneous

8.3.1 scanf

scanf can behave differently on different platforms because its descriptions, in-
cluding the one in the Standard, allows for different interpretations under some
circumstances. The most portable input parser is the one you write yourself.

Some versions of the scanf family modify and then restore arguments which are
string constants. These implementations cause problems when string constants
are placed in read-only memory (see “String constants” in §11.2.4). If the string
is actually a constant, then some workaround is needed; usually a compiler flag
may be used to indicate that such constants should be placed in writable memory
instead. If such a flag is not available then the code must be modified.

8.3.2 setjmp and longjmp

Quoting anonymously from comp.std.c, “pre-X3.159 implementations of setjmp
and longjmp often did not meet the requirements of the Standard. Often they
didn’t even meet their own documented specs. And the specs varied from system
to system. Thus it is wise not to depend too heavily on the exact standard
semantics for this facility. . . ”.

In other words, it is not that you should not use them but be careful if you do.
Furthermore, the behavior of a longjmp invoked from a nested signal handler11

is undefined.

Finally, the symbols setjmp and longjmp are only defined under SunOS, BSD,
and HP-UX. Some systems do not implement setjmp and friends at all.

11That is, a function invoked as a result of a signal raised during the handling of another
signal. See §4.6.2.1 ¶15 in [X3J88].

C Portability Notes 17

8.3.3 Signal Handling

We would like to point out one problem when handling signals generated by
hardware, such as SIGFPE and SIGSEGV. There are two possibilities on a normal
exit from the signal handler: (i) the offending instruction is re-executed, or (ii) it
is not.

The first possibility may cause an infinite loop, and the only portable solution is
to longjmp out of the signal handler.

9 Using Floating-Point Numbers

To say that the implementation of numerical algorithms that exhibit the same
behavior across a wide variety of platforms is difficult, is an understatement.
This section provides very little help but we hope it is worth reading. Any
additional suggestions and information are very much appreciated as we would
like to expand this section.

9.1 Machine Constants

One problem when writing numerical algorithms is obtaining machine constants.
Typical values one needs are:

• The radix of the floating-point representation.

• The number of digits in the floating-point significand expressed in terms of
the radix of the representation.

• The number of bits reserved for the representation of the exponent.

• The smallest positive floating-point number ε such that 1.0 + ε 6= 1.0.

• The smallest non-vanishing normalized floating-point power of the radix.

• The largest finite12 floating-point number.

On Suns, they can be obtained in ‘<values.h>’. The ANSI C Standard recom-
mends that such constants be defined in the header file ‘<float.h>’.

Suns and standards apart, these values are not always readily available, e.g., in
Tektronix workstations running UTek. One solution is to use a modified version
of a program that can be obtained from the network which is called machar.
Machar is described in [Cod88] and can obtained by anonymous FTP from the
netlib.13

It is straightforward to modify the C version of machar to generate a C prepro-
cessor file that can be included directly by C programs.

There is also a publicly available program called ‘config.c’ that attempts to
determine many properties of the C compiler and machine that it is run on. It
can generate the ANSI C header files ‘<float.h>’ and ‘<limits.h>’ among other
useful features. This program was submitted to comp.sources.misc.14 The

12Some representations have reserved values for +inf and −inf .
13Email (Internet) address is netlib@ornl.gov. For more information, send a message con-

taining the line send index to that address.
14The archive site of comp.sources.misc is uunet.uu.net.

18

latest version, 4.2, is available by FTP from mcsun.eu.net in directory ‘misc’
and is called ‘config42.c’ (the next version, 4.3, will be called ‘enquire.c’).
Version 4.2 is also distributed with gcc, where it is called ‘hard-params.c’.

9.2 Floating-Point Arguments

In the days of K&R [KR78] one was “encouraged” to use float and double
interchangeably15 since all expressions with such data types where always evalu-
ated using the double representation — a real nightmare for those implementing
efficient numerical algorithms in C. This rule applied, in particular, to floating-
point arguments and for most compilers around, it does not matter whether one
defines the argument as float or double.

According to the ANSI C Standard, such programs will continue to exhibit the
same behavior as long as one does not prototype the function. Therefore, when
prototyping functions, make sure that the prototype is included when the function
definition is compiled so the compiler can check if the arguments match.

