
Guidelines for C++ Program Style

Comp 314 Fall 1997

Introduction

There is no fixed set of rules according to which clear, understandable, and provable programs can be
constructed. There are guidelines, of course, and good ones at that; but the individual programmer's style
(or lack of it), his clarity of thought (or lack of it), his creativity (or lack of it), will all contribute
significantly to the outcome.

-- Peter J. Denning

It is a major goal of our programming courses that you not only learn to produce correct programs, but
that you learn to use a good style of programming. There are, of course, many different opinions about
exactly what good style is. In these notes and in our classes, we will try to guide you to write C ++
programs in a particular style that we believe is good. It is the style we should use and the style you
should use in all your C ++ programming courses at Rice.

We do not believe these notes reflect an ideal C ++ programming style. There may be several aspects of
style presented here that differ from what is described in textbooks. Programming style can be a matter of
strong and diverse opinion, and proponents of other styles are not necessarily wrong for disagreeing with
ours.

In some cases, the choice of one stylistic convention over another may seem completely arbitrary. Why,
then, declare one convention good and another reasonable one bad? For the same reason that, among two
equally good spellings for the word describing a feline, cat is better than kat . Both convey the same
information, but the eye jerks to a halt on the word kat for an instant to interpret it, while it glides over
cat without a pause. For whatever reason, cat is the spelling people expect to see. To communicate with a
community of programmers, including those who grade your programs and help you with programming
problems, it is best to speak fluently the language of that community. When everyone writes loops the
same way, anyone can look at a looping piece of code and think loop instantly. When everyone uses their
own unique style to write loops, each component must be decoded before the revelation loop! occurs.

Programming style primarily concerns human, rather than computer, efficiency. A well-styled program is
to be preferred for three reasons. It is

easier, and therefore cheaper, to debug;

easier to test and show correct; and1.

easier to modify if the problem changes2.

Computer efficiency and good programming style sometimes come into conflict. The C family of
languages, in particular, allows terse, cryptic, machine-imitating statements that may translate directly to
efficient hardware instructions but leave the programming novice, or even the programming expert,
baffled. Some of these constructions have become part of the idiom of C programmers, and so would be

Guidelines for C++ Program Style

http://www.owlnet.rice.edu/~comp314/CodingStyle/codingStyle.html (1 of 16) [10/1/2000 8:21:49 PM]

understood in a glance by an experienced hacker. Ultimately, though, when computer and human
efficiency cannot coexist, a well-styled program is preferred to an incomprehensible one.

File Structure and Program Organization

A C ++ program is a collection of functions and variables in several files, with a function called main at
the highest level. The files are generally of two types, definition files and implementation files. A
definition file has a name ending with .hh and describes, for both the computer and human reader, how to
use a corresponding implementation, or .cc , file. A .cc file that implements functions not intended for
use by other computer programs may have no corresponding .hh file, and a .hh file that defines only
simple data types and defines only inline functions may have no corresponding .cc file.

A good program design begins with an analysis of what the major components of the solution must be
and how the components are related. For each of these components, there should be a file or collection of
files that contain the functions that solve the particular problem component. The relations between the
components should be made explicit, both in a Makefile and in #include directives at the start of
programs. A Makefile instructs the make utility on how to produce an executable program from related
source files. An #include directive makes available to one set of functions the definition file of another.

The name of a file should relate to its purpose. The names of corresponding implementation and
definition files should match, except for the suffix. When several implementation files are required that
correspond to a single definition file Foo.hh , the files should have names like Foo-tweedle.cc ,
Foo-dee.cc and Foo-dum.cc .

The C ++ programming language offers not only the usual procedural abstraction, but also data
abstraction. The top-level program design might well include a description of fundamental object types
that the program is to manipulate. A formal description of the members of a set and the operations that
can be performed upon them defines an abstract data type . The class mechanism in C ++ allows the
convenient use of abstract data types in programs. The implementation and definition files for an abstract
data type should have the same name, up to the conventional suffix, as the type itself.

