Using Literate Programming to Teach
Good Programming Practices

Stephen Shum
Computer Science Department
Augustana College
Sioux Falls, SD 57197
shum@inst.augie.edu

Curtis Cook
Computer Science Department
Oregon State University

Corvallis,

Oregon 97331-3202

cook @cs.or st.edu

Abstract

The ability to comprehenda programwritten by

other individuals is becoming increasingly
important in software development and

maintenance. In an attempt to encourage
undergraduateComputer Science students to

write informative and usabledocumentationthe

literate programmingparadigmwas incorporated
into the teachingf one undergraduat€omputer
Science course at Augustana College. Phiser
describesthe conceptof literate programming,
the experienceof using literate programmingto

teach good programming practices, and the

results from the experimentthat showed that

literate programming encourages more

documentation.

Introduction

The ability to comprehendh programwritten by
other individuals is becoming increasingly
important in software development and
maintenance.Studieshave shown that 30-90%
of softwareexpenditureis spenton maintaining

existing software[15, 12]. Studieshave also
shown that maintenanceprogrammersspend
abouthalf of their time studying the code and
related documentation. This has led Standish[12]
to concludethat the cost of comprehendinga
programis the dominantcostof a programover

its entire life cycle.

A survey by Chapin[4] of maintainersshowed
that they perceivedpoor documentationas the

biggestproblemin software maintenancevork.

Poor documentationhas one or more of the

following characteristics [9, 4, 8] :

a. Nonexistent and incomplete.

b. Inconsistency between code and
documentation.

c. Difficulty in finding information.

d. Not appropriatefor all levels of programmer
experience.

There area numberof CASE tools availablethat
claim to satisfy the documentationneeds of
software maintenance. These tools generate
automaticdocumentatiorin the form of reports
by staticanalysisof sourcecode. Examplesof
documentatiorproducedare: control flow chart,

dataflow chart, cross-referencdistings, metric
reports, call graphsnodulehierarchychart, etc.
All of this informationis helpful to maintenance
programmers to become familiar with the
structure of a program and to navigateundthe
program during maintenance investigatiofvhat
this documentation fails tprovide s insightinto
why a particular program structureis used, or
how the program functions. It also fails to
provide information on other relationships
betweenprogram componentsother than these
syntactical relationships [4].

As computer science teacherswe have the

responsibility to teach students about the

importance of informative and usable
documentation as well as readable code.

However, studentsusually see documentation
and sometimesthe design process as non-

essential and extra compared to codifidgrey do

not seethe needof documentinga programand

writing readable code. One methwe areusing

to encourage more readable programs &stign
a relatively high percentagenf the programming
assignment grade to documentation and

readability. In fact, the gradingschemeusedby

the author at AugustanaCollege in all of his

computer science courses: 25% each for

correctness, design, readability, and

documentation. Such a grading schdrasbeen
found to be quite effective in forcing students
into the habit of using meaningful namesand

effective programformatting, including internal

comments, and providing external program
design documentation in the form of a

pseudocode. However, the quality of the

documentationis far from being informative

since most of the comments are usually
commentingthe obvious. In addition, most
students admithat they generatehe pseudocode
document from the program code after the

program has been tested.

Literate programming [7] seemed an ideal
solution to the problem of teaching good
documentationpractices and helping students
write informative and usable documentation.
Literate programming emphasizes writing
programs that are intendéal be readby humans
ratherthan a computer.A literate programis a
single documentation (file) containing both
documentation and program. It presentsabee
anddocumentationn an interleavedfashion that
matches the programmerigentalrepresentation.

Program designdesignand codedecisions,and
other useful information for the reader are

included in a literate program. One key feature of

literate programmingis that the sourcecode and
documentation are created simultaneously.
Hencestudentswriting literate programsseethe
importanceof documentatiorand clearly seethe
relation between the design and code.

To test theseideas and the claim that literate
programming encourages more and better
documentation we introduced literate
programming into a junior level computstience
programming in Spring semester1992. The
AOPS (Abstraction Oriented Programming
System)literate programmingsystem|[11] was
used. For an experiment in the class studeidts
two programassignmentsn AOPS and two in
Turbo C. This paperdescribeghe experiences
teachingliterate programmingand results from
the experiment.

Literate Programming

Knuth [7] coined the term "literagrogramming”
to emphasize writing

codethatis intendedto be readby humans. He

believes that the format and structure of a

program should be designedto communicate
primarily with the humans wheeadthe program
rather than the computers that execute the

program. The presentatiorof the code should
proceedaccordingto the mental patternsof the

author/programmerrather than the patterns
demandedby the languageand compiler. He

claims that programmingin this way produces
better programs with better documentation.