9.3 Floating-Point Arithmetic

Be careful when using the == and != operators to compare floating-point types.
Expressions such as

if (float expr1 == float expr2)

will seldom be satisfied due to rounding errors. To get a feeling about rounding
errors, try evaluating the following expression using your favorite C compiler
[KM86]:

1050 + 812− 1050 + 1055 + 511− 1055 = 812 + 511 = 1323

Most computers will produce zero regardless of whether one uses float or double.
Although the absolute error is large, the relative error is quite small and probably
acceptable for many applications.

It is rather better to use expressions such as |float expr1− float expr2| ≤ K or∣∣∣|float expr1/float expr2| − 1.0
∣∣∣ ≤ K (if float expr2 6= 0.0), where 0 < K < 1

is a function of:

1. The floating type, e.g., float or double,

2. the machine architecture (the machine constants defined in the previous
section), and

3. the precision of the input values and the rounding errors introduced by the
numerical method used.

Other possibilities exist and the choice depends on the application.

The development of reliable and robust numerical algorithms is a very difficult
undertaking. Methods for certifying that the results are correct within reasonable
bounds must usually be implemented. A reference such as [PFTV88] is always
useful.

15In fact one wonders why they even bothered to define two representations for floating-point
numbers considering the rules applied to them.

C Portability Notes 19

• Keep in mind that the double representation does not necessarily increase
the precision. Actually, in some implementations the precision decreases,
but the range increases.

• Do not use double unnecessarily, since in many cases there is a large per-
formance penalty. Furthermore, there is no point in using higher precision,
if the additional bits that would be computed are garbage anyway. The
precision one needs depends mostly on the precision of the input data and
the numerical method used.

9.4 Exceptions

Floating-point exceptions (overflow, underflow, division by zero, etc) are not
signaled automatically in some systems. In that case, they must be explicitly
enabled.

Always enable floating-point exceptions, since they may be an indication that the
method is unstable. Otherwise, one must be sure that such events do not affect
the output.

10 VMS

In this section, we will report some common problems encountered when porting
a C program to a VMS environment and which we have not mentioned previously.

10.1 File Specifications

Under VMS, one can use two flavors of command interpreters: DCL and DEC/Shell.
The syntax of file specifications under DCL differs significantly from the Unix
syntax.

Some C run-time library functions in VMS that take file specifications as argu-
ments or return file specifications to the caller, will accept an additional argument
indicating which syntax is preferred. It is useful to use these run-time library
functions via macros as follows:

#ifdef VMS
ifndef VMS_CI /* Which Command Interpreter to use */
define VMS_CI 0 /* 0 for DEC/Shell, 1 for DCL */
endif

define Getcwd(buff,siz) getcwd((buff),(siz),VMS_CI)
define Getname(fd,buff) getname((fd),(buff),VMS_CI)
define Fgetname(fp,buff) fgetname((fp),(buff),VMS_CI)

#else /* !VMS */
define Getcwd(buff,siz) getcwd((buff),(siz))
define Getname(fd,buff) getname((fd),(buff))
define Fgetname(fp,buff) fgetname((fp),(buff))

#endif /* !VMS */

More pitfalls await the unaware who accept file specifications from the user or
take them from environment values (e.g., using the getenv function).

20

10.2 Miscellaneous

end, etext, edata: these global symbols are not available under VMS.

struct assignments: VAX C allows assignment of different types of structs if
both types have the same size. This is not a portable feature.

The system function: the system function under VMS has the same function-
ality as the Unix version, except that one must take care that the command
interpreter also provides the same functionality. If the user is using DCL,
then the application must send a DCL-like command.

The linker: what follows applies only to modules stored in libraries.16 If none
of the global functions are explicitly used (referenced by another module),
then the module is not linked at all. It does not matter whether one of the
global variables is used. As a side effect, the initialization of variables is
not done.

The easiest solution is to force the linker to add the module using the
/INCLUDE command modifier. Of course, there is the possibility that the
command line may exceed 256 characters. . . (*sigh*).

11 General Guidelines

11.1 Types and Pointers

Type sizes: Never make any assumptions about the size of a given type, espe-
cially pointers [CEK+90]. Statements such as x &= 0177770 make implicit
use of the size of x. If the intention is to clear the lowest three bits, then it
is best to use x &= ~07. The first alternative will also clear the high-order
16 bits if x is 32 bits wide.

