1．Printing primes：An example of WEB．The following program is essentially the same as Edsger Dijkstra＇s＂first example of step－wise program composi－ tion，＂found on pages 26－39 of his Notes on Structured Programming，${ }^{2}$ but it has been translated into the WEB language．

【Double brackets will be used in what follows to en－ close comments relating to WEB itself，because the chief purpose of this program is to introduce the reader to the WEB style of documentation．WEB programs are al－ ways broken into small sections，each of which has a serial number；the present section is number 1．】

Dijkstra＇s program prints a table of the first thou－ sand prime numbers．We shall begin as he did，by re－ ducing the entire program to its top－level description．【Every section in a WEB program begins with optional commentary about that section，and ends with optional program text for the section．For example，you are now reading part of the commentary in $\S 1$ ，and the program text for $\S 1$ immediately follows the present paragraph． Program texts are specifications of PASCAL programs； they either use PASCAL language directly，or they use angle brackets to represent PASCAL code that appears in other sections．For example，the angle－bracket nota－ tion＇\langle Program to print ．．．numbers 2\rangle＇is WEB＇s way of saying the following：＂The PASCAL text to be inserted here is called＇Program to print ．．．numbers＇，and you can find out all about it by looking at section 2．＂One of the main characteristics of WEB is that different parts of the program are usually abbreviated，by giving them such an informal top－level description．】
＜Program to print the first thousand prime numbers 2\rangle

2．This program has no input，because we want to keep it rather simple．The result of the program will be to produce a list of the first thousand prime numbers， and this list will appear on the output file．

Since there is no input，we declare the value $m=$ 1000 as a compile－time constant．The program itself is capable of generating the first m prime numbers for any positive m ，as long as the computer＇s finite limitations are not exceeded．

【The program text below specifies the＂expanded mean－ ing＂of＇\langle Program to print ．．．numbers 2\rangle＇；notice that it involves the top－level descriptions of three other sec－ tions．When those top－level descriptions are replaced by their expanded meanings，a syntactically correct PAS－ CAL program will be obtained．】
\langle Program to print the first thousand prime numbers 2$\rangle \equiv$
program print＿primes（output）；
const $m=1000$ ；
〈 Other constants of the program 5
var \langle Variables of the program 4\rangle
begin \langle Print the first m prime numbers 3\rangle ；
end．
This code is used in section section 1.

3．Plan of the program．We shall proceed to fill out the rest of the program by making whatever deci－ sions seem easiest at each step；the idea will be to strive for simplicity first and efficiency later，in order to see where this leads us．The final program may not be op－ timum，but we want it to be reliable，well motivated， and reasonably fast．

Let us decide at this point to maintain a table that includes all of the prime numbers that will be gener－ ated，and to separate the generation problem from the printing problem．

【The WEB description you are reading once again fol－ lows a pattern that will soon be familiar：A typical section begins with comments and ends with program text．The comments motivate and explain noteworthy features of the program text．］
\langle Print the first m prime numbers 3$\rangle \equiv$
\langle Fill table p with the first m prime numbers 11\rangle ；
\langle Print table p 8〉
This code is used in section section 2.

4．How should table p be represented？Two possi－ bilities suggest themselves：We could construct a suffi－ ciently large array of boolean values in which the k th entry is true if and only if the number k is prime；or we could build an array of integers in which the k th entry is the k th prime number．Let us choose the lat－ ter alternative，by introducing an integer array called $p[1 \ldots m]$ ．

In the documentation below，the notation＇$p[k]$＇will refer to the k th element of array p ，while＇p_{k}＇will refer to the k th prime number．If the program is correct，$p[k]$ will either be equal to p_{k} or it will not yet have been assigned any value．

【Incidentally，our program will eventually make use of several more variables as we refine the data structures． All of the sections where variables are declared will be called＇\langle Variables of the program 4\rangle＇；the number ＇ 4 ＇in this name refers to the present section，which is the first section to specify the expanded meaning of ＇\langle Variables of the program \rangle＇．The note＇See also ．．．＇ refers to all of the other sections that have the same top－ level description．The expanded meaning of＇\langle Variables of the program 4\rangle^{\prime} consists of all the program texts for this name，not just the text found in §4．】
\langle Variables of the program 4$\rangle \equiv$
p ：array $[1 \ldots m]$ of integer；$\quad\{$ the first m prime
numbers，in increasing order $\}$
See also section sections $7,12,15,17,23$ ，and 24 ．
This code is used in section section 2.
5. The output phase. Let's work on the second part of the program first. It's not as interesting as the problem of computing prime numbers; but the job of printing must be done sooner or later, and we might as well do it sooner, since it will be good to have it done.【And it is easier to learn WEB when reading a program that has comparatively few distracting complications.]