Variables, as well as functions, may be placed in implementation files. Such variables are global ,
accessible to several functions in the file and possibly to functions in other files as well. Global variables
are not completely forbidden; however, a global variable should be as truly integral to the design of the
program as a global function. Global variables appear most often as an indication of programmer laziness
rather than program structure. The graders therefore regard them with great skepticism.

Guidelines for C++ Program Style

http://www.owlnet.rice.edu/~comp314/CodingStyle/codingStyle.html (2 of 16) [10/1/2000 8:21:49 PM]

Functions

On the lines below a function heading, there should be two assertions, called pre- and post-conditions,
that describe what the procedure does . The precondition states what assumptions the function
implementer can make (and, conversely, what conditions the caller must ensure) just prior to the
execution of the function. Similarly, the postcondition states what assumptions the caller can make (and,
conversely, what conditions the function implementer must ensure) just after the execution of the
function. Generally, these two assertions describe facts about the formal parameters and, possibly, global
variables. Remember that, in its purest form, an assertion is simply a Boolean expression. Clarity and
specificity, however, are more important than formality: it's better to use constructs, even English, that
are less formal than Boolean expressions if you need to. If a precondition is trivial (i.e., simply TRUE),
then it can be omitted. If a postcondition is trivial (i.e., no change of state occurs), then it can be omitted.
You may, additionally, have other comments that describe something special about the implementation,
such as its performance or method.

For example:

// The position of name within the roster

int position(const SortedStringList & roster, const String & name)

// Preconditions:

// For all 0 <= i < roster.n -1,

// roster.member[i] <= roster.member[i+1]

// Postconditions:

// Let pos denote returned value. Then

// For all 0 <= i < k, roster.member[i] < name and

// for all k <= i < roster.n, name <= roster.member[i]

// Method:

// Binary search of the sorted array

{

<function body>;

}

Values may be passed to functions either through value or reference parameters. Value parameters
provide a function with local variables, initialized to the values of the actual parameters. Changes to
these local variables do not affect the actual parameters. Reference parameters provide a function with

Guidelines for C++ Program Style

http://www.owlnet.rice.edu/~comp314/CodingStyle/codingStyle.html (3 of 16) [10/1/2000 8:21:49 PM]

the actual parameters directly, so that a change to a reference parameter changes the corresponding
variable in the calling program. When the intent of a function is to modify its parameters, reference
parameters are preferred. In particular, the C style, which faked reference parameters by
passing-by-value pointers to the parameters to be modified, is not acceptable.

When the actual parameters of a function are not intended to be changed by the function, value
parameters are preferred. However, the greater efficiency of reference parameter passing makes
call-by-value unappealing for parameters that are large class objects. In such cases, it is acceptable to
pass by reference, but the const keyword must be added to the formal parameter description, to check
that the parameter is not unintentionally modified.

A function can produce values for the calling program in three ways: with a return statement, via output
parameters, or by modifying the value of a global variable. A function that computes a value and does
not alter its input parameters should use the return statement to provide a value, rather than using an
output parameter. A function that produces several values cannot return them all separately, but can
return a class object, where the data members of the class are the different values. If that is inconvenient,
a function may return its values in reference parameters. However, a function that can alter its reference
parameters should be of type void , and not return a value through the usual return mechanism. It can be
very confusing to see a function call returning a value without realizing that it also changes some of the
values provided to it. The output reference parameters should precede all the other parameters in the
argument list of a function.

Global variables should not be used as a lazy way to return arguments to a function. However, when a
global variable is appropriate, it is best to make it a class variable and use member functions and member
procedures to access its value or to modify it.

In a similar vein, class methods should either return a value, or change the state of an object, but not both
. If you want to do two things, use two lines (and don't worry about the overhead of making two function
calls; see the section on efficiency). Some practitioners feel it is okay to violate this is during input: while
(f.read() != EOF_CHAR) {...} . In such a case, consider the alternative for (f.read(); !f.eof(); f.read())
{...} ; this reduces the need for sentinel values, at the cost of having two points of control for f.read() .

