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By Adolfo M. Nemirovsky 

Why Natural Scientists Should Care 
About Object-Oriented Technology 

Object-Oriented technology is gaining rapid acceptance among software developers,
and is becoming the preferred choice for modern computer programming projects.
Should a natural scientist care? We discuss some of the main concepts in
object-oriented programming and the potential of this interesting technology. The object
model views the world as made of many objects interacting (exchanging messages)
with each other to produce a collective behavior. This picture resembles a quantum
system of interacting particles. Suggestive analogies between the object model and
quantum physics are identified and exploited in this work to provide an introduction to
object-oriented programming 

This paper is directed to natural scientists and graduate/advanced undergraduate
students in physical sciences. Some basic concepts of quantum physics at the level of
introductory courses in modern physics or physical chemistry is assumed. Background
in quantum mechanics is helpful but not required to understand most of this work. No
prior knowledge of C/C++ and object oriented programming is assumed. Most of the
C++ code illustrating some of the physics examples presented in the paper is given in
the Appendices. 
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I. Why Object-Oriented? 

Object-Oriented (OO) technology is becoming one of the most important technologies
in software development. It has enormous potential for significantly increasing
programmer productivity and code maintainability.[1-3] Why is OO gaining such a
widespread acceptance among commercial software developers and large
corporations? Procedural code of industrial strength (thousands of lines of code) is
often unstable under small perturbations, e.g., trying to fix a single problem might
create five new ones[2,3] When the code size is larger than some threshold (about
10^5 lines of code), procedural techniques appear to break down: design and
implementation complexity makes projects quite difficult and expensive, and eventually
maintenance cost dominates development cost[2,3] Object-Oriented techniques
promise to allow more stable and larger applications (several millions and tens of
millions of lines of code) to be built[1-3] How can it be done? Why should a natural
scientist care?

Natural scientists model and simulate natural phenomena. Computers simulate "real"
(e.g., balancing a checkbook, mimicking the behavior of a physical system,...) and
"imaginary" (e.g., games) worlds. Rapid advances in hardware and software are
making possible the treatment of interesting and complex systems (e.g., turbulent
flows, critical dynamics, lattice quantum chromodynamics, weather prediction, cellular
metabolism, social phenomena,...). Simula, a language that pioneered object-oriented
technology was specially conceived for simulations. Hence, it is not surprising that
object-oriented programming may make simulation and visualization of complex
phenomena easier than procedural techniques (e.g., Fortran). For fully exploring
models of complex systems, displaying results and data in a powerful manner (e.g.,
scientific visualization, multimedia, virtual reality,...), for enhancing collaboration fully
exploiting networking facilities, OO technology appears better suited than procedural
languages. 

The principle "divide and conquer" has been known for a long time as an efficient
technique to conquer large empires (e.g., large codes). But, how to divide? Both
procedural and OO programming employ the principle.The fundamental difference
between these two models is the choice of building blocks. In procedural programming,
procedures are the fundamental units (usually called subroutines or subprograms). In
the object model, basic units are "cells" or "atoms" called objects which contain both
data (i.e., state variables associated with the "atom" state at a given time) and methods
(i.e., dynamical rules, rules that explain how "atoms" interact in the outside world). In
OO terminology, objects encapsulate data and behavior. These objects are individual
weakly interacting blocks. Objects interact (exchange messages) to produce collective
behavior. 

OO views the word as composed of objects with well-defined properties. Object
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dynamics is pictured as interaction among objects. Interactions are mediated by
messages that objects exchange with each other. In fact, for a physicist this description
may sound familiar as it resembles our modern view of the atomic and subatomic
world. This suggests that we could expect interesting analogies between Quantum
Physics (QP) and the object model (OM). These analogies are identified and exploited
in this work to present an introduction to the OO philosophy. Our examples use C++ as
it currently is the most widely used OO language.[4].

The main goal of this work is to provide an introduction to OO concepts for an audience
of natural scientists and graduate/advanced undergraduate students in the Physical
Sciences. We introduce some of the main OO ideas in this work at three different
levels. At the highest level, we discuss general OO concepts, independent of the
language. At an intermediate level, and to produce more concrete examples, we
express some of the QP concepts[5] in the C++ language. [C++ code is written in this

style, and adopts the Taligent notational style[6]]. Usually, in this process we select a
particular C++ design, the simplest to illustrate some OO features. Selected designs
rarely are the "best" and usually oversimplify the physics. Thus, the code provided in
this work is mainly for didactic purposes and not intended for a real project.

Section II presents some basic concepts in the object model (OM): abstraction,
encapsulation, modularity and hierarchy. They are illustrated with examples from the
atomic/subatomic world. Connections between the OM and some concepts in Quantum
Physics are presented in Section III. Table 1, at the end of that section, summarizes
some of these analogies. Section IV discusses additional analogies between structures
in quantum physics and constructs in the object model, and then summarizes them in
Table 2. Dynamics in the OM and in QP are discussed and contrasted in Section V.
Section VI introduces the problem of object-oriented design of a complex system.
Analogies between hypermedia and the path integral formulation of QP are presented
in Section VII. Finally, the last section collects some final thoughts and summarizes
some of the experiences of earlier scientific users of the object-oriented technology. 

II. Basic Concepts in the Object Model

The object model provides theoretical foundations upon which object-oriented design is
built. The OM is based[1] on the principles of abstraction, encapsulation, modularity
and hierarchy, introduced in this section and expanded in the rest of the paper. 

Abstraction is well known to any natural scientist or anybody interested in modeling. It
consists of extracting the relevant common features of the system to be modeled,
providing adequate generalization, and removing irrelevant details. For example, all
protons in the universe share many properties: value of their masses, electric charges,
spins,... (data) and the way they interact with themselves and other particles (methods).
Protons are still protons, regardless of their location (inside our mouth or in a distant
galaxy) or their internal state (i.e., value of their momentum, orientation of their spin,...).

Abstraction determines the characteristics of an object that distinguish it from other
kinds of objects (e.g. protons are different from neutrons or electrons, but two protons
in different atoms are still protons). This is the "outside view" of the object. That is how
clients, particles that interact with the proton, see it. It is important to have the right set
of abstractions for a given problem domain. For example, to different levels of
abstraction, protons and neutrons can be either viewed as different objects, or the
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same object (nucleon) in a different state. We will return to this later. There is a wide
spectrum of abstraction possibilities: objects could closely resemble "real" objects (car
object, pendulum object,...) but there could be quite "abstract" objects with apparently
"no reason to exist" (shape object, transaction object, photon, Cooper pair,...). 

Encapsulation is also called information hiding. Clients (particles that interact with
protons) do not see a proton's internal structure ("inside view" of the object). That is,
protons hide information about their internal structure. In general, the interface of a
class captures only the outside view. For example, electrons of hydrogen atoms do not
know the proton internal structure. They only see a proton's interface: its mass, electric
charge, linear momentum and spin. Encapsulation, then, is the process of hiding all the
internal details of an object. 

Modularity means that a system can be decomposed into a set of weakly coupled
modules. Hydrogen gas is composed of many loosely interacting objects (hydrogen
molecules). Each molecule is made of two weakly interacting objects (hydrogen
atoms). In turn, each hydrogen atom consists of two objects (proton and electron) that
collaborate (are bound together) exchanging messages (photons, the messengers, are
the carriers of the electromagnetic interaction). In general, one of the most difficult
problems in the OO design of complex systems is to "discover' the right modules to
mimic the system. This difficulty is analogous to finding the "right" ground state in a
many-body problem (e.g., superconductivity) as discussed later. 