The literate programmewrites a sourcefile with

the program code argdbcumentationnterleaved.
The literate paradigm recognizes that two

different audiences, human readers and

compilers, will receive the program. For the

human readers, there is a filter program that

transformsthe source file program code and

documentationnto a form that canbe processed
by a document formatter. For the computer,
thereis a filter programthat producesa source
code program suitable for input to a compiler

from the source file.

It is important to note that in literate programming
program code and documentationare created
simultaneously.Literate programming systems

contain mechanisms for associating
documentation with sections of code ajide the
programmer freedom to write the program
sectionsin an order that maximizes program
comprehension. Hence instead of being
appendedas extra information to the program,
documentation is viewed as an integral pathef
program. Itsomission,ratherthanits inclusion,
is what is most noticeable.

WEB

To promote the literate programming concept,
Knuth [7] developedthe WEB systemas an
example literate programmirgystem.In WEB a
programmer writes a source file with the program
codeand documentatiorinterleaved. WEB has
two filter programsWeaveand Tangle. Weave
transforms the source filato a form that canbe
processed by @X. Tangle extractthe program
codefrom the sourcefile and putsit into a form
that can be input to a Pascalcompiler. This
process is shown in Figure 1.

Weave TEX
......... > file.human -------------> typeset
| listing

compiled

--------- > file.machine -----------> program
Tangle Pascal

compiler

Figure 1. The Processing Paths in Web.

AOPS (Abstraction Oriented
Programming System)

SeveralWeb-like literate programmingsystems
have been developed since 1984 [1, 5, 6,11),
14, 15]. However, all of these systems
including WEB are programminglanguageand
typesettinganguagedependentandthey do not
allow flexible listing and viewing of program
codeanddocumentation.Although AOPS [11]
is WEB-like, it is programminglanguageand
typesettinglanguageindependent. Among the
other features of AOPS ardlaxible lister which
allows usersto print selectedportions of the
program code and/or documentationand a
hypertext browsewhich allows usersto display
relevant information on the screen while
suppressing irrelevant details.

AOPS Program

An AOPS program is written in levels of
abstractions.It consistsof AOPSrulesdefining
the highest level abstraction and all the
abstractionsuseddirectly and indirectly by the
highestlevel abstraction. A rule consistsof an
abstractionname, equal sign, type and a body.

The abstractionname (hereafterreferred to as
AO-name)is a string of characterof any length
delimited by a charactemot usedin the AOPS
sourcefile for any otherpurpose. (We will use
the at sign, @, in our examples.) Tharethree
basic types of AOPS rules.

1. The Code Rule

The programcode portion of an AOPS literate
programis constructedfrom code rules of the
form:

AO-name=code AO-body

where AO-body consistsof legal statementsof
the underlying programming language with
embeddedAO-names. (Think of an AO-name
embeddedn an AO-body of a code rule as a
macrocall.) The coderule in essenceembodies
the goal-plan structure of computer programs.
The AO-name specifies the goal and the AO-body
specifiesthe plan used to achieve the goal.
AOPS providesthe ability to explicitly describe
this goal-plan structure in\gery naturalway that
is not restricted by the syntax of the
programminglanguage. For example, using

Pascalas the programminglanguage,the code
rule for @8-queens program@ is defined as:

@8-queens program@=code
program eightqueens;

var @variables of 8-queens@
@procedures and functions of 8-

gqueens@
begin
@8-queens solution@

end

There are codeulesthat define eachof the three

abstractions, @variables of 8-queens@,
@proceduresnd functions of 8-queens@and

@8-queens solution@Thesemay occur before

or after the @8-queens program@ rule.

2. The Textdoc Rule

To help readers understand twedefinition of
an abstraction,AOPS allows a programmerto
associate textual graphicaldocumentatiorwith
the abstractionname. Textual documentation
suchasdesigndecisions,alternatesolutions, or
anythingthat will help readerscomprehendthe
coderefinementis definedby a textdocrule of
the form:

AO-name=textdoc AO-body

where AO-body is a string of any characters.
The textdoc rule (and the graphicdoc rule

describedbelow) is completelyinvisible to the

compilerof the programminglanguage. Hence
an AOPSusercanuse his or her favorite word

processorto typesetthe documentation. For

example, the textdoc rule for

@8queensprogram@ is:

@8-queens program@=textdocDescription:
Given are an 8X&hessboard and 8 queens
which are hostile to each other. Find a

position for each queen such that no
gueen may be taken by anther queen, i.e.,
every row, column, and diagonal contains at

most one queen.