The object-oriented nature of C ++ allows a function that manipulates the representation of an item of
some class to be defined either as a friend to the class or as a member of the class. When writing a
function that does something to a class object, make it a member function. When writing a function that
tells something about a particular class object, use a member function. When writing a function that does
something with a class object, make it a friend function.

The C ++ programming language also allows overloading of the standard C operators. This can enhance
program readability; for example, using s1 + s2 to form the concatenation of two strings is very natural.
(Do you expect this to change the contents of s1 ?). The usual arithmetic operators should only be used
for functions that correspond naturally to their meanings in arithmetic, as with + above. Binary operators,
whose operands are equally important, are better expressed as friend functions than as methods of the
first operand. If you overload + , you should document whether or not you also overload += , and
consider whether to overload ++ , - , -= , etc. Non-intuitive uses of operators should always be avoided.

There is one operator which should be overloaded for every class, and is probably one of the first
methods you write in any class, for debugging purposes: << . You should not overload << and >> for

Guidelines for C++ Program Style

http://www.owlnet.rice.edu/~comp314/CodingStyle/codingStyle.html (4 of 16) [10/1/2000 8:21:49 PM]

anything but I/O. As for overloading some of the more obscure operators, it is a matter of personal style:
is mySet <<= i particularly easier to read than mySet.add(i) ?

Flow of Control

The principal looping constructs of C ++ are for and while . The only difference between the two is that a
for loop provides a convenient location for initializing and updating loop variables. Use a for loop when
there is a variable or two that exist only to step through the loop. Such a variable could be counting the
elements of an array or stepping through a linked list or down a tree path. Do not change an index
variable of a for loop anywhere but in the heading of the loop. Do not initialize the index variable
anywhere but in the immediate vicinity of the loop heading. The traditional way to count through a loop
n times is for (i = 0; i < n; ++i) , so use this style in standard for loops.

Use a while loop, or the related dowhile loop, when there is no variable that serves as an index variable
for the loop. A while loop requires of the programmer less discipline. For example, only a while loop
should contain break or continue statements. These statements terminate all iterations or a single iteration
of the loop. When one of these statements is used, it must be the only command on its line and must be
followed by blank lines, so that it is easy to find. If a loop requires some of these early exit statements,
try to keep the number to a minimum; they make programs much harder to understand and debug. The
same warning applies to the use of the return statement to effect an early exit from a function.

Avoid the goto statement. The C ++ programming language has such powerful, undisciplined control
structures already that it is difficult imagine a set of circumstances that truly requires a goto . If you
believe that you have found such a circumstance, be prepared to defend your position against great
skepticism. This subject still raises heated debate, and has ever since Dijkstra's famous article GOTO
considered harmful . We agree with the article. (Perhaps someday C++ will incorporate Java's labelled
break.)

Loop invariants should be stated in comments near the top of complex loops in the same style used for
function header pre- and post-condition comments. A loop invariant is a statement about what can be
assumed at the start of every iteration of the loop. If it is difficult to write the loop invariant for a
particular loop, that loop is not likely to do what you intend.

Magic Numbers and Magic Types

A general principle of program style is that your code should mirror whatever it is modeling. Everybody
agrees that a program dealing with cards should have a class Card , but beginners tend to use raw
numbers like 50 to represent certain trick values in the midst of their code, and integer tags to represent
suits (e.g. 3 to represent Hearts).

First, magic numbers: The presence of numeric or character constants in the body of a program is almost
always confusing. The number 100 in a bridge-playing program could refer to the number of points for

Guidelines for C++ Program Style

http://www.owlnet.rice.edu/~comp314/CodingStyle/codingStyle.html (5 of 16) [10/1/2000 8:21:49 PM]

holding suit honors, for going down vulnerable undoubled, or for making a redoubled contract. Only by
studying the program can one determine which meaning 100 has in a particular context. If the respective
occurrences of 100 were replaced with SUIT_HONOR_BONUS , VUL_UNDERTRICK_PENALTY , and
REDOUBLE_INSULT_PENALTY , then the meaning would be clear.