Hierarchy is the ranking or ordering of abstractions. Consider a deuterium atom. It has
just a single electron, but the nucleus consists of a neutron and a proton. Electrons in
the deuterium atom interact (exchange messages = photons) with charged protons
through the electromagnetic interaction. Neutrons are uncharged particles so, at this
level of abstraction, electrons see neutrons and protons as different particles (objects).
At a higher level of abstraction, now inside the deuterium nucleus, protons and
neutrons "collaborate" by sending "attractive" messages to each other (exchanging
pions). They view each other as different states of the same particle (in physicists
language, they are members of a SU(2) doublet). At still higher levels of abstraction,
nucleons (protons or neutrons) are just possible states of more abstract entities (SU(N)
multiplets, with N = 3, 4,...) that encompass a large number of distinct particles at lower
levels of abstractions. Fig. 1 displays this example of subatomic hierarchical layering. 
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Figure 1. Subatomic hierarchical layering: in this picture we distinguish three levels of
abstraction. In atomic physics, layer 1, we describe the physics in terms of interacting
electron and nucleus objects. Inside the nucleus, layer 2, the appropriate objects are
protons and neutrons. Finally, at higher collision energy, layer 3, the proton is viewed
as made of interacting quark objects. 

III. The Object Model
and

Quantum Physics

Objects, the basic units in OO design, have state, behavior and identity. Methods or
member functions are operations that act upon objects and may modify their states.
These concepts are introduced in this section using analogies with QP. Since linear
algebra is the mathematical language of quantum mechanics, these analogies between
OM and QP are also expressible in the linear algebra language.

In QP[5]], the description of the state of a system (say, a particle) at a given time is
defined by specifying its state vector. This vector belongs to the state space E (which
comprises all possible states of the system). The set of distinct states of a system can
either be finite or infinite (countable or continuous). [Of course, the computer
representation of the state space is always finite]. The description of the state of an
object in the OM follows from the above by just replacing "system" (or "particle") by
"object". Examples:

1) Consider an Ising spin or Boolean variable. This object can only take two values: up
(on or 1) and down (off or -1). These two distinct states can be represented by the
vectors
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We have used the so-called Dirac notation | > to denote a state vector. This example is
easily generalizable for objects with 3, 4,... states.

Given the two states up and down, in QP a state vector could be any linear combination
of these two basis vector. The only constraint is that vectors are normalized (i.e., the
norm of the vector should be unity). Hence, a more general state vector |s> for the
two-state system has the form

The interpretation is the following: the spin is in a state with probability cos^2 (theta) to
be |up>, and sin^2 (theta) to be |down>. Conservation of probability (i.e., cos^2 (theta)
+ sin^2 (theta) = 1) constrains the state vectors to be normalized.

In our C++ design, an object of the type Ising spin is denoted anIsingSpin . This object
encapsulates data, i.e., the value of the spin +1 or -1, and methods such as Flip() ,
discussed later. In the OO literature usually one assigns either state |up> or |down> to
the object, but not some linear combination of these two vectors. An object, in the
common OM usage, resembles more a "classical" entity than "quantum" one. This is
not a limitation of the OM. In fact, the OM is equally suited to model quantum
mechanics by assigning a "probabilistic" interpretation to the states of an object.

2) Consider a "classical" three dimensional real vector object. In this case there is a
continuum of states. Once a coordinate system is chosen, say, Cartesian, states are
labeled by the x, y and z coordinates of the vector. Our vector object can be
represented in the Dirac notation as |x, y, z>. In our C++ model, we just call it aVector3D

and model it as a 3-dimensional array. The coordinates x, y and z are the data that the
object encapsulates. There are methods such as RotateZ(theta) discussed later which act
on the object's data and produce a rotated vector. 

3) Consider a spinless particle. It is described by its state vector |k> with k = (kx, ky, kz)
the linear momentum coordinates. The quantities ki, i =x, y and z are real numbers. An
alternative description of the same particle might be in terms of the position state vector
|x> with x a three dimensional vector, i. e., x = (x, y, z). The particle state vector is
related to the probability of finding the particle in a particular spacial region (or with a
particular value of linear momentum). In our design, we denote the particle aParticle. It
encapsulates data (say the value k of the momentum) and methods such as
MomentumTransfer() given below.

Identity [1,2] is the property that distinguishes an object from all other objects. For
example, this proton, now in my mouth, is not the same as (but it is identical to) that
proton now at a distant galaxy. In QP each object defines its own vector space
spanned by a complete set of linearly independent vectors associated with all its
possible states. In the OM common usage, identity of objects is always preserved even
when states are completely changed. A proton object is still the same object even if its
momentum and spin changes because of interaction with other objects. In other words,
identity means that there is a unique state vector space associated with each object.
Although in classical physics identity is always preserved, in quantum physics and
Nature, sometimes an object could either have a "non-sharp" identity, or even
completely lose its identity. This could, but usually is not, be modelled in the OM,[3] and
it is further discussed in the following sections.
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Behavior[1,2] is how an object acts or reacts in the presence of other objects, i.e., how
it interacts with the external world. Behavior could also be defined as response to
actions (i.e., response function). Operations that affect the object and possibly modify
its state are called methods or, in the C++ terminology, member functions. In QP,
methods correspond to operators, that is, the state of the system is modified by
applying an operator (i.e., a matrix) O on the state vector |s1>, producing a new vector |
s2> as a result, i.e., 

| s2> = O | s1> ;

The above operation might be written in the OM language (employing C++ notation) as

myObject.SetState(s2);

where myObject is an object whose initial state is s1, and that makes a transition to s2
after applying the method SetState() . This is an oversimplified representation as the
SetState() method is independent of the initial state s1. A better design might be

myObject.ChangeState(r);

where r = s2 -s1 is the "distance" between the states s1 and s2. 

In QP, operators are linear (i.e., represented by matrices) acting on linear vector
spaces. On the other hand, in real life OO design, operators often are not linear. OO
designs commonly employ operations that either change the state of objects (for
example, set-methods) or access their state (get-methods). Get-methods measure
some object's observables (or in the OO language, read the data encapsulated by the
object). Besides these, there are two very important methods called constructor and
destructor, which create and annihilate objects. As it could be guessed, they are closely
related to the creation and annihilation operators of second quantized quantum
mechanics, and they are discussed in the following section. Now we provide some
examples,

1) For anIsingSpin object, we might have the following methods (operators)

The method Flip() changes the state of the system, i.e., switches the state of the spin
object (i.e., up <-> down). In our C++ design we write

anIsingSpin.Flip();

where anIsingSpin is an object of the type (class) TIsingSpin, initially in some state, say |up>.
Application of the method Flip() , flips the spin so now anIsingSpin is in the state |down>. An
alternative, matrix representation of this operation (assuming the initial state of
anIsingSpin was up) is

The methods SetUp() and SetDown() (set-methods) set the state of the spin to up and
down, irrespective of the previous state. Finally, the eigenvalues of GetSpin() provide the
actual values of the spin (either up or down). In other words, |up> and |down> are
eigenvectors of the GetSpin() operator with eigenvalues 1 and -1, respectively. In general,
in the object model (and more general modeling) it might not be possible to define Get
operators (as in QP) such that their eigenvalues provide the only possible results of
measurements.
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2) For the TVector3D object one can define, among others, the following method

which rotates any TVector3D object, given in Cartesian coordinates, counterclockwise an
angle theta around the z axis. In C++ notation, this operation can be written as

aVector3D.RotateZ(theta);

where the object aVector3D is of type TVector3D (that is, is a real three dimensional vector).
After applying the method RotateZ(theta) to aVector3D, it changes state, rotating an amount
(theta) around the z axis.