Since p is simply an array of integers, there is little difficulty in printing the output, except that we need to decide upon a suitable output format. Let us print the table on separate pages, with $r r$ rows and $c c$ columns per page, where every column is $w w$ character positions wide. In this case we shall choose $r r=50, c c=4$, and $w w=10$, so that the first 1000 primes will appear on five pages. The program will not assume that m is an exact multiple of $r r \cdot c c$.
\langle Other constants of the program 5$\rangle \equiv$
$r r=50 ; \quad\{$ this many rows will be on each page in the output \}
$c c=4 ; \quad\{$ this many columns will be on each page in the output $\}$
$w w=10 ; \quad\{$ this many character positions will be used in each column \}
See also section section 19.
This code is used in section section 2.

6．In order to keep this program reasonably free of no－ tations that are uniquely PASCALesque，【and in order to illustrate more of the facilities of WEB，】 a few macro definitions for low－level output instructions are intro－ duced here．All of the output－oriented commands in the remainder of the program will be stated in terms of five simple primitives called print＿string，print＿integer， print＿entry，new＿line，and new＿page．

【Sections of a WEB program are allowed to contain macro definitions between the opening comments and the closing program text．The general format for each section is actually tripartite：commentary，then defini－ tions，then program．Any of the three parts may be absent；for example，the present section contains no program text．】

【Simple macros simply substitute a bit of PASCAL code for an identifier．Parametric macros are similar， but they also substitute an argument wherever＇\＃＇oc－ curs in the macro definition．The first three macro def－ initions here are parametric；the other two are simple．】
define print＿string $(\#) \equiv$ write $(\#)$
\｛put a given string into the output file \}
define print＿integer $(\#) \equiv$ write（\＃：1）
$\{$ put a given integer into the output file， in decimal notation，using only as many digit positions as necessary $\}$
define print＿entry $(\#) \equiv$ write $(\#: w w) \quad\{$ like print＿integer，but ww character positions are filled，inserting blanks at the left \}
define new＿line \equiv write＿ln $\quad\{$ advance to a new line in the output file \}
define new＿page \equiv page $\quad\{$ advance to a new page in the output file $\}$
7. Several variables are needed to govern the output process. When we begin to print a new page, the variable page_number will be the ordinal number of that page, and page_offset will be such that $p[$ page_offset $]$ is the first prime to be printed. Similarly, p[row_offset] will be the first prime in a given row.
«Notice the notation ' $+\equiv$ ' below; this indicates that the present section has the same name as a previous section, so the program text will be appended to some text that was previously specified.】
\langle Variables of the program 4$\rangle+\equiv$
page_number: integer; \{ one more than the number of pages printed so far \}
page_offset: integer; \{index into p for the first entry on the current page \}
row_offset: integer; \{index into p for the first entry in the current row $\}$
$c: 0 \ldots c c ;$ \{runs through the columns in a row \}
8. Now that appropriate auxiliary variables have been introduced, the process of outputting table p almost writes itself.

```
<Print table p 8\rangle \equiv
    begin page_number }\leftarrow1\mathrm{ ; page_offset }\leftarrow1\mathrm{ ;
    while page_offset }\leqm\mathrm{ do
        begin <Output a page of answers 9\rangle;
        page_number }\leftarrow\mathrm{ page_number + 1;
        page_offset }\leftarrow\mathrm{ page_offset +rr* cc;
        end;
    end
```