Program modification is also made simpler by using meaningful constant names instead of magic
numbers. A few years ago, the value of REDOUBLE_INSULT_PENALTY changed from 50 to 100. In a
well-styled program, it took modification of one line to update the program. In a poorly-styled one, it
took several minutes of study to find which 50s should be changed to 100s. (The allowed magic numbers
are 0 and 1.)

Related constants should be gathered together into enum types. An enum is most useful when a set of
categories with unique identifying labels is required and the values of the labels is unimportant. For
example, it doesn't matter which suits go with which integers in a bridge program, but hearts and spades
should surely have different integer labels. An appropriate type definition might be

enum Suit {CLUBS, DIAMONDS, HEARTS, SPADES};

All the advantages stated above for named constants over literal constants apply also to named types over
primitive types. Even programmers who know not to use magic numbers in a program will use the int
type to represent all kinds of unrelated quantities in a program, or use the float type to represent both
temperatures and distances and weights. When the program needs to change to allow a higher precision
representation for distances only, each float variable must be considered a candidate for conversion to
double, and a process which should take a minute takes instead days. The simple typedef mechanism may
be enough to define a type, but if a complex set of type conversion rules applies to the types of a
program, the class mechanism of C ++ allows the legal type combinations to be specified. The C ++
inline specifier allows these strongly type-checked operations to be as efficient as the less secure
operations they replace.

The overloading of the int type can make programs quite unclear. It is possible to use an int as an array of
bits to represent subsets of some small set, with shifting, anding and oring to test for set membership, add
a member to a set, or remove a member from a set. Such techniques are clever and efficient and perfectly
acceptable. However, it should be made clear that the entity being manipulated is a set, and is not
supposed to represent an integer. Use typedefs and inline functions definitions to define the set types and
set operations. Similarly, an int is often used to provide a unique label for some object. In such
applications, labels are only compared and assigned, not added or multiplied, and the program would be
clearer if the labeling variables were of type ObjectLabel rather than int . It goes without saying that you
should use bool s true and false rather than the deplorable C-style conflation with int s 1 and 0; you
should use NULL rather than the int 0 when discussing pointers.

Guidelines for C++ Program Style

http://www.owlnet.rice.edu/~comp314/CodingStyle/codingStyle.html (6 of 16) [10/1/2000 8:21:49 PM]

Identifier Names

The C ++ programming language places no restrictions on the length of identifier names, allows
underscores in names, and distinguishes between upper- and lower-case letters in names. Using this
capability to the greatest possible extent could easily make programs iLleGIblE, so use it instead to
compose easily read identifierNames. The names given to functions that return void should generally be
verb phrases, since these are functions that do something . Types are analogous to nouns, so their names
should usually be nouns. Boolean variables and functions are statements of fact, so their names should be
brief assertions. Other variables, constants, and functions that return values are like proper nouns or
adjective-noun phrases. In the following program fragment, it is clear which names refer to types, which
to variables, and which to procedures:

Point rayEndPoint, windowCenter;

Window graphicsWindow;

if (! graphicsWindow.contains(rayEndPoint))

rayEndPoint =

graphicsWindow.segmentIntersection(windowCenter, rayEndPoint);

graphicsWindow.drawFrom(windowCenter);

graphicsWindow.drawTo(rayEndPoint);

There are capitalization conventions for each nameable entity:

Constants use all capital letters, with component words separated by underscores.●

Types use capital letters in the first position of each component word and nowhere else.●

Variables use capital letters in the first position of each component word but the first, and nowhere
else.

●

Optional: procedures, i.e. void-returning functions, use lowercase letters with component words
separated by underscores.

●

These rules are unavoidably violated for some built-in types like int and char , and conventionally
violated for a few other common types like bool .

It is obviously best to choose names that describe the purpose or meaning of the entity being named.
Sometimes, this can be difficult. For example, in a function that computes the length of a String, there is
a temptation to call the formal parameter of the function string . It is a bad idea to have two names in a
program that differ only in capitalization, so if there are no meaningful alternative names, a name like
theString might do.