3) The linear momentum operator P [denoted GetMomentum() in our design] accesses the
state of the proton (say, aProton) and reads its data, 

P | p> = p |p > ,

in C++ this reads,

aProton.GetMomentum();

Usually one also defines a momentum transfer operator, MomentumTransfer(), which when
acting on aProton, changes the value of its momentum from p1 to p2 (alternatively, in a
simpler model we might have defined a SetMomentum() method). In this note, and for
simplicity we do not provide any mathematical representation of the momentum state
vectors and operators, and just use the more general (basis independent) Dirac
notation [6].

Here we summarize the correspondence between OM, QP and linear algebra : 

TABLE 1. The Object Model, Quantum Mechanics and Linear Algebra 

Object Model Quantum Mechanics Linear Algebra 

an object a quantum particle   
state state vector vector 

method/member function observable/operator matrix 

behavior response function   
encapsulation state vector space vector space 

IV. Classes, Hierarchies 
And 
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Quantum Field Theories 

In the OM we think of objects as concrete entities that exist in space/time. In contrast, a
class is an abstraction which summarizes objects' common properties (structure and
behavior). Each object is always some instance of a class. For example, the class TProton

describes all abstract properties shared by proton objects. The concrete object aProton is an
instance of the class TProton . Both, the OM and QP are not only interested in describing a
single object or particle but also many mutually interacting ones. In this section we
compare the OM and the QP descriptions of systems of many identical objects. We also
present a design of the class TProton. In addition, using C++ notation, we introduce several
important OM concepts such as base and derived classes, simple and multiple
inheritance, and polymorphism.

Let us first discuss the QP description of a system of many identical particles. Consider a
system of two TIsingSpin objects labeled anIsingSpinA and anIsingSpinB. Each one has, associated
with it, a 2-dimensional vector space E(a) and E(b), spanned by the vectors up and down
for both objects, anIsingSpinA and anIsingSpinB. To the composite system corresponds a vector
space E = E(a) X E(b) (X indicates the direct product of the two vector spaces E(a) and
E(b)) spanned by four vectors |A up> X |B up>, |A up> X |B down>, |A down> X |B up>, |A
down> X |B down>, corresponding to all possible combinations of states of the spins A
and B. Obviously, this discussion is easy generalizable to many objects, say anIsingSpin(i)

with i=1,2,..., N. The composite system made of N objects of type (class) TIsingSpin has,
associated with it, a state vector space E, the direct product of the individual state vector
spaces E(i) for all i. 

One-body operators, such as SetUpA(), only operate on anIsingSpinA setting its state to up, but
do not affect other objects. Mathematical representations of a given vector depend on the
choice of coordinates, i.e., a vector has many possible representations. For a system of
many particles there is an alternative (equivalent) representation of the system's state
vector which does not hinge on the individual state vectors but focuses on the system's
properties such as total spin (sum of the spin of individual particles), total number of
particles, total energy/momentum,.... This alternative representation of the same physics
known as second quantization [5] is closely related to a "class view" in the object model.
Although second quantization is the preferred formulation of the non-relativist quantum
mechanical many-body problem, it is the only choice when the fully relativistic extension is
considered. This is because in the relativistic view there cannot be a single (or a few)
object simplification of reality but there must always be a multitude of coexisting objects.

An important feature of the second quantization formalism is the existence of the creation
and annihilation operators. These operators, are closely associated with the constructor
and destructor operators common in most OO languages (such as C++). In the second
quantization formalism, Proton becomes a quantum field. Associated to it, there is a
creation and an annihilation operator. Similarly, in the OM TProton becomes a class.
Associated to it, there are constructors and destructors. Using C++ notation, the creation
(constructor) and annihilation (destructor) operators are denoted TProton() and ~TProton(),
respectively. [In C++ there can be several constructors.] State vectors are now associated
to systems with zero, one, two,..., particles (quanta) each in one of its possible allowed
states. The null particle system is known as the vacuum (i.e., a class that has not been
instantiated). Contrary to one's naive expectation, the null particle state could be quite
complex and its effects may be observable. 

Creation operators and constructors serve very similar purposes. For example, in C++ one
instantiates (creates and initializes) the class TProton, creating an object (particle) of the
class, which we call aProton 
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TProton aProton;

In the QP language aProton is a one-particle state (a single quantum of the Proton quantum
field). The constructor above is the so-called default constructor as it does not take any
argument (it might use a random number generator to select a value for the proton's
momentum). Now suppose that we would like to create another proton with a given
momentum, aMomentum = (aMomentumX, aMomentumY, aMomentumZ). We would then design a
constructor that takes an argument, i.e., the value of the momentum: aMomentum,

TProton bProton(aMomentum);

aMomentum is an object (real three dimensional vector) of the class TVector3D. Before using it
above, it might be instantiated as follows

TVector3D aMomentum(aMomentumX,aMomentumY,aMomentumZ);

where TVector3D(x,y,z) is one of the constructors of the class TVector3D and takes the three
arguments in parenthesis to be the values of the Cartesian components of the vector
object to be created (see Appendix A).

Constructors instantiate objects. Using the constructor we can instantiate as many proton
objects as desired. Suppose we would like to create an oxygen nucleus system that
contains eight protons and eight neutrons with arbitrary (randomly chosen) momenta, we
could proceed as follows

TProton aProton[8]; 
TNeutron aNeutron[8];

It is usual practice in C++ to declare a class, say TProton, in a file called a header file while
implementation of functionalities is placed in one (or several) source files. Clients of TProton

usually will need the header file, Proton.h, (interface of TProton with the exterior world), and
seldom, if the design is correct, would information about actual implementation be
required. The declaration of the class TProton follows

#include <Vector3D.h>

class TProton {

public:  

                                  TProton               ();

                                  TProton               (TVector3D aMomentum);

  virtual                         ~TProton              ();

  virtual void                    SetMomentum           (TVector3D aMomentum);

  virtual TVector3D               GetMomentum           ();

  virtual long                    GetNumProtons         ();

  virtual double                  GetMass               ();

  virtual long                    GetElectricCharge     ();

private:

  static             long         fgNumber;

  static const       double       kMass;

  static const       long         kElectricCharge;
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                     TVector3D    fMomentum;

  

};  

To accomplish information hiding, classes have public and private members. (In fact, there
are also protected members, as discussed in the Appendix B). Members include both data
members (fgNumber, kMass ,...) and member functions or methods (constructors/destructor,
get/set methods,...). Public members are accessible to any client that uses the class
definition (i.e., includes the header Proton.h describing TProton's interface). [In turn, the
class TProton is a client of TVector3D since it uses objects of this type. Then, the header
Vector3D.h (which is given in the Appendix A) must be included (first line of the above
code) allowing TProton access to public members of TVector3D.] The public members of the
class TProton are the constructors, the destructor and the set/get methods. Private
members can be accessed only by objects of the class, i.e., by protons. They are hidden
from other types of objects, such as electrons. Private data members in the class TProton

include the value of its mass, electric charge, momentum, and the total number of protons.
In the design above, we have chosen to provide public access to the proton's private data
through get methods. 

Static members act as a global class variables, i.e., all objects of a particular class have
access to the same variable. In the class TProton , fgNumber , kMass and kElectricCharge are all
static. Besides this, the last two data members are also constant (const) as these values
are fixed for all protons. In contrast, fgNumber changes as protons are created or destroyed.
One of the weakness of this design is that any proton object "knows" (i.e., can access) the
total proton number, fgNumber . Alternative TProton designs are discussed in Appendix B. The
private data member fMomentum is an object of the class TVector3D. It is not static as every
object owns its own value for fMomentum . Neither is it constant since this value changes as
aProton object interacts with other objects.