This code is used in section section 3.
9. A simple heading is printed at the top of each page.
\langle Output a page of answers 9$\rangle \equiv$
begin print_string (${ }^{\text {The }} \mathrm{Th}_{\sqcup} \mathrm{First}_{\sqcup}{ }^{\text {' }}$);
print_integer (m);

print_integer(page_number); new_line; new_line;
\{ there's a blank line after the heading \}
for row_offset \leftarrow page_offset to page_offset $+r r-1$
do \langle Output a line of answers 10\rangle;
new_page;
end
This code is used in section section 8 .
10. The first row will contain

$$
p[1], p[1+r r], p[1+2 * r r], \ldots ;
$$

a similar pattern holds for each value of the row_offset.
\langle Output a line of answers 10$\rangle \equiv$
begin for $c \leftarrow 0$ to $c c-1$ do if row_offset $+c * r r \leq m$ then print_entry $\left(p\left[r o w _o f f s e t+c * r r\right]\right)$;
new_line;
end
This code is used in section section 9 .
11. Generating the primes. The remaining task is to fill table p with the correct numbers. Let us do this by generating its entries one at a time: Assuming that we have computed all primes that are j or less, we will advance j to the next suitable value, and continue doing this until the table is completely full.

The program includes a provision to initialize the variables in certain data structures that will be introduced later.
\langle Fill table p with the first m prime numbers 11$\rangle \equiv$
\langle Initialize the data structures 16\rangle;
while $k<m$ do
begin 〈Increase j until it is the next prime number 14 \rangle;
$k \leftarrow k+1 ; p[k] \leftarrow j ;$
end
This code is used in section section 3.
12. We need to declare the two variables j and k that were just introduced.
\langle Variables of the program 4$\rangle+\equiv$
j : integer; $\quad\{$ all primes $\leq j$ are in table $p\}$
$k: 0 \ldots m ; \quad\{$ this many primes are in table $p\}$
13. So far we haven't needed to confront the issue of what a prime number is. But everything else has been taken care of, so we must delve into a bit of number theory now.

By definition, a number is called prime if it is an integer greater than 1 that is not evenly divisible by any smaller prime number. Stating this another way, the integer $j>1$ is not prime if and only if there exists a prime number $p_{n}<j$ such that j is a multiple of p_{n}.

Therefore the section of the program that is called ' \langle Increase j until it is the next prime number \rangle ' could be coded very simply: 'repeat $j \leftarrow j+1$; \langle Give to j-prime the meaning: j is a prime number \rangle; until j-prime'. And to compute the boolean value j_prime, the following would suffice: 'j_prime \leftarrow true; for $n \leftarrow 1$ to k do $\langle\text { If } p[n] \text { divides } j \text {, set } j \text { prime } \leftarrow \text { false }\rangle^{\prime}$.
14. However, it is possible to obtain a much more efficient algorithm by using more facts of number theory. In the first place, we can speed things up a bit by recognizing that $p_{1}=2$ and that all subsequent primes are odd; therefore we can let j run through odd values only. Our program now takes the following form:
\langle Increase j until it is the next prime number 14$\rangle \equiv$
repeat $j \leftarrow j+2$;
\langle Update variables that depend on $j 20\rangle$;
〈 Give to j prime the meaning: j is a prime number 22\rangle;
until j-prime
This code is used in section section 11.
15. The repeat loop in the previous section introduces a boolean variable j_prime, so that it will not be necessary to resort to a goto statement. (We are following Dijkstra, ${ }^{2}$ not Knuth. ${ }^{3}$)
\langle Variables of the program 4$\rangle+\equiv$
j prime: boolean; $\{$ is j a prime number? $\}$
16. In order to make the odd-even trick work, we must of course initialize the variables j, k, and $p[1]$ as follows.
\langle Initialize the data structures 16$\rangle \equiv$
$j \leftarrow 1 ; k \leftarrow 1 ; p[1] \leftarrow 2 ;$
See also section section 18 .
This code is used in section section 11.
17. Now we can apply more number theory in order to obtain further economies. If j is not prime, its smallest prime factor p_{n} will be \sqrt{j} or less. Thus if we know a number ord such that

$$
p[\text { ord }]^{2}>j
$$

and if j is odd, we need only test for divisors in the set $\{p[2], \ldots, p[$ ord -1$]\}$. This is much faster than testing divisibility by $\{p[2], \ldots, p[k]\}$, since ord tends to be much smaller than k. (Indeed, when k is large, the celebrated "prime number theorem" implies that the value of ord will be approximately $2 \sqrt{k / \ln k}$.)