Very short names are permissible in some contexts. The names i , j , and k are traditionally used as utility
variables for loop indexing if no better name suggests itself. In code that implements an abstract

Guidelines for C++ Program Style

http://www.owlnet.rice.edu/~comp314/CodingStyle/codingStyle.html (7 of 16) [10/1/2000 8:21:49 PM]

mathematical algorithm, names like x and y might be appropriate. For example, in a program to solve
quadratic equations, you probably should name the coefficients a , b , and c , and the solutions x1 and x2
. The discriminant, however, should not be named d ; using disc is better, and discriminant is best, since
no confusion can now arise.

Never choose a name solely because it reduces the number of characters you have to type. Don't overly
abbreviate words; for example, numberOfSpades is a better variable name than nbrSpds . Certain terms
that have become part of programming jargon, like flag , mask , array , temp , count , index , and pointer
can be used as components of names, but not as entire variable names. Such words describe
implementation details, not the meaning of an entity of the program. Some of these notions have
conventional abbreviations, so spadePtr is an acceptable abbreviation of spadePointer and nSpades is a
reasonable substitute for numberOfSpades . Use such abbreviations consistently; a program should not
contain variables called nSpades , numHearts and clubCounter , for example.

Variable Declarations

Variables that are used in only a small part of the program should be declared close to the first place they
are used. It should not be necessary to search back through the program to find the declaration and
explanatory comment for a variable unless that variable has been used in several parts of the program.
Constants and types should be defined near the start of the program; if they are well named, it should be
unnecessary to look back to the top of the file for clarification, and it makes changing the program easier
when some of the constant values change.

Comments should describe the role of variables being declared. This should be useful information in
addition to the meaningful identifier which should be used to name the variable. In fact, the best
comment is usually a precise definition of the value of the variable; in its purest form, this would be a
data invariant, but less formal comments may be just as helpful. This comment should appear to the right
of the identifier. Such comments should be left-justified for easy reading. Utility variables used only as
loop indices and subscripts may not require commenting if none would be helpful. Variable declarations
should be grouped, not by attribute, but rather by their logical use within the program. If this is done, one
comment may be sufficient for describing the use of several variables. For example:

float rainfall[50]; // Rainfall[0..numDays-1] is

int numDays; // table of daily precipitation.

int maxRainDay; // Rainfall[maxRainDay] is

// max of rainfall[1..numDays].

float avgRain; // Mean of rainfall[0..numDays-1].

Comments are not needed for the declaration of the parameters of a function. The use of the parameters
should be adequately described in the comment for the function.

Guidelines for C++ Program Style

http://www.owlnet.rice.edu/~comp314/CodingStyle/codingStyle.html (8 of 16) [10/1/2000 8:21:49 PM]

Machine-Level Programming

Although C ++ has some features of high level languages, it offers access to some machine operations at
a very low level. While these operations are necessary for writers of device drivers1, they can greatly
obscure the meaning of programs. Here are some common C tricks:

An int is just a bit pattern. Most computers represent data in a binary form, and most number types
use a two's-complement representation. Therefore, shifting a number using the C >> or <<
operators is the same as halving or doubling it. However, a good compiler will generate the same
machine instructions for " number >>= 1 " as for " number /= 2 ", and the latter can be understood
without knowing how computers work. (Program high-level, not machine-level.)

●

Similarly, as discussed above, an int can be treated as an array of bits. Such uses can be unclear and
create unforeseen machine dependencies, so other type names should be used. Operations on int s should
not rely on certain properties of the representation of int s.

TRUE and 1 are really the same. An unfortunate decision by the designers of C allowed
expressions like

●

trickScore = 20 + (bidSuit > 2) * 10;

which suggests a useless multiplication operation, to replace

trickScore = (bidSuit > 2) ? 20 : 30;

or, even better,

trickScore = (bidSuit > DIAMONDS) ? MAJOR_TRICK_SCORE : MINOR_TRICK_SCORE;

(N.B. The first two versions actually contain a bug: the magic number 2 corresponds to HEARTS , not
DIAMONDS . An unintended error written by an experienced bridge player and C programmer!) There is
no reason to multiply by truth values, and rarely any reason to perform arithmetic on them. If you do
want to add or multiply with TRUE and FALSE , explicitly cast them to the type you intend.