Byte ordering: There are two possibilities for byte ordering: little-endian and
big-endian architectures. This problem is illustrated by the code below:

long int str[2] = {0x41424344, 0x0}; /* ASCII "ABCD" */
printf ("%s\n", (char *)&str);

A little-endian (e.g., VAX) will print “DCBA” whereas a big-endian (e.g.,
MC68000 microprocessors) will print “ABCD”. (As a side note, there is also
PDP-endian that would print “BADC”, followed by many smileys.)

Note: The example will only function correctly if sizeof(long int) is
32 bits. Although not portable, it serves well as an example for the given
problem.

Alignment constraints: Beware of alignment constraints when allocating mem-
ory and using pointers. Some architectures restrict the addresses that
certain operands may be assigned to (that is, addresses of the form 2kE,
where k > 0). Code such as

char *s = "bla"; /* allocated by compiler */
int *v = (int *)s;

16This does not really belong in this document, but whenever one is porting a program to a
VMS environment one is bound to come across this strange behavior which can result in a lot
of wasted time.

C Portability Notes 21

would most probably fail if the alignment constraints of int types are more
strict than those of char types (the usual case for RISC architectures). The
code would not fail due to alignment constraints if the memory indicated
by s had been allocated by malloc and friends.

Pointer formats: [CEK+90] Pointers to objects may have the same size but
different formats. This is illustrated by the code below:

int *p = (int *) malloc(...); ... free(p);

This code may malfunction in architectures where int * and char * have
different representations because free expects a pointer of the latter type.

Pointers to different types of objects may have different sizes as well. For in-
stance, there are platforms where a char * is larger than an int * or where
a pointer to a function will not fit in, e.g., char * or void * (although such
cross-assignments work on many platforms, void * is only guaranteed to
be large enough to hold a pointer to any data object). Therefore, it is
not portable to assign to an object of type void * a pointer to a function.
Pointers to functions are further discussed below.

Pointers to functions If you need a generic function pointer, then use void(*)(void).
Be sure to cast the pointer back to the original type before using it. That
is, the type signature of the function pointer at the point that the function
is called must exactly match the type signature at the point at which the
function is defined.

For example, it is not possible to (portably) use varargs functions17 (that
is, functions that take a variable number of arguments) and fixed-argument
functions interchangeably, even if the overlapping types match (that is,
even if the first n arguments to the fixed-argument function are the same
as the first n arguments to the varargs function). For instance, a function
that is declared as having an integer as the first argument and an optional
(integer) second argument cannot be called as a function that takes two
integer arguments. Similarly, varargs functions of various type signatures
cannot be interchanged. Such type cheating will break on systems that use
different conventions for calling fixed-argument and varargs functions and
on systems that use different conventions for passing the fixed and varargs
parts of the argument lists.

As a corollary, it is necessary that the definitions of external variadic func-
tions be available at the point of their usage, e.g., library functions such as
printf.

Pointer operators: [CEK+90] Only the operators == and != are defined for all
pointers of a given type. The remaining comparison operators (<, <=, >, and
>=) can only be used when both operands point into the same array or to
the first element after the array. The same applies to arithmetic operators
on pointers.18

17There is a difference between variadic functions defined by the Standard and the pre-
Standard varargs as defined by ‘varargs.h’ which is still widely used. Here we are referring
to the former, and the differences between both are explored in §11.2.3.

18One of the reasons for these rules is that in some architectures, pointers are represented
as a pair of values and only equality is a well-defined operator for arbitrary pairs of values.
The other operators are only well-defined when one of the values of both pairs is guaranteed to
match, in which case the situation is analogous to “ordinary” architectures.

22

NULL pointer: Never redefine the NULL symbol. The NULL symbol should always
be the constant zero. A null pointer of a given type will always compare
equal to the constant zero, whereas comparison with a variable with value
zero or to some non-zero constant has implementation-defined behavior.
(In other words, the constant zero has two meanings.)

A null pointer of a given type will always convert to a null pointer of another
type if implicit or explicit conversion is performed. (See ‘Pointer Operators’
above.)

The contents of a null pointer may be anything the implementor wishes,
and dereferencing it may cause strange things to happen. . . .

11.2 Compiler Differences

11.2.1 Conversion Rules

In arithmetic expressions, integral types may be converted in two ways: unsigned-
preserving or value-preserving. In the unsigned-preserving model, chars, shorts,
and bit-fields are converted to unsigned int or signed int if the original types
have the modifiers unsigned or signed, respectively.

The Standard determines that the value-preserving model must be used, mean-
ing that unsigned values are promoted to signed int, or simply int, if it can
represent all the values of the original type; otherwise it is converted to unsigned
int. (See §3.2 of the Standard.)