Let us therefore introduce ord into the data structure. A moment's thought makes it clear that ord changes in a simple way when j increases, and that another variable square facilitates the updating process.
\langle Variables of the program 4$\rangle+\equiv$
ord: 2 .. ord_max;
$\left\{\right.$ the smallest index ≥ 2 such that $\left.p_{\text {ord }}^{2}>j\right\}$
square: integer $; \quad\left\{\right.$ square $\left.=p_{\text {ord }}^{2}\right\}$
18. \langle Initialize the data structures 16$\rangle+\equiv$ ord $\leftarrow 2 ;$ square $\leftarrow 9$;
19. The value of ord will never get larger than a certain value ord_max, which must be chosen sufficiently large. It turns out that ord never exceeds 30 when $m=1000$.
\langle Other constants of the program 5$\rangle+\equiv$ ord_max $=30 ; \quad\left\{p_{\text {ord_max }}^{2}\right.$ must exceed $\left.p_{m}\right\}$
20. When j has been increased by 2 , we must increase ord by unity when $j=p_{o r d}^{2}$, i.e., when $j=$ square.
\langle Update variables that depend on $j 20\rangle \equiv$
if $j=$ square then
begin ord \leftarrow ord +1 ;
\langle Update variables that depend on ord 21\rangle;
end
This code is used in section section 14.
21. At this point in the program, ord has just been increased by unity, and we want to set square $:=p_{\text {ord }}^{2}$. A surprisingly subtle point arises here: How do we know that $p_{\text {ord }}$ has already been computed, i.e., that ord $\leq k$? If there were a gap in the sequence of prime numbers, such that $p_{k+1}>p_{k}^{2}$ for some k, then this part of the program would refer to the yet-uncomputed value $p[k+1]$ unless some special test were made.

Fortunately, there are no such gaps. But no simple proof of this fact is known. For example, Euclid's famous demonstration that there are infinitely many prime numbers is strong enough to prove only that $p_{k+1}<=p_{1} \ldots p_{k}+1$. Advanced books on number theory come to our rescue by showing that much more is true; for example, "Bertrand's postulate" states that $p_{k+1}<2 p_{k}$ for all k.
\langle Update variables that depend on ord 21$\rangle \equiv$
square $\leftarrow p[$ ord $] * p[$ ord $] ; \quad\{$ at this point ord $\leq k\}$
See also section section 25 .
This code is used in section section 20.
22. The inner loop. Our remaining task is to determine whether or not a given integer j is prime. The general outline of this part of the program is quite simple, using the value of ord as described above.
<Give to j prime the meaning: j is a prime number 22$\rangle \equiv$
$n \leftarrow 2 ;$ j_prime \leftarrow true;
while $(n<$ ord $) \wedge j$ prime do
begin 〈If $p[n]$ is a factor of j, set
j_prime \leftarrow false 26\rangle;
$n \leftarrow n+1 ;$
end
This code is used in section section 14 .
23. 〈Variables of the program 4$\rangle+\equiv$
n: 2 .. ord_max;
\{runs from 2 to ord when testing divisibility \}
24. Let's suppose that division is very slow or nonexistent on our machine. We want to detect nonprime odd numbers, which are odd multiples of the set of primes $\left\{p_{2}, \ldots, p_{\text {ord }}\right\}$.

Since ord_max is small, it is reasonable to maintain an auxiliary table of the smallest odd multiples that haven't already been used to show that some j is nonprime. In other words, our goal is to "knock out" all of the odd multiples of each p_{n} in the set $\left\{p_{2}, \ldots, p_{\text {ord }}\right\}$, and one way to do this is to introduce an auxiliary table that serves as a control structure for a set of knock-out procedures that are being simulated in parallel. (The so-called "sieve of Eratosthenes" generates primes by a similar method, but it knocks out the multiples of each prime serially.)