Some machine instructions can change two variables at once. The combination of a pointer
dereference and a pointer assignment is a single operation on some computers, and C programs are
full of statements like a = b[i++] and *--stackTop = item . They have become C idiom.
Nonetheless, it is clearer to do one thing per line: a = b[i]; i++; and --stackTop; *stackTop =
item; both avoid bugs involving pre-and post-decrement, and any compiler produces equally
efficient target code. Never use the increment and decrement operators as a sub-part of a
statement.

●

If you can point to it, you can change it. Pointer types are necessary for the construction of
sophisticated data structures, but pointers can also be considered harmful. Non- const pointers
should not be made to point to local variables, and non- const reference variables should not be
made to reference local variables. It can be most disconcerting to have the value of a local variable
change mysteriously not as the result of an assignment to it, but as the result of an assignment to a
variable that knows the address of the local variable. Optimizing compilers can't do reasonable

●

Guidelines for C++ Program Style

http://www.owlnet.rice.edu/~comp314/CodingStyle/codingStyle.html (9 of 16) [10/1/2000 8:21:49 PM]

flow analysis on such programs. The use of const pointers and const references to read one value
under several different names is occasionally acceptable.

Comments and Blank Lines

Your goal is to produce perfectly clear, readable programs, and if this ideal could be met, no comments
would be needed. In other words, you should attempt to minimize the need for comments by writing
clear programs. However, this goal can seldom be reached, partly due to deficiencies in C ++.

Besides the comments mentioned above, you will need statement comments and implementation
comments . A statement comment is meant to read just like a statement in the program, but in a higher
level language than C ++. Statement comments should be placed in the program to describe logical units.
They should begin with a verb, and describe what that program segment is doing, not how it is done.
Comment groups of statements, not individual statements whose meaning is clear. The C ++ statements
that refine a particular statement comment should appear indented beneath that comment in a block
delimited by braces. The block should be indented as if the statement comment were the heading of a for
or while loop.

Obscure or unusual statements should be avoided, but when necessary, an implementation comment
should be used for clarification. These comments should appear to the right side of the statements they
describe.

For example:

cents = (cents+50) / 100 * 100; // Round cents to nearest dollar.

Do not comment that which is already clear. For example:

cout << grossSales << '\n'; // Print the gross sales amount.

It is very possible to obscure a program by over-commenting. More is not necessarily better. Assume the
reader of the program knows C ++ at least as well as you. (Comments should not be used to explain how
C ++ works.) Note how the comments start capitalized and end with punctuation; this is helpful
especially to distinguish multi-line comments from several one-line comments. (Using a sentence
fragment is fine.)

The comments must agree with the program: incorrect comments are worse than none at all, because they
lead the reader into a false sense of security.

Blank lines should separate logical sections of the program. Since such sections are generally preceded
by a comment, one blank line should precede this comment. Blank lines should not be used randomly or
excessively. Use them to improve the program's appearance and readability, and as visual logical
separators. Optional: If you don't want your comment crowding your code by being directly above or
below the pertinent code, you can have a blank commented line to link the comment with its antecedent.
See the use of pre/post condition comments in the next section.

Guidelines for C++ Program Style

http://www.owlnet.rice.edu/~comp314/CodingStyle/codingStyle.html (10 of 16) [10/1/2000 8:21:49 PM]

Because terminals and paper are sometimes limited to 80 columns width, program lines should not
exceed 80 columns.