In Appendix B, we start at a higher level of abstraction, defining the classes TParticle and
TNucleon . In that design (see Fig. 2) TNucleon directly derives from TParticle , and in turn, TProton

and TNeutron derive from TNucleon. Inheritance is one of the fundamental characteristics of
OO programming. In C++, it is supported by the mechanism of class derivation. Derived
classes inherit properties (i.e., data members and member functions) from the parent
class (known as the base class). Derived classes usually add new members and/or
override methods (i.e., provide different implementation). For example, TNucleon is a base
class relative to TProton and TNeutron .Then, implementation of most functionalities required
by derived classes (such as TProton and TNeutron) is already provided by (inherited from) their
base class (TNucleon). In Appendix B design, the class TProton only needs to override the
constructors and destructor, and to implement just an additional method: GetElectricCharge() .
Notice that the declaration of TProton in Appendix B is much simpler than that presented
above, as there we have taken advantage of inheritance.
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Figure 2. A possible class diagram of the particle "zoo" displaying single inheritance
relationship among classes. In this design, TParticle and TChargedParticle are abstract base
classes (they cannot be instantiated), all other classes are concrete. Should TPion and
TNucleon derive directly from TParticle, or via TChargedParticle? Should TQuasiParticle derive from
TParticle, or be at the top of the hierarchy in parallel to TParticle? In OO design of complex
systems, the class taxonomy is usually a highly non-trivial problem.

At the highest level of the hierarchical structure (see, Figure 2) we define the class TParticle

that encompasses properties shared by all particles (e.g., fMomentum,
SetMomentum(),GetMomentum() ...). This class is called abstract base class and is never
instantiated. That is, we never create quanta of TParticle, but only create objects of its
derived classes such as TProton, TElectron, TPion,.... Nevertheless, abstract base classes are
useful as they serve to set a common protocol (common notation for all derived classes).
Figure 2 presents a possible single inheritance class diagram of the particle "zoo". Protons
are fermions (the value of the proton's total spin is half-integer, i.e., 1/2); and they are also
charged particles. At higher levels of abstraction we might define the abstract base
classes TFermion and TChargedParticle. In this higher abstraction, TProton would inherit from both
base classes. This is an example of multiple inheritance.

Inheritance is just one (although a very important one) of the possible relationships among
classes. It is also known as "kind of" relationship since, say, TProton is a "kind of" TNucleon .
Another important class relationship in OO design is "part of". For example, protons are
made of three quarks. Then, aQuark[3], an array of three quark objects, is "part of" a proton.
For example, a possible TProton class design might include

TQuark aQuark[3];

say, as a private data member. This design makes more explicit some aspects of the
proton's internal structure which may be required in some problem domain. Which is the
"best" class design and the "best" class taxonomy? The answer strongly depends on the
piece of reality we try to capture and the questions we intent to address. These are some
interesting issues in OO design further discussed in Section VI. 

We now introduce polymorphism which we exploit in the coming section. Polymorphism
means that a single name may denote methods of many different classes related by some
common base class (these methods might act differently on objects belonging to different
classes). For example, we might provide the method GetElectricCharge() in the class
TChargedParticle . A client's code then works correctly for, say, objects of the classes TProton,
TElectron, ..., (returning +1, -1, ...) which derive from TChargedParticle even if the compiler only
knows these objects are of type TChargedParticle. That is, code works correctly even if actual
values of particles' electric charges are only known at runtime. Polymorphism combines
the features of inheritance with dynamic binding (that is, the types of variables and
expressions is not known until runtime) and is one of the most important concepts in OO. 
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Finally, to conclude this section we summarize some of the analogies between the OM
("class view") and quantum field theory. 

TABLE 2. Classes and Quantum Fields 

Class View Quantum Physics 

class quantum field 

object (class instantiation) quanta 

constructor creation operator 

destructor annihilation operator 

V. Dynamics: Objects, Messages 
And 

Feynman Diagrams 

Dynamics of a many-object system is the result of object interactions. Objects interact with
each other exchanging messages thus changing their states as time evolves. What is the
OM formalism used to describe this picture and how does it relate to the QP description?
This section discusses and compares the OM and QP descriptions of dynamics. Also, the
useful property of operator overloading is introduced. 

Suppose we would like to describe an electron-proton scattering process. Initially there is
an electron object in the state aMomentum_K1 and a proton object in the state aMomentum_P1.
After an interaction, which is mediated by a messager object called aPhoton, both objects
(electron and proton) transition to different states, say aMomentum_K2 and aMomentum_P2,
respectively. In QP the interaction between quantum objects is often displayed in
Feynman diagrams 
[5,8] For example, Fig. 3 shows a Feynman diagram for the electron-proton scattering
process. [In fact, the interaction of Fig. 3 is just one (although the most relevant) of the
very many possible ways proton and electron objects can interact electromagnetically
exchanging momentum]. How might this be described in the object model?

Figure 3. Feynman diagram describing electron-proton electromagnetic scattering. Two
objects (proton and electron) in some initial states (|P1> and |K1>) interact exchanging a
message (a photon). After the interaction, the objects are in different states (|P2> and
|K2>). 

1) Using the appropriate constructors we instantiate an electron, myElectron, and a proton,

13 of 34 

 Is Schrödinger's Cat Object-Oriented? 



myProton, with momenta aMomentum_K1 and aMomentum_P1

TElectron myElectron (aMomentum_K1); 
TProton myProton (aMomentum_P1); 

2) Using the method SetMomentum(), we change the values of the momenta to their final
values: aMomentum_K2 and aMomentum_P2. In Appendix B design, the method SetMomentum() is
provided in the abstract base class TParticle . The classes TElectron and TProton (which derive
from TParticle) inherit this method. 

myElectron.SetMomentum (aMomentum_K2); 
myProton.SetMomentum (aMomentum_P2); 

The values of, say, aMomentum_K2 is constrained due to the momentum conservation law,
i.e., 

aMomentum_K2 = aMomentum_P1 + aMomentum_K1 - aMomentum_P2; 

[Note that in the above equation, and in some of the forthcoming equations, we assign,
add and substract TVector3D objects as if they were built in types]. 

Alternatively we might have used the method MomentumTransfer() instead of SetMomentum() as
follows

myElectron.MomentumTransfer ((-1)*aMomentum_Q)); 
myProton.MomentumTransfer (aMomentum_Q); 

where

aMomentum_Q = aMomentum_P2 - aMomentum_P1; 

Momentum conservation in these simple models must be implemented by hand. 

We now present another model that builds in momentum conservation.The above
representations only use one-body operators (i.e., SetMomentum() or MomentumTransfer(), in the
class TProton, only acts on objects of the type TProton). What if we would like to represent
aPhoton object that mediates the electron-proton interaction? A possible way to accomplish
this is by using the methods EmitPhoton() and AbsorbPhoton(), which take as argument an object
of type TPhoton. The implementation of these methods could easily build in momentum
conservation in a natural way. For example, after creating our proton, electron and photon

TElectron myElectron (aMomentum_K1); 
TProton myProton (aMomentum_P1); 
TPhoton myPhoton (aMomentum_Q); 

we apply the methods EmitPhoton() to myElectron and AbsorbPhoton() to myProton:

myElectron.EmitPhoton(myPhoton); 
myProton.AbsorbPhoton(myPhoton); 

where we have assumed that both TElectron and TProton derive from TChargedParticle , and that
the methods EmitPhoton() and AbsorbPhoton() in the class TChargedParticle are implemented to
guarantee momentum conservation. This might be done as follows:
myChargedParticle.EmitPhoton(myPhoton) sets myChargedParticle's momentum to 

aMomentum_K2 = aMomentum_K1 - aMomentum_Q, 

while myChargeParticle.AbsorbPhoton(myPhoton) sets myChargedParticle's momentum to

aMomentum_K2 = aMomentum_K1 + aMomentum_Q. 

where aMomentum_K1 is the initial value of myChargedParticle's momentum. This representation of
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the interaction of two objects mediated by a third one (messager) is more closely related
to that of QP shown in Fig. 3. 