Input: none

Output: The positions of the 8hostile
queens

3. The Graphicdoc Rule

One major criticism of Knuth's severalliterate

programsis the lack of diagrams. This is not

becauseone cannot incorporate figures and

diagrams in a WEB program, but more likelye

to the fact that WEB does not encourage
programmerdo include pictorial documentation.
AOPS, on the other hand, encouragesisersto

include pictures and diagramsby providing a

special rule for graphical documentationand

allowing users to use their favorite word

processorsto compose the pictures. The

graphicdoc rule has the form:

AO-name=graphicdoc AO-body

where AO-body is gictorial illustration. Figure
2 gives an example of a graphicdoc rule.

AOPSimposesno restrictionon the ordering of
the rules so that an AOPS program can be
designedand developedin an order or style
preferred by the programmer free of the
restrictions of the programming

@8-queens program@=graphicdoc

One acceptable solution to the 8-queens problem is:

Q

Q

Figure 2. Example of graphicdoc rule.

languagesyntax. Hencean AOPS programmer
may breaka task into subtasks,and tackle the
subtasks in whatever order he or she prefers.

Experience Teaching Literate
Programming

In Spring 1992, we usedAOPS in one of our
course offerings. The course syllabus was
basically not affected by this incorporatiercept
one class period was used to discuss AOPS.

AOPS fit in nicely with teaching progradesign.
AOPS implicity = suggests the design
methodologyFunctional Design (FD) expressed
using a pseudocodePDL (Program Design
Language). Both FD and PDL are widely
practiced and taught in undergraduate
programmingcourses. AOPS treats the PDL
designembeddedas code rules and supportsa
smoothtransitionform designto code. Hence
studentsno longer seePDL designas an extra
and nonessentiastepbut as a naturalstepin the
software developmentprocess,even for small
problems.

The Experiment

The experimentwas designedto test one of the
claims of the literat@rogrammingparadigm:that
literate programming encourages more
documentation.

Hypothesis: Programmers are likelp include
more documentationas measuredby the ratio
betweenthe numberof commentcharactersaand
the number of code characterswhen using a
literate programmingsystemthan when using a
traditional programming system.

Independent and Dependent Variables:
The independentvariable is the programming
system used: literate versus traditional. The
dependentvariable is the ratio (humber of
comment characters) /(number of code
characters), although the ratios (number of
commentwords)/(numberof code words) and
(number of comment lines)/(number of code
lines) were also computed and analyzed.

The reason thaheseratios were usedinsteadof
simply the commentountsis that the amountof
commentsshouldbe in proportionto amountof
code. Thatis, it seemgeasonabldor programs
with more code to contain more comments.
Comment counts alone ignore the amount of
code. So evenif literate programsare found to

have more comments than traditional programs, it

could be becausethey have more code than
traditional programs and not because
programmers are likely to include more
commentsusing a literate system. The statistic
(commentcharacter)/(codecharacter)gives the

numberof commentcharactersassociatedwith

each code character.

Design: In orderto control the wide individual
variability, a within-subjectsdesignwas used.

Eachsubject saw both experimentalconditions
which servedas a control for his or her own
performance.

Subjects: Our subjects were 16 students
enrolled in the classTen subjectswere seniors,
three juniors, and three post college. As a pfart
the class,they were requiredto learn and write
programsusing AOPS and to write programs
using Turbo C.

Procedure: The subjects were randomly
divided into two groups,A andB, by matching
the studentsaccordingto their GPA. The two
studentsin each of the matching pairs are
randomlyassignedone to group A and one to
groupB. As partof the classall studentswere
instructed in the use of AOPS. Two
programming assignments were givearoup A
was to do the first assignmenin AOPS and the
second in Turbo C whil&roup B wasto do the
first in Turbo C andthe secondin AOPS. Both
groups were given the same problem
specifications. Botlassignmentsvereto follow
the same project guidelineshandedout at the
beginning of the semestemhey hadten daysto
do eachassignment. Gradedassignmentsvere
not handedback until after both assignments
were turned in.

During thatthree-weekperiod whenthe students
are working on the programs, there was no
discussion about the documentationfor their

program assignments. In addition, every
example program discussed in class was
presentedboth as a literate programand as a
traditional program, with the same amount of
documentation in both versions.