Indentation

Consistent and logical indentation, or paragraphing, is an extremely important aid in clarifying the
structure of a program. The choices in an if statement and the bodies of loops become visible at a glance,
which can greatly help the reader. There are many different good ways to indent, and most rules are
relatively easy to learn, as are these. In a plain text editor, indenting can make editing slightly more
difficult, but the benefits in program clarity outweigh the cost. In an editor like GNU Emacs, automatic
indentation modes make possible the quick reformatting of an entire program. The default emacs C++
mode provides one widely-accepted indentation style. The style shown below can be achieved by some
slight modifications2. Although you could enter your programs with haphazard indentation and reformat
later, using the automatic indentation features can locate missing braces and semicolons before
compilation errors occur. Even in writing programs on paper, indent consistently, as it is no more
difficult, and it will help you to understand your program.

The general rule of indentation is simple: if one statement is logically a sub-part of another, it is indented
(say) two spaces from its containing statement. For example:

// FunctionIdentifier

// preconditions

// postconditions

//

returnType FunctionIdentifier(argtype arg) {

const <constant-declarations>;

<local variables>;

// Aligned comments

// for local variables.

<body of function>

}

Consecutive statements executed sequentially should start in the same column, one above the other.
Some people prefer to have matching braces occur at the same level of the construct they work for (in the
case of the above function, both aligned beneath the "r" of "returnType"). The rationale for the
alternative brace-positioning shown here is that the next text at the same indentation of (say) the function
delcaration is the next statement/declaration. You may use either the default emacs style or this style, or

Guidelines for C++ Program Style

http://www.owlnet.rice.edu/~comp314/CodingStyle/codingStyle.html (11 of 16) [10/1/2000 8:21:49 PM]

any reasonable consistent hybrid. A more detailed example:

// comment describing action of following statements

statement1;

statement2;

// Comment describing action of following while.

//

while (condition) {

// Loop invariant, if present, would go here.

statementA;

statementB;

}

An if statement without an else clause (conditional execution) is written:

if (cond) {

statement1;

statement2;

}

An if statement with an else clause (selection of two alternatives) is written:

if (cond) {

statement1;

statement2;

}

else {

statementA;

statementB;

}

An if statement with else if clauses (selection of many alternatives) may be written (although the use of a
switch statement should be investigated to see if it is appropriate) as follows:

if (cond1)

Guidelines for C++ Program Style

http://www.owlnet.rice.edu/~comp314/CodingStyle/codingStyle.html (12 of 16) [10/1/2000 8:21:49 PM]

statement1;

else if (cond2) {

statement2a;

statement2b;

}

else if (cond3)

statement3;

else if (condY)

statementY;

else

statementZ;

The switch statement is quirky, both in its C ++ definition and in its default GNU Emacs indentation. We
recommend the following:

switch (expression) {

case 'a':

statement;

break;

case 'b':

statement;

break;

default:

break;

}

There should be no more than one statement per line, with possible exception of short related assignment
statements. If a statement is longer than one line, the continuation lines should be indented at least two
spaces, and the statement should be broken in logical places, not just when you reach the end of the line.
Even better is to align related parts of complex statements to make error detection and pattern matching
easier for you. Compare the ease with which an error is detected in these two lines:

triangle(a*x1*x1+b*x1+c, a*x2*x2+b*x2+c, a*x3*x3+c*x3+c);

triangle(a*x1*x1 + b*x1 + c,

Guidelines for C++ Program Style

http://www.owlnet.rice.edu/~comp314/CodingStyle/codingStyle.html (13 of 16) [10/1/2000 8:21:49 PM]

a*x2*x2 + b*x2 + c,

a*x3*x3 + c*x3 + c);

Observe how the use of spaces helps group related parts of the expression. Examine the sample programs
given out in our classes to see how these indentation rules are used in real programs. If we fail to follow
these conventions on handouts, call it to our attention; we're not perfect. Note also that there are many
other sets of good indenting rules, and that these rules are somewhat different from those in the text.

Efficiency

Computers are very fast and have very large memories, but they are far from being infinitely fast or
large, and it is not difficult (with only mild effort) to produce programs that would overwhelm even the
most sophisticated modern computer. The best rule-of-thumb is to first program for correctness,
following the most straightforward algorithm which you might follow were you doing the program by
hand. A well-decomposed problem usually leads to not-inefficient solutions. After you have a correct
program, if you run it and realize that speed is a problem, then go back and look for ways to increase
efficiency.