When describing the dynamics, it is convenient to use some objects, say from the class
TVector3D, just as if they were built in types. For example, we might want to add and subtract
TVector3D objects as in the momentum conservation equations of above. In the interface of
the class TVector3D presented in Appendix A we have overloaded the assignment, the
multiplication, and the addition/subtraction operators. Overloading an operator means that
the compiler recognizes by context which operator implementation is being requested by
the user in expressions such as the above ones. In other words, by overloading, for
example, the + and - operators, we "teach the compiler" how to add/substract TVector3D

objects (using the symbols + and - in the familiar way). Operator overloading is a very nice
and quite useful feature of some OO languages.

As the exchange energy between relativistic interacting particles increases other
interaction processes become important. Consider an electron and its antiparticle, the
positron. Given these objects at some initial time, at a later time they "vanish" and
transform themselves into, say, a proton object and an antiproton object. This process is
represented in the Feynman diagram of Fig. 4. This is an interesting example of objects
completely losing their identity. Also, as in the scattering process of Fig. 3, this process is
mediated by a photon object. This physics is not "naturally" captured in the current C++
language. [But, of course, it can be modelled]. In fact, OO languages other than C++ may
offer more natural mechanisms for such a modelling, for example Smalltalk's "become"
method. 

Figure 4. Feynman diagram showing electromagnetic electron-positron annihilation. Two
different objects (electron and positron) in some initial states (|K1> and |K2>) "annihilate"
each other. An intermediate object is formed (photon), which then "becomes" two distinct
objects (proton and anti-proton) in states |P1> and |P2>. 

As we have seen in this and the previous sections, in QP states have a "probabilistic"
interpretation, and objects can sometimes confuse/lose their identities. They are
summarized below:

1) When measuring a quantum system, state vectors just predict probabilities for objects
to be in some states. Seldom does the state vector predict with certainty a unique state
(this case corresponds to state vectors that are eigenstates of the complete set of
observables).

2) If there are many identical quantum objects (i.e., objects that belong to the same class)
confined to a "small" region in space their identity can get confused. This is a
consequence of the uncertainty principle as position/momentum of objects cannot be
measured simultaneously with infinite precision. 

3) Finally the "worst case" occurs in relativistic quantum mechanics. In this case, objects
can completely lose their identity. Then, objects of a given class could transform into
objects of another (e.g., electron/positron into proton/antiproton). This effect is a
consequence of both the uncertainty principle and also of the energy-mass equivalence;
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i.e., the "stuff" encapsulated by the electron/positron objects transforms into an equivalent
"stuff" now encapsulated by other types of objects: proton/antiproton.

In the OM literature usually states are not "probabilistic" and objects have a sharp identity
as in "classical physics"[3]. On the other hand, this is not a limitation of the OM which is
equally well suited to model QP. Design of appropriate classes and methods may be
challenging. 

VI. Object-Oriented Design 
And 

Effective Hamiltonians. Frameworks 

Suppose we would like to design and implement an air traffic control system. How to
identify the key abstractions in the problem space? How to identify classes and objects in
an OO design? What are the possible relationships among classes? Classes (such as
TAirplanes , TRunways,...) are static and their relationships are fixed before the execution of a
program. In contrast, objects (such as a new runway, new airplane...) are dynamic. They
are constantly created and destroyed during the lifetime of a typical application. The
identification of appropriate classes and objects is the hardest problem of OO design[1-3]
In fact, in this section we identify analogies between OO design and the problem of finding
the "elementary components" of complex systems (for example, superconductors). In
many-body theory, this is the problem of finding the effective Hamiltonian that describes
the physics of interest. 

At first glance, OO design may seem straightforward: just mimic the objects of the outside
world and their interactions, relevant to the piece of reality to be captured in software. This
is not the case in real OO design. In general, reality is too complex to be fully captured in a
design. On the other hand, many of the outside objects/interactions may be totally or
partially irrelevant to our problem. For example, in a naive design of a payroll one could
include TEmployee objects, TCheck objects, TPen objects, TInk objects, TBank objects,.... On the
other hand, a more sound design might just introduce TEmployee objects that pay
themselves recognizing the irrelevance of other objects such as aBank, anInk, aPen, etc. to the
problem of interest. In the process of abstraction, one "invents" a TEmployee object with
properties which do not correspond to those of a "real" employee, but substantially
simplifies the design. Moreover, to obtain tractable and sound designs, one may introduce
" abstract", "intangible", or "totally imaginary" objects that "do not have any resemblance to
reality". For example, in a "computer graphics window" design, one may use TAnimation

objects (i.e., translation operators) that move things around, and objects of the types
TShape, TColor, TSize ,... . In the design of a complex system one has to identify key
abstractions, propose some candidate classes and objects to mimic the system, and
conjecture some class taxonomy. Some of this has been briefly discussed in Section IV. 

What are observables? It depends on the observer's interest and ways of probing the
system. For example, given some TAirplane objects in anAirport, one may be interested in
either their size, color, when they were built, airlines to which they belong, the number of
available seats, the type of engine, etc. Choosing the appropriate "degrees of freedom"
usually is a highly non-trivial exercise, and OO designs depend critically on this choice. In
QP one is confronted with similar situations, for example, given a proton, its momentum
might be the observable of interest for some low energy experiments, at higher energies
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one may be interested in the momenta of each quark. Alternatively, the proton's spin may
be one of the selected observables if interested, say, in the hydrogen hyperfine structure.
Or protons' degree of freedom may be totally irrelevant, say, if describing hydrodynamic
properties of water; even though protons are "part of" water.

How does one identify "classes and objects" and their relationships and interactions in
Natural Sciences? The components of a system are usually determined by how the
system "breaks" under "minimal forces". For example, oxygen gas is made of oxygen
molecules. As we apply stronger forces (at higher collision energy), molecules break
down, and now the system is made of oxygen atoms, ions and free electrons.
Substantially increasing the energy of our probes, we see our system composed of
electrons, protons and neutrons. At even higher collision energy one discovers that
protons and neutrons are made of quarks. This, again, is an illustration of the hierarchical
structure of Nature. "Minimal unit" is an ambiguous concept that strongly depends on
"context": depth of penetration into the structure, physical conditions and phenomena to
be described (i.e., the kind of experiment selected to explore the system). Given our
oxygen gas at room temperature, we view it as composed of molecules when interested in
specific heat. On the other hand, if interested in, say, electrical conductivity we instead
regard the gas as made of positive and negative ions.