Results: Two filter programsand the UNIX

utility wc were usedto obtain line, word, and
character counts fdhe studentsprograms. One
filter program extracted the C source code
without commentsand the other filter program
extracted the comments. Line, word, and
character counts for the source code and
comments for eacprogramwere obtainedusing
wc. Tables 1 and 2 give tlaweragdine, word,
and charactecountsfor eachgroupfor program
assignmentd and 2 respectively. Recall that
Group A did assignmentl in AOPS and
assignment2 in Turbo C while Group B did

assignmentl in Turbo C and assignment2 in

AOPS. Notice that the source code apdhment
lines for each assignment are neadgntical, but
the group using AOPS had substantiallymore
comment words and comment characters.

To compare the two methods (literate

programming and traditional) we used the ratio of

commentto sourcelines, words and characters
(see Table 3)An ANOVA showeda significant
difference(p = 0.01) betweenthe two methods
for both the ratio of commentsto source code
words andthe ratio of commentto sourcecode
characters.

Source Code Comments
Lines Words | Chars Lines Words Chars
Group A 285 729 44009 279 1706 | 10,673
Group B 298 785 4620 275 1277 8,686
Table 1. Counts for Programming Assignment No. 1
Source Code Comments
Lines Words | Chars Lines Words Chars
Group A 236 617 3856 219 984 6,424
Group B 230 619 3885 226 1418 9,223
Table 2. Counts for Programming Assignment No. 2

Comment/Source Code
Lines Words Characters
Literate 0.98 2.32 2.52
Traditional 0.93 1.61 1.78
Table 3. Ratio of Comment to Source Code Lines, Words and Characters.

It was surprising that the literate programs
contained significantly more commentbrds and
charactersbut not more commentines than the
traditionalprograms. Table 4 shows a detailed
analysisof the non-blankcommentlines for the
AOPS and Turbo C programs. Mann-Whitney
U test showedh significantdifference(p<0.001)
betweenthe two methodsfor the number of
comments, lines per comment, words per
comment, and charactgeer comment. A major
reasonfor the differencesis that the traditional
programs contained many marker comments such
as/*end of while*/ that occupiedpart of a line.
Whereasthe literate program comments were
usually in paragraphs and occupied entire lines.

To discoverwhat the "more" documentationin

literate programss madeup of, an analysiswas
done in which each commentlimth groupswas
examinedand a decisionwas madeon whether
the commentincluded a what element,a how
element,or an example. A commentcontainsa
what elementif it describesthe purposeof its

associatedblock of code; it contains a how
elementf it describesthe algorithm usedby its

associatedblock of code; and it contains an
exampleif it gives an illustration of what its

associatedlock of code does. The comment
was also checkedagainstits associatedlock of

code to see if it was inconsistent. (An

inconsistent comment is@mmentthat doesnot
accuratelydescribeits associategbieceof code.)
The data is summarized in Table 5.

Non-Blank Line Comments
Number Lines Words Chars
Literate 31 253 1,562 9,948
Traditional 67 247 1,130 7,554
Table 4. Data for non-blank comment lines.
Number of comments that
include include include are
what how example inconsistent
Literate all (512) 25 5 0
Traditional all (1072) 0 0 0

Table 5. Analysis of Information Contents of Comments

All the commentsexaminedin both groupswere
deemed to contaithe what element. For literate
programs,25 comments(5%) were found to
containthe how elementand 5 comments(1%)
were found to contain aexample. No comment

in the traditional group contained the how
elementor an example. This finding was very
surprising since both groups were using the same
commentingguidelinesand grading schemefor
both assignments. That both the literate and
traditional versionscontained"what comments”

follows from the grading scheme. What is
surprising is that only the literate versions
contained’how comments"andexamples. This
suggestghat literate programminginspiresmore
substantial comments than traditional
programming.

Although no inconsistencies wefeund between
the internal comments and the code in both

versions, we did find inconsistencies between the

sourcecode and external documentationin the
traditional programs. For the traditional
programs the students had to hand in a
pseudocodedesign for their programs. The
pseudocodelesignwas embeddedn the AOPS
program. When we comparedthe pseudocode
design and the source code for the Turbo C
programswe found 10 instancesof missing
steps, extra steps, misspellednames,etc. We
did not find any inconsistenciesn the AOPS
programs. For more information about this
experiment, please refer to [11].