The following example illustrates the problem. On a machine with a 16-bit
short int, and 32-bit int, the code fragment

unsigned short int x = 1;
if (x < -1) printf ("unsigned-preserving");
else printf ("value-preserving");

prints unsigned- or value-preserving accordingly. Plenty of other exam-
ples can be derived, such as initializing x with 215 and using the predicate
(x*x*2 > 0). The expression x*x*2 would probably result in the same bit pat-
tern in both models but would cause arithmetic overflow in the value-preserving
model.

11.2.2 Compiler Limitations

In practice, much too frequently one runs into several, unstated compiler limita-
tions:

• Some of these limitations are bugs. Many of these bugs are in the optimizer
and therefore when dealing with a new environment it is best to explicitly
disable optimization until one gets the application “going”.

• Some compilers cannot handle large modules or “large” statements.19 There-
fore, it is advisable to keep the size of modules within reasonable bounds.
Besides, large modules are more cumbersome to edit and understand.

19Programs that generate other programs, e.g., yacc, can generate, for instance, very large
switch statements.

C Portability Notes 23

11.2.3 ANSI C

The Standard has introduced and officialized current practice, but as we all know
not many compilers conform to the Standard. Among the features that are not
yet widely supported, we mention here only a few:

Constant suffixes: Many compilers allow for suffixes to be appended to con-
stants, such as 10L to indicate a long constant. The Standard allows further
typing of constants, such as 10UL to indicate an unsigned long constant.
However, multiple suffixes are not supported by many compilers.

New types: Besides the type void * which is mentioned in the next section,
the Standard has introduced the type long double.

Variadic functions: Variadic functions, as defined by the Standard, differ sig-
nificantly from ‘<varargs.h>’. Besides the ellipsis notation, it is required
by the Standard that the first argument be identified and that ‘<stdarg.h>’
be used instead (see §7.7). Therefore, it is not possible to define a variadic
function which takes no arguments.

11.2.4 Miscellaneous

char types: When char types are used in expressions, most implementations
will treat them as unsigned but there are many others that treat them as
signed (e.g., VAX C and HP-UX). It is advisable to always cast chars
when they are used in arithmetic expressions.

Initialization: Do not rely on the initialization of auto variables and of memory
returned by malloc. In particular, since not all NULL pointers are repre-
sented by a bit pattern of all-zeroes, it is good practice to always initialize
pointers appropriately.

The calloc library function returns an area of memory that has been
cleared to zero. Although this can be used to initialize arrays and structs
on many architectures, not all architectures represent NULL pointers inter-
nally with a zero bit-pattern. Similarly, it is not safe to assume that all
architectures represent the floating-point constant 0.0 using a zero bit-
pattern.

The semantics of many library functions differ from system to system.
Also, the specifications of some library functions have been changed in the
ANSI C Standard. For example, realloc is now required to behave like
malloc when called with a NULL argument; formerly, many implementations
would dump core if handed NULL.

Bit fields: Some compilers, e.g., VAX C, require that bit fields within structs
be of type int or unsigned. Furthermore, the upper bound on the length
of the bit field may differ among different implementations.

sizeof: 1. The result of sizeof may be unsigned or signed.

2. If p is a pointer, then sizeof(*p) is allowed by the Standard and
many compilers even if p does not contain a valid address such as NULL.
However, some compilers dereference the pointer causing programs to
crash.

24

void and void *: Some very old compilers do not recognize void [sic]. Al-
though required by the Standard, some compilers recognize void but fail
to recognize void *. The following code might prove useful:

#if __STDC__
define HAS_VOIDP
#endif
#ifdef HAS_VOIDP

typedef void *voidp;
#else

typedef char *voidp;
#endif

Functions as arguments: When calling functions passed as arguments, always
dereference the pointer. In other words, if f is a pointer to a function,
use (*f)() instead of simply (f)(), because some compilers may not rec-
ognize the latter.

String constants: Do not modify string constants since many implementations
place them in read-only memory. Furthermore, that is what the Standard
requires — and that is how a constant should behave!

Note: In statements such as “char *s = "string"”, "string" is a string
constant, whereas in “char s[] = "string" it is not and it is legal to
modify s.

struct comparisons: Some compilers might allow for structs to be compared
for equality or inequality. Such an extension is not included in the Standard
(meaning it is not portable).