One of the most basic problems of Physics is to "find" the "fundamental objects" or
"elementary components" of complex systems. This problem is illustrated by
superconductivity. Superconductors are materials that offer almost no electrical
resistance. Hence electrical currents circulate for months with very little heat dissipation.
Conduction properties of metals can be explained in terms of interacting ion and electron
objects, but interactions among these type of objects cannot help explaining
superconductivity. Superconductivity was discovered in 1911, but it took almost 50 years
find a satisfactory theory. What are the relevant "objects" to describe superconductivity"?
The BCS (Bardeen, Cooper and Schriffer) theory of superconductivity has shown that
"the" sought "object" is the so-called Cooper pair. A Cooper pair is an "atom" made of two
electrons that weakly attract each other (attraction mediated by the host ions) and which
behaves like a whole. This is an important point, although "free" electrons repel each other
(Cooper pairs cannot exist in isolation from the material environment), in the appropriate
environment (inside a superconducting metal) they, indeed, form bound states and behave
as a whole identity. Cooper pairs are called quasiparticles, as they do not exist in isolation.
Quasiparticles, as animals, need their own habitats to survive (e.g., superconductivity only
occurs for a few metals in some range of temperature, external fields,...). In contrast,
protons and electrons are particles. They can exist in freedom. The Cooper pairs (bosons)
are the carriers of electricity in a superconductor, and are much more effective in their task
(conducting electricity) than electrons (fermions), carriers of electricity in normal metals. 

How do we "solve" a complex many-body problem in physics? Let us again discuss
superconductivity. Given a metal made of ions and electrons, one searches for the
appropriate class or classes that capture the physics of the problem. As reality is too
complex, only essential features can be incorporated if the model is to be mathematically
(and/or computationally) tractable. One hopes to write the so-called effective Hamiltonian
Heff of the system

Heff = H0 + HI ,

with H0 the free Hamiltonian containing the fields (classes) relevant to our problem. For
example, in the superconductivity case, the class of interest is TCooperPair although naively,
one could have said that the "right" classes were TIon and TElectron . The effective
Hamiltonian is an operator, written in terms of the TCooperPair creation and annihilation
operators. H0 describes a system of "non-interacting" Cooper pairs (that is, there may be

17 of 34 

 Is Schrödinger's Cat Object-Oriented? 



0, 1, 2,... objects of the type TCooperPair). The second term HI describes the TCooperPair

interface, that is how these objects interact among themselves, so it is called the
interaction Hamiltonian. Interaction is supposed to be weak for the effective Hamiltonian to
be meaningful, so the objects which encapsulate data (such as mass, electric charge,...)
and methods (such as SetMomentum() , ...) conserve their identity as long as objects are in
the proper habitat (limit of validity of the effective Hamiltonian). Interactions describe the
object's interface with the rest of the world (outside view).

Object-Oriented design is facilitated by good class libraries. These libraries provide the
"atoms" or basic building blocks to be used in our code. For example, for a linear algebra
project, one may need classes such as TVector, TMatrix ,.... The atoms are not "rigid" units
but quite flexible. The user can modify the building blocks deriving his/her own classes
from those provided (for example, the user can change some methods, add new data
members,...). Suppose the class TMatrix is provided, but we need TSymmetricMatrix. We just
derive this class from TMatrix inheriting all its properties and just adding the symmetry
constraint (some relation among data members). We do not need to implement, say,
matrix multiplication as this operation is inherited from the parent class, TMatrix. Then,
design will consist in using classes provided by the library (maybe after subclassing some
of them) in conjunction with other classes designed by the user. Finally, the user
interconnects all parts of the system.

If we would like to model, say, oxygen gas, it would be much more convenient to have as
fundamental building blocks molecules of oxygen (and maybe oxygen atoms and ions)
with the proper interactions, than, say, quarks and leptons interacting via weak,
electromagnetic and strong forces, or protons and electrons interacting
electromagnetically. In fact, had we started with quarks and leptons, we may have never
accomplished our project as it is an immensely more difficult problem than if one starts
with the "right" building blocks. Frameworks in the OO technology are the analog to the
"complete design" of the oxygen gas using oxygen molecules building blocks (and
possibly oxygen atoms and ions) interacting via van der Walls forces (and possibly
electromagnetic ones), and, maybe, confined to some container with some geometry and
boundary conditions. Frameworks encapsulate "collective behavior". This "collective
behavior" is the result of several classes interacting in a particular well-defined manner.
On the other hand, frameworks are not canned programs but flexible designs. For
example, we could add additional particles, new particle types, modify or add new
interactions, change the container geometry and/or boundary conditions,... by subclassing
and overriding. Frameworks are a very natural way to reuse higher level designs. In
conclusion, the difficult problem of modeling a complex system could be substantially
reduced by good class libraries and frameworks. We will elaborate more on this point in
the last section. 

VII. Multimedia, Parallel Universes 
And 

Path Integrals. 

In some OO design techniques[1-3] it is common to utilize state transition diagrams.
These diagrams show the state space of an object, display events causing a transition
from a state to another, and characterize the new state. Hypermedia is an interactive
media in which the user can affect the state of a system by some action such as clicking
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the mouse on a selected object. In this section we briefly introduce path integrals, an
alternative representation of quantum mechanics, and suggest some analogies between
hypermedia and path integrals. 

A very useful mathematical representation of quantum mechanics is via path integrals[6,8]
Suppose one creates an object, say, myVector3D that belong to the class TVector3D, at time t1
in some state | s1 >, where s1 consists of the variables that define the state (say, the three
Cartesian coordinates of the myVector3D object). As previously discussed, the state vector
has, associated with it, an abstract vector space where all states can be represented. In
our example, the state space is just a (usual Euclidean) three-dimensional space. As time
evolves, the state vector changes and this can be pictured as the motion of the point
representing the current vector's state in the state space. 

In QP, due to the "probabilistic" nature of the state vectors [i.e., quantum state vectors
only give probabilities for the object, when measured, to be in given states], objects
created at (s1, t1) and annihilated at (s2, t2) can make the transition from their initial to
their final state in many (sometimes, infinite) possible ways (paths). See Fig. 5. In contrast,
in classical mechanics there is just a single possible path (that which minimizes certain
function called the action related to the Hamiltonian of the system). In QP all paths are
possible but each one is weighted by its action. In other words, the action on a given path
is a measure of the probability of that path. Using the path integral formulation of QP, one
obtains identical results as using the alternative operator representation sketched in
previous sections (i.e., the two representation are equivalent).

Figure 5. Given two events s1 and s2 at times t1 and t2, such as the position of a moving
ball at two distinct times, in classical mechanics there is just a single path (i.e., trajectory)
which could join both points. This is the path that minimizes the action. In contrast, in QP
all paths are allowed with some probability (i.e., each path is weighted by the path's
action). In hypermedia, say, an interacting book, we could move from the beginning to the
end of the story in many ways. For example, in each page, by clicking on some objects in
some order we "choose" some trajectory in the "story" space.

One controversial interpretation of QP (many-universe interpretation)[9] says if something
physically can happen, it does, in some universe. In other words, each of the very many
paths in the state space do occur in some universe. Then, physical reality would consist of
a collection of universes (each running all possible scenarios of a play). In fact, this
many-world model is approximated in hypermedia. In hypermedia[10], there is an
information/event (state) space for a story one wishes to tell (e.g., an interacting book).
The space can have any number of dimensions. Actual events are represented as points
in the space. Navigable paths are curves in this space linking various events together.
These curves intersect at specific events, and the user can, in principle, explore the full
space. In hypermedia (and virtual reality) navigation in the event space is usually manual.
Yet, provided with a model (Hamiltonian), a simulation engine either could select a single
path in the information space (classical physics), or assign probabilities to each path
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(quantum model). 

VIII. Present and Future 

In the last section we collect some thoughts and summarize some of the early scientific
users'experience with OO. 

The object model provides a very natural language for modeling Nature, one that could
closely mimic in software most mathematical structures used by natural scientists. The
principle of abstraction, a basic pillar of natural sciences (and of any other science) is one
of the most fundamental concepts in object-oriented design. Because of abstraction one
can attack difficult problems by isolating relevant features for the piece of reality to be
captured in the model. Also, abstraction allows one to find common characteristics in
apparently very different problems. Moreover, abstraction sometimes permits the
"decoupling" of various aspects of a problem into "orthogonal" components which can be
mathematically modeled (or implemented in software) independent of each other. 