Although this experimershowedthat the literate
programs contaimore documentatiorand better
documentationthan the traditional programs,a
survey of general opinions about literate
programming drew mixed opinions. When
asked whether they would use a literate
programming system to develop their own

software,13 out of 16 studentsrespondedyes.
When asked why they would use a literate
programming system, the majority responded
that it was because the pseudocode was
embeddedin the sourcecode which made the
designstepa logical stepto do. When askedif

they would use AOPS again, only 5 out of ftge
saidthey would. Whenaskedwhy they would

not use AOPS, the majority said it was too

confusing and difficult to use AOPS when
debugging a program.

Conclusion

Our experimentshows the literate programming
paradigm indeed encourage®re and consistent
documentation. The studentsseemto like the
literate programmingstyle, exceptthey do not

like the debugging process required by the literate
programming paradigm. However, this may be a

legacy of Knuth's belief that in literate
programmingthe sourceprogramshould not be
changed without changing the associated
documentation. He purposelyantedthe source

code to bdlifficult to readso thatthe sourcefile
would be changed. The net result was thatas
more likely that the documentationwould be
updated when a change was madghé&program
source code.

This seemdo hint that the stateof debuggingin

current literate programmingystemss lessthan
desirable. Although AOPS is language
independent, it stiltould not escapehe fact that
debuggingusing a literate programmingsystem
is troublesome. Perhapstools such as a
debugger should be mads an integral part of a
literate programming system.

Finally, aversionof AOPS programincluding

the the processorAOP, the lister AOL, and the

hypertextbrowserAOB have beenimplemented
for the IBM-PC using Turb&. We will gladly

furnish a copy of the AOPS programto anyone
who sends us a diskette.

References

1. Avenarius, A. and Oppermann, S., "FWEB:
A Literate Programming System For
FORTRANS8X", ACM SIGPLAN Notices
Vol.25, No.1, pp. 52-58, Jan 1990.

2. Brown, M., and Cordes, D., "A Literate
Programming Design Languag®¥oc.

CompEuro 90, IEEE International Conf.
Computer Systems and Software Engineering
IEEE CS Press, Los Alamitos, Calif., 1990, pp.
548-549.

3. Chapin, N., "Software Maintenance: A
Different View", AFIPS Conference Proceeding,
54th National Computer Conferend®©85, pp.
509-513.

4. Fletton N., and Munro, M. "Redocumenting
Software Systems Using Hypertext
Technology" |JEEE Conference on Software
Maintenance 1988, pp. 54-59.

5. Gurari, E. and Wu, J., "A WYSIWYG
Literate Programming System [Preliminary
Report]"Proceeding<SC '91 1991, pp. 94-
104.

6. Hyman, M., "Literate C++'Computer
Language Jul 1990, Vol. 7, No.7, pp. 67-79.

7. Knuth, D. E., "Literate Programmingrhe
Computer JournalVol. 27, No. 2, 1984, pp.
97-111.

8. Martin, J. and McClure, CSoftware
Maintenance: The Problem and Its Solutions.
Prentice-Hall, 1983.

9. Y. Nakamoto, Y., Iwamoto, T., Hori, M.,
Hagihara, K., Tokura, N., "An Editor for
Documentation in C-system to Support Software
Development and MaintenancéEEE 6th
International Conference on Software
Engineering 1982, pp. 330-339.

10. Reenskaug, T., Skaar A., "An Environment
For Literate Smalltalk Programmingd®OPSLA
1989 Proceeding9p. 337-345.

11. Shum, S., Cook, C., "AOPS: An
Abstraction Oriented Programming System For
Literate Programming'Software Engineering
Journal, Vol. 8 No. 3 (May 1993), pp. 113-
120.

12. Standish, T., "An Essay on Software
Reuse"]EEE Trans on Software Engineering
Vol.SE-10, No.5, pp. 494-497, Sep 1984.

13. Thimbleby, H., "Experience of 'Literate
Programming' Using CWEB [a Variant of
Knuth's WEB]",The Computer JournaVol.
29, No. 3, 1986, pp. 201-211.

14. Tung, S. H., "A Structured Method For
Literate Programming'Structured
Programming 1989, Vol. 10, No. 2, pp.113-
120.

15. Wu,Y. and Baker,T., "A Source Code
Documentation System For Ad&®CM Ada
Letters Vol.9, No.5, pp. 84-88, Jul/Aug 1989.

16. Zvegintzov, N., "NanotrenddDatamation
Aug 1983, pp. 106-116.