Initialization of aggregates: Some compilers cannot initialize auto aggregate
types. Statements such as:

{
typedef struct {double x,y} Interval;
Interval range = {0.0,0.0};
...

}

are not allowed by some compilers unless the modifier static is used or if
range has file scope. Although declaring all such variables static would
handle most situations, the most portable solution is to add code that
performs the initialization.

Nested comments: Nested comments were never allowed in the C language,
but they are allowed by some compilers. Nested comments are used by
some to comment out source code containing comments. However, the
same effect can be obtained using an #if 0 and #endif pair.

Shift operators: When shifting signed ints right, the vacated bits might be
filled with zeroes or with copies of the sign bit. unsigned ints will be filled
with zeroes.

Division and remainder: When both operands are non-negative, then the re-
mainder is non-negative and smaller than the divisor; if not, it is guaranteed
only that the absolute value of the remainder is smaller than the absolute
value of the divisor.

C Portability Notes 25

11.3 Files

11.3.1 General Guidelines

Remember that not all operating systems share Unix’s simple notion of a file as
a stream of bytes. MS-DOS, for instance, has text files and binary files; it is
important to open files in the correct mode. VMS has many different file types
and each file is viewed as being a collection of structured records.

MS-DOS provides a “poor man’s” implementation of pipes and redirection. It
does not expand wildcards, however. The user must do the wildcard expansion
using findfirst and findnext. Under VMS, the user must also expand wild-
cards, and parse argv for redirection directives manually.

Different operating systems use widely different syntax to specify pathnames.
This is a potential source of problems. Some compilers may provide run-time
pathname translation to translate between Unix syntax and the host’s syntax.

11.3.2 Source Files

• Keep files reasonably small in order not to upset some compilers.

• File names should not exceed 14 characters (many System V-derived system
impose this limit, whereas in BSD-derived systems a limit of 15 is usually
the case). In some implementations this limit can be as low as 8 characters.
These limits are often not imposed by the operating system but by system
utilities such as ar.

• Do not use special characters especially multiple dots (dots have a very
special meaning under VMS).

11.4 Miscellaneous

System dependencies: Isolate system-dependent code in separate modules and
use conditional compilation.

Utilities: Utilities for compiling and linking such as Make simplify considerably
the task of moving an application from one environment to another. Even
better, use Imake since Make files are very unportable. Imake is distributed
with the X Window System by MIT. One of the authors of this document
has used it extensively with very good results.

Many of the tools and libraries that one takes for granted on Unix, such as
lex, yacc, curses, sed, awk, and the various shells, are often not available
on other operating systems. Public-domain versions of most of the useful
tools are available at many archive sites. However, the so-called copyleft
restrictions on many of these programs may prove to be problematic to
some would-be porters.

Name space pollution: Minimize the number of global symbols in the appli-
cation. One of the benefits is the lower probability that any conflicts will
arise with system-defined functions.

Character sets: Do not assume that the character set is ASCII. If the character
set in question is not [American] English, then other characters will also be
alphabetic, and their lexicographic ordering will not necessarily have any
relationship to their positions within the character set. If the character set

26

is Asian, then “characters” may be of type wchar t, not char, and will,
in general, require two or more bytes of storage each. The library string
functions should be capable of handling these correctly. Code that iter-
ates through arrays of chars may need to be changed to handle multibyte
characters correctly.

If the program’s messages are likely to be translated into other languages,
take care to modularize the code for easy translation. Consider keeping all
text in a “language” file. Be aware that carefully formatted reports and
printing routines may need major surgery.

Binary Data: Great care must be taken when reading and writing binary data.
For example, a file of floating-point numbers in binary format written by
machine A is unlikely to be usable on machine B.

11.5 Writing Portable Code

Write code under the assumption that it will be ported to many strange machines.
It is considerably easier to port code to a new environment when the code has
been written with porting in mind, than it is to “retrofit” portability.

One school of thought advocates “Port early, port often.” That is, whenever
the code reaches a certain level of stability on the development system, port it
to other systems. This method has the advantage that portability problems are
discovered early, and the possible disadvantage that potentially far more time
could be spent in porting than would be the case if the code were just ported
once, when complete.