The auxiliary table suggested by these considerations is a mult array that satisfies the following invariant condition: For $2 \leq n<$ ord, mult $[n]$ is an odd multiple of p_{n} such that mult $[n]<j+2 p_{n}$.
\langle Variables of the program 4$\rangle+\equiv$ mult: array [2.. ord_max] of integer;
\{runs through multiples of primes \}
25. When ord has been increased, we need to initialize a new element of the mult array. At this point $j=p[\text { ord }-1]^{2}$, so there is no need for an elaborate computation.
\langle Update variables that depend on ord 21$\rangle+\equiv$
mult $[$ ord -1$] \leftarrow j$;
26. The remaining task is straightforward, given the data structures already prepared. Let us recapitulate the current situation: The goal is to test whether or not j is divisible by p_{n}, without actually performing a division. We know that j is odd, and that mult $[n]$ is an odd multiple of p_{n} such that mult $[n]<j+2 p_{n}$. If $\operatorname{mult}[n]<j$, we can increase mult $[n]$ by $2 p_{n}$ and the same conditions will hold. On the other hand if mult $[n] \geq j$, the conditions imply that j is divisible by p_{n} if and only if $j=\operatorname{mult}[n]$.
$\left\langle\right.$ If $p[n]$ is a factor of j, set $j_{-p r i m e}^{\leftarrow} \leftarrow$ false 26$\rangle \equiv$
while $\operatorname{mult}[n]<j$ do
mult $[n] \leftarrow \operatorname{mult}[n]+p[n]+p[n] ;$
if mult $[n]=j$ then j prime \leftarrow false
This code is used in section section 22.

27．Index．Every identifier used in this program is shown here together with a list of the section numbers where that identifier appears．The section number is underlined if the identifier was defined in that section． However，one－letter identifiers are indexed only at their point of definition，since such identifiers tend to appear almost everywhere．【An index like this is prepared au－ tomatically by the WEB software，and it is appended to the final section of the program．However，underlining of section numbers is not automatic；the user is sup－ posed to mark identifiers at their point of definition in the WEB source file．】

This index also refers to some of the places where key elements of the program are treated．For example，the entries for＇Output format＇and＇Page headings＇indi－ cate where details of the output format are discussed． Several other topics that appear in the documentation （e．g．，＇Bertrand＇s postulate＇）have also been indexed．【Special instructions within a WEB source file can be used to insert essentially anything into the index．】
Bertrand，Joseph，postulate： 21.
boolean： 15.
c：$\quad 7$.
$c c: \underline{5}, 7,8,10$.
Dijkstra，Edsger：1， 15.
Eratosthenes，sieve of： 24.
false：13， 26.
integer：4，7，12，17， 24.
j ： 12.
j＿prime： $13,14, \underline{15}, 22,26$.
k ： 12.
Knuth，Donald E．： 15.
m ：$\quad \underline{2}$ ．
mult：24，25， 26.
n ： 23.
new＿line：$\underline{6}, 9,10$ ．
new＿page：$\underline{6}, 9$ ．
ord： $17,18,19,20,21,22,23,24,25$.
ord＿max： $17, \underline{19}, 23,24$.
output：2， 6.
output format：5， 9 ．
p：\quad ．
page： 6.
page headings： 9 ．
page＿number：$\underline{7}, 8,9$ ．
page＿offset：$\underline{7}, 8,9$ ．
prime number，definition of： 13.
print＿entry：$\underline{6}, 10$.
print＿integer：$\underline{6}, 9$ ．
print＿primes：$\underline{2}$ ．
print＿string：$\underline{6}, 9$ ．
row＿offset：7，9， 10 ．
$r r: \underline{5}, 8,9,10$.
square：17，18，20， 21.
true：4，13， 22.
WEB： 1.
write： 6.
write＿ln： 6.
$w w: ~ \underline{5}, 6$.
\langle Fill table p with the first m prime numbers 11\rangle Used in section section 3.
\langle Give to j prime the meaning：j is a prime number 22\rangle Used in section section 14.
\langle If $p[n]$ is a factor of j ，set j＿prime \leftarrow false 26\rangle Used in section section 22.
\langle Increase j until it is the next prime number 14$\rangle \quad$ Used in section section 11.
\langle Initialize the data structures 16,18\rangle Used in section section 11.
\langle Other constants of the program 5，19〉 Used in section section 2.
〈Output a line of answers 10\rangle Used in section section 9.
〈Output a page of answers 9〉 Used in section section 8.
〈Print table p 8〉 Used in section section 3.
\langle Print the first m prime numbers 3\rangle Used in section section 2.
\langle Program to print the first thousand prime numbers 2\rangle Used in section section 1.
〈Update variables that depend on $j 20\rangle$ Used in section section 14.
〈Update variables that depend on ord 21,25\rangle Used in section section 20.
\langle Variables of the program 4，7，12，15，17，23，24〉 Used in section section 2.

Section Page
Printing primes: An example of WEB . 1 . 1
Plan of the program . 3 . 3
The output phase . 5 . 4
Generating the primes . 118
The inner loop . 22 . 11
Index 27 . 13