OO is sufficiently mature to implement many physical models. In particular, the C++
language is widely available (on PCs, workstations and supercomputers) and portable.
Some OO languages appear well suited for the tasks of scientific software
development[12,13] In particular, the class concept together with the facility to overload
operators allows user-defined data structures (such as rational numbers, vectors, tensors,
spinors, group theoretical operations,...) to be handled in same way as built in types (such
as integer or float)[14] Library support is not as ample, and compiler technology is not as
mature for C++ as for Fortran (which has been the favorite scientific programming
language for more than forty years). Currently, code execution speed is not as good as
Fortran's. In fact, several workers are currently using dual language (Fortran/C++)
implementations[12] to get the best of both worlds. Anyway, the situation in these fronts is
rapidly improving. 

Class libraries provide classes such as vectors, matrices,..., reusable building blocks for
larger problems. Object-Oriented building blocks are flexible, permitting subclassing to
satisfy user's specialized needs. (For example, one might subclass the class TComplexMatrix

to obtain SU(3) matrices). Currently there are several commercial (M++[15] , Math.h++,
Lapack.h++,[16]...) and some public domain (NIH class library [17],...) class libraries for
scientific computation. LAPACK, a well known linear algebra library, has already been
extended to C++. ScaLAPACK++ is an object-oriented C++ library for implementing linear
algebra computations on distributed memory multicomponents[18] Available numerical
class libraries support arrays of various types, parallel arrays, linear algebra classes,
polynomials, random number generators, statistical objects, geometrical objects,... In
several National Laboratories, there are teams actively working on challenging OO
numerics projects. For example, MatResLib is an OO material response library written in
C++ at Sandia National Laboratories[19] Some large scientific projects are now being
written (or rewritten) in C++[20,21] Usually, the choice of an OO language over a
procedural one has been made to satisfy fundamental requirements such as portability,
maintainability and extensibility. For example, recently seven radio astronomy
observatories from around the globe joined forces to develop an OO data processing
system called AIPS++ (the Astrophysical Image Processing System)[21] that is to replace
an older system written in Fortran 66. 

When programmed in procedural languages (e.g., Fortran) the physics is closely
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interwoven with numerical analysis, memory management, the geometry of the problem
(such as shape of the container and boundary conditions)...[12,22] Large bodies of codes
are not only difficult to write, but are even more challenging to debug. A very important
advantage of OO languages is that they can much better isolate numerical analysis,
system geometry, etc., from the physics of the problem[12,22] In addition, data abstraction
enhances the comprehensibility of the code, modules can be altered (debugged, modified,
upgraded) without affecting other modules. These nice features of OO have been
exploited by many scientific users. For example, sets of coupled partial differential
equations appear in a large variety of problems in physics, such as computational fluid
dynamics. A recent paper[22] considers a Navier-Stokes simulator for compressible gas
flow and uses adaptive mesh refinement algorithms. The C++ code (the authors employ
Fortran for low level numerics) has been written in a "dimension independent" fashion
employing geometrical objects (e.g., intersections and unions of "d-dimensional" box
objects). Once the code was proven to work in d = 2 then the extension to 3 dimensions
was effortless. In the same code, for example, it was also painless to add a parabolic term
to the Navier-Stoke equation to include diffusive transport of heat and momentum.
Previously, debugging the old Fortran code for the three dimensional problem was mind
boggling and the incorporation of diffusion term in the model required much more effort. 

OO is well suited to parallel computing. Objects are already "natural units" to be distributed
in a convenient fashion among the processors. C++ can be extended to support
concurrency (active objects own their threads of control)[23,24] Parallel computing using
procedural languages has been very successful in large problems with homogeneous
structures (matrix computations, homogeneous fluids,...). Homogeneity often guarantees a
balanced allocation of work across the processors, as well as efficient communication
between nodes. More complex systems such as disordered systems, inhomogeneous
fluids,... suffer from space-time irregularities For example, flow computations of
inhomogeneous fluids may require dynamically and locally modifying mesh size adding or
deleting nodes during computation. For efficient use of parallel computing, work must be
relocated at run time among the processors to maintain acceptable workloads. Also, it is
usually desirable to support the possibility of node failures (fault tolerance) so if a node
fails the computation is not stalled. These tasks are naturally implemented using OO
technology (e.g., customize active objects to manage workload distribution)[24] Currently,
parallel computing is reserved for a small group of practitioners. This may not be a result
of the intrinsic difficulty of the problem but of tools, methodologies and development
environment support used to treat it. Some researchers[25] have attained performance
comparable to procedural technology in parallel computing, with less effort, using OO
technology and higher levels of abstractions.

Should a natural scientist become a programmer to take full advantage of modern
technologies, such as computer simulation, scientific visualization, parallel computing,
virtual reality,...? Of course, the obvious answer is that natural scientists would like to profit
from these powerful technologies but also keep some time for science! Here, object
techniques, and in particular framework technology can prove very useful. Frameworks
are reusable OO designs for domain-specific problems. In fact, framework programming is
a logical extension of OO programming. For example, a team of physicists/chemists could
design a molecular dynamics simulation framework (using existing class libraries and
frameworks). [26,27] This framework would contain all important features required to
produce (maybe, parallel) molecular dynamics simulations and display data in a variety of
useful forms (scientific visualization, virtual reality,...)[28] Clients could use the framework
as it is (as a canned simulator) but, with little effort, they could tailor it to fit their needs. For
example, they could add additional particles, other type of particles, other properties to
existing particles, add/modify interactions, change boundary conditions,... . This is simply
done by subclassing and adding new methods and data members to existing classes.
Thus, frameworks could provide even to a "computer illiterate" natural scientist (but who
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knows some basic OO design) easy access to simulation, visualization, parallel
computing, virtual reality,... . The hardest work would be done by designers of classes and
frameworks at various levels. Natural scientists could devote their time to doing science
while enjoying simple, powerful and flexible computational tools. 
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APPENDIX A

Writing C++ Code I: The class TVector3D.

In this Appendix, we provide a C++ declaration and implementation of the class TVector3D,
illustrating the important C++ feature of operator overloading. To take full advantage of the
Appendices, some basic background in C and C++ is required (either an introductory
course in C++, or some exposure to basic C++ through any of Refs 4 or other C++
textbook).

The header Vector3D.h declares the class TVector3D 

class TVector3D 

{

public:

  TVector3D    ();      

  TVector3D    (double x, double y, double z);

  ~TVector3D   ();          

/* Operator Overloading */

  TVector3D    operator=  (const TVector3D theVector);

  TVector3D    operator+= (const TVector3D theVector);

  TVector3D    operator-= (const TVector3D theVector);

  TVector3D    operator*= (const double    theScalar);

private:
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  double x, y, z;   //components of the vector

};

The implementation of the class TVector3D follows

#include <Vector3D.h>

TVector3D::TVector3D()      

{

  x = 0;

  y = 0;

  z = 0;

}

TVector3D::TVector3D(double a, double b, double c)

{

  x = a;

  y = b;

  z = c;

}

TVector3D::~TVector3D() 

{  // nothing to do        

};

TVector3D TVector3D::operator= (const TVector3D theVector3D)

{

  x = theVector3D.x;

  y = theVector3D.y;

  z = theVector3D.z;

  return *this;

}

TVector3D TVector3D::operator+= (const TVector3D theVector3D)

{

  x += theVector3D.x;

  y += theVector3D.y;

  z += theVector3D.z;
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  return *this;

}

TVector3D TVector3D::operator-= (const TVector3D theVector3D)

{

  x -= theVector3D.x;

  y -= theVector3D.y;

  z -= theVector3D.z;

  return *this;

}

TVector3D TVector3D::operator*= (const double theScalar)

{

  x *= theScalar;

  y *= theScalar;

  z *= theScalar;

  return *this;

}

In this design, the default constructor returns a null vector. Alternatively, one might provide
an implementation using a random number generator so the constructor would instantiate
a random TVector3D object. The operators =, +=, ... are messages sent to an object of the
TVector3D class. Since the name of this object is not known, in the C/C++ language it is
denoted *this. 