Code in ANSI C whenever possible. Many of the extensions — prototypes,
stronger type-checking, etc. — enhance portability. The more widely ANSI C
is used, the quicker it will gain acceptance. Of course, this may not be an op-
tion if the code must be ported to platforms without ANSI C compilers. The
short-term solution is to use the various tricks discussed in [CEK+90] and else-
where; the long-term solution is to force vendors to release ANSI C compilers for
their systems. Alternatively, a converter such as protoize (available via anony-
mous FTP from prep.ai.mit.edu) can convert between ANSI and non-ANSI
programs.

Make complete, correct declarations; don’t let parameters default to int. Include
all of the necessary header files. Declare functions with no return value as void.
Check the results of system calls.

Use lint. Programs that fail to pass lint quietly will undoubtedly be difficult to
port. Compile code with as many different compilers as possible with all warnings
enabled.

[CEK+90] has more to say about this.

12 Further Reading

One can argue that portability and “well-written” code go hand-in-hand. Loosely
defined, well-written code is one that is “easy” to understand and “easy” to
maintain, and there are several style guides in the public domain expressing
various views on the subject.

Besides the style guide mentioned in the foreword, there are a few more that can
be obtained in cs.toronto.edu [128.100.1.65] in ‘~ftp/doc/programming’. We

C Portability Notes 27

also recommend ‘standards.text’ from the Free Software Foundation which can
be found in various sites, e.g., prep.ai.mit.edu [18.71.0.38] in ‘~ftp/pub/gnu’.

For those who have access to the Usenet newsgroup comp.lang.c, we highly
recommend reading the Frequently Asked Questions List (known as the FAQL)
which is posted at the beginning of every month.

13 Acknowledgements

We are grateful for the early help of A. Louko (HTKK/Lsk) and J. Helminen
(HTKK). The following persons have commented on and corrected previous re-
visions of this document: Geoffrey H. Cooper and Guy Harris. Special thanks
go to Steven Pemberton, the main author of ‘config.c’, for making available
such a useful tool. We thank all the contributors to the Usenet newsgroups
comp.std.c and comp.lang.c from where we have taken a lot of information.
Some information within was obtained from [Hew88].

14 Trademarks

DEC, PDP-7, VMS and VAX are trademarks of Digital Equipment Corporation.
HP is a trademark of Hewlett-Packard, Inc.
MC68000 is a trademark of Motorola.
PostScript is a registered trademark of Adobe Systems, Inc.
Sun is a trademark of Sun Microsystems, Inc.
Unix is a registered trademark of AT&T.
X Window System is a trademark of MIT.

References

[CEK+90] L. W. Cannon, R. A. Elliot, L. W. Kirchoff, J. H. Miller, J. M. Mil-
ner, R. W. Mitze, E. P. Schan, N. O. Whittinton, Henry Spencer,
David Keppel, and Mark Brader. Recommended C Style and Coding
Standards. Technical report, in the public domain, June 1990.

[Cod88] W. J. Cody. Algorithm 665, MACHAR: A Subroutine to Dynamically
Determine Machine Parameters. ACM Transactions on Mathematical
Software, 14(4):303–311, December 1988.

[Hew88] Hewlett-Packard Company. HP-UX Portability Guide, 1988.

[Hor90] Mark Horton. Portable C Software. Prentice-Hall, 1990.

[HS87] Samuel P. Harbison and Guy L. Steele Jr. C: A Reference Manual.
Prentice-Hall, Inc., second edition, 1987.

[Int90] Interviews. Interview With Five Technologists. UNIX Review,
8(1):41–89, January 1990.

[KM86] U. W. Kulish and W. L. Miranker. The Arithmetic of the Digital
Computer: A New Approach. SIAM Review, 28(1):1–40, March 1986.

[Koe89] Andrew Koenig. C Traps and Pitfalls. Addison-Wesley Publishing
Co., Reading, Massachusetts, 1989.

28

[KR78] Brian W. Kernighan and Dennis M. Ritchie. The C Programming
Language. Prentice-Hall, Inc., first edition, 1978.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming
Language. Prentice-Hall, Inc., second edition, 1988.

[Man89] Tom Manuel. A Single Standard Emerges from the UNIX Tug-Of-War.
Electronics, pages 141–143, January 1989.

[PFTV88] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and
William T. Vetterling. NUMERICAL RECIPES in C: The Art of
Scientific Computing. Cambridge University Press, 1988.

[X3J88] X3J11. Draft Proposed American National Standard for Information
Systems — Programming Language C. Technical Report X3J11/88–
158, ANSI Accredited Standards Committee, X3 Information Process-
ing Systems, December 1988.