Consider writing a program to calculate tails of binomial distributions:

Calling n-choose-k involves three calls to factorial (each of which is a loop); there is a lot of cancellation;
each call to n-choose-k and p k and (1-p) n-k could re-use results for the previous k. Clearly, a lot of
optimization can be made. Moreover, this was using Scheme's bignum package for n=100, so each call to
n-choose-k involves dividing numbers of well more than 100 digits. Myself, I was anxiously ready to
start writing the fancy code for this. But since I always advise others to write the simple implementation
first, I steeled myself to first whip out a correct version (to help debug my later, fancy version). So the
first implementation re-calculated factorials, immediately cancelled most of the numbers just multiplied,
and repeatedly found large powers of p. The result? This most simple-minded approach possible ran in
about a second; I'd been wasting my time even thinking about how macho my code could be. On the
other hand, if I had needed to compute this for n=1000, the original code would have taken to long, and
optimizing would have been in order.

There are two general guidelines to follow when coding for efficiency. First, focus on code which is
executed a lot. Compare function f (which accounts for 1% of the program's runtime) and a function g
(which accounts for 30% of the program's runtime). Would you rather spend two days getting f to run 10
times faster, or a couple of hours getting g to run twice as fast?

Second, before you work on tweaking individual lines to get (say) a constant factor speed-up, concentrate
on using a different algorithm with a better big-Oh time or space efficiency. Replacing an O(n 3)
algorithm with an O(n 2) algorithm is going to be a better win than getting the original algorithm to
make only half as many memory references. Also, a half-decent optimizing compiler can often do at least

Guidelines for C++ Program Style

http://www.owlnet.rice.edu/~comp314/CodingStyle/codingStyle.html (14 of 16) [10/1/2000 8:21:49 PM]

as well as a human in twiddling individual lines for increased performance, cache utilization, etc.

Some examples: To compute the sum of the squares of the elements in an array, do not create a new
array for the squares before adding. To find the largest element in an array which has been sorted
ascending, do not examine each element; simply select the last one. Unnecessary arrays, especially large
and/or multi-dimensioned ones, can quickly use up all available memory space. Unnecessary loops,
especially when nested, can waste an enormous amount of time. Complicated expressions which do not
change should be moved out of loops, if possible, so that they are computed only once.

Summary

Any programmer who fails to comply with the standard naming, formatting or commenting conventions
should be shot. If it so happens that it is inconvenient to shoot him, then he is to be politely requested to
recode his program in adherence to the above standard

--Michael Spier, The Typset-10 Codex Programaticus,

Digital Equipment Corporation, Maynard, Mass., 1974

A good program reads like a good book. The same principles you use in writing a paper for an English
course should be applied to writing a program. In both cases your purpose in writing is to communicate
your ideas. Clarity of organization, paragraphing, and attention to details of spelling and punctuation all
contribute greatly to the quality of the finished product, independently of the quality of the ideas behind
it.

1. When was the last time you met somebody who has ever needed to write a device driver?

2. To customize emacs to the style shown here, use "M-x c-set-offset" to set variables such as
"block-close" and "class-close" to the value "+". (Do "M-x info" for full emacs documentation.) You can
automate this by adding to your ".emacs":

;; Customize my C++ indentation.

;;

(add-hook 'c++-mode-hook

'(lambda ()

(c-set-offset 'access-label 0) ; Private/public labels.

(c-set-offset 'block-close '+)

(c-set-offset 'defun-close '+)

(c-set-offset 'class-close '+)

Guidelines for C++ Program Style

http://www.owlnet.rice.edu/~comp314/CodingStyle/codingStyle.html (15 of 16) [10/1/2000 8:21:49 PM]

(c-set-offset 'inline-close '+)

(c-set-offset 'brace-list-close '+)))

Guidelines for C++ Program Style

http://www.owlnet.rice.edu/~comp314/CodingStyle/codingStyle.html (16 of 16) [10/1/2000 8:21:49 PM]

	rice.edu
	Guidelines for C++ Program Style