APPENDIX B

Writing C++ Code II: TParticle, 
TNucleon and TProton Classes 

This Appendix presents C++ code for some of the examples discussed in this work, such
as the abstract base class TParticle and the concrete classes TNucleon , TProton and TNeutron.
Here we have not attempted to produce the "best" class design, but just to provide an
illustration of some of the OM features using C++. 

In the file Particle.h we declare the abstract base class TParticle which encompasses
common features of objects of type TParticle
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#include <Vector3D.h>

 

class TParticle

{

public:

                             TParticle      (TVector3D  initialMomentum);  

                             TParticle      ();

  virtual                    ~TParticle     ();          

  virtual    TVector3D       GetMomentum    () const;

  virtual    void            SetMomentum    (TVector3D  newMomentum);

  virtual    long            GetNumber      () const = 0;    

protected:

             TVector3D       fMomentum;

};

The class TParticle contains just one data member, fMomentum, which is protected. Protected
means that only derived classes can access this member. Alternative designs could have
chosen to include, say, other particle attributes such as kMass, kElectricCharge, etc. In our
design these other data members are included in some of the derived class (e.g., TProton

and TNeutron). TParticle is an abstract base class, thus it cannot be instantiated. An abstract
base class has at least one pure virtual function. A pure virtual member function (e.g.,
GetNumber()) is not implemented in the base class but derived classes must provide its
implementation (this is indicated by appending " = 0" after the method's declaration).
Derived classes (such as TChargedParticle, TPhoton, TNucleon,...) usually implement
constructors/destructors, and may add additional methods (such as AbsorbPhoton(), EmitPion( ),
...). Additional data members may also be added (such as kMass, kElectricCharge ,...).

Virtual functions (such as the get and set methods, and the destructor of class TParticle)
allow derived classes to replace (override) these functions' implementation
polymorphically. Suppose that the method GetElectricCharge() is defined in the class
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TChargedParticle. Then, the derived classes TElectron , TProton and TNeutron would then inherit this
method but should provide different implementations (i.e., override this method). For
example, GetElectricCharge() returns 0 for aNeutron, 1 for aProton and -1 for anElectron. 

The source file Particle.C contains the implementation of the GetMomentum() and SetMomentum()

methods and is given below 

#include <Particle.h>

TVector3D TParticle::GetMomentum() const

{

  return fMomentum;

}

void TParticle::SetMomentum(TVector3D aMomentum) 

{  

  fMomentum = aMomentum;            

}

There could be several intermediate classes between TParticle and TNucleon (such as THadron,
TMultipletSU4, ...). Since there are not many interesting additional OO features to illustrate,
and for a sake of simplicity, we derive TNucleon directly from the abstract base class. Thus,
in another file, Nucleon.h we declare the class TNucleon, which is a concrete class (it can be
instantiated), and directly derives from (i.e., is a subclass of) TParticle

#include <Particle.h>    

#include <Pion.h>

class TNucleon : public TParticle {

public:

                           TNucleon  (TVector3D initialMomentum);

                           TNucleon  ();
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  virtual                  ~TNucleon ();

  virtual      double      GetMass   () const;    

  virtual      long        GetNumber () const;    

               void        EmitPion  (TPion aPion);

               void        AbsorbPion(TPion aPion);

private:

  static const    double  kMass;

  static          long    fgNumber;

};

The first (#include) lines indicate to the compiler that information declared in the headers
<Particle.h> and <Pion.h> will be required. The source file Nucleon.C follows

#include <Nucleon.h>

const   double    TNucleon::kMass = 1833.15; 

        long      TNucleon::fgNumber = 0; 

TNucleon::TNucleon()

{  

  TVector3D  aVector3D;

  fMomentum = aVector3D; 

  fgNumber ++;      //increase by one the nucleon counter

}

TNucleon::TNucleon(TVector3D initialMomentum)
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{  

  fMomentum = initialMomentum; 

  fgNumber ++;

}

TNucleon::~TNucleon()

{  

  fgNumber --;    //decrease by one the nucleon counter

}

double TNucleon::GetMass() const

{

  return kMass;

}

void TNucleon::AbsorbPion(Pion aPion)

{

  fMomentum += aPion.GetMomentum();  

}

void TNucleon::EmitPion(Pion aPion)

{

  fMomentum -= aPion.GetMomentum();  

}
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long TNucleon::GetNumber() const

{

  return fgNumber;

}

The class TProton (which derives from TNucleon) is declared in the header Proton.h

#include <Nucleon.h>

class TProton : public TNucleon {

public:

                 TProton (TVector3D initialMomentum);

                 TProton  ()  ;

  virtual        ~TProton();

  virtual  long  GetElectricCharge() const;

  virtual  long  GetNumber() const;    

private:

  static const    long     kElectricCharge;

  static          long     fgNumber;

};

Most of the data and methods of TProton are inherited from TNucleon, so they have already
been implemented. Hence little additional work is required. Constructors/destructor are
overridden and the method GetElectricCharge() is implemented in the source file Proton.C 

#include <Proton.h>       
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const   long     TProton:: kElectricCharge = 1 ; 

        long     TProton:: fgNumber = 0; 

TProton::TProton() : Nucleon() { fgNumber++;}

TProton::TProton(TVector3D initialMomentum):TNucleon(initialMomentum )  

 { fgNumber++;}

TProton::~TProton() { fgNumber--;}

long TProton::GetElectricCharge() const

{

  return kElectricCharge;

}

For the class TNeutron code is identical to that of the TProton with the replacement TNeutron by
TProton, and the value for the electric charge, kElectricCharge, zero instead of one. 

For the code given in the Appendices to compile and work, the reader must implement the
class TNeutron as discussed above, and also declare and implement TPion which could
directly derive from TParticle. In this case, TPion is almost identical to TNucleon replacing
Nucleon by Pion (the methods EmitPion() and AbsorbPion() are not required). This provides the
reader all ingredients necessary to describe, in the main program, interactions between
protons and neutrons. For example, one might have

#include <Proton.h>

#include <Neutron.h>

#include <Pion.h>

void main(){

TPion aPion(aMomemtum_Q);              //create a pion with aMomentum_Q

TProton aProton((aMomemtum_P1);        //a proton with aMomentum_P1
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TNeutron aNeutron((aMomemtum_K1);      //and a neutron with aMomentum_K1

aProton.EmitPion(aPion);               //proton and neutron interact

aNeutron.AbsorbPion(aPion);            //exchanging a pion

}

to describe a pion exchange process pictured in a Feynman diagram identical to that of
Fig. 3 replacing electron by neutron, and photon by pion. 

As stated before the design of the Appendices are just for illustration. One of the
drawbacks of our design is the presence of the global quantity fgNumber, the number of
particles of a given type. This information is available to all particles of a given type (in a
more sound design, a given particle should not be aware of how many particles of the
same type are in the universe). In a more mature design, one might have, for example, an
Universe object which acts as a manager of the particles and their interactions. This object
might have a "clock", might keep track of the number of particles of each type and of their
interactions, might apply forces to particles, etc. 
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