
Using Literate Programming to Teach
Good Programming Practices

Stephen Shum
Computer Science Department

Augustana College
Sioux Falls, SD 57197
shum@inst.augie.edu

Curtis Cook
Computer Science Department

Oregon State University
Corvallis, Oregon 97331-3202

cook@cs.orst.edu
A b s t r a c t

The ability to comprehend a program written by
other individuals is becoming increasingly
important in software development and
maintenance. In an attempt to encourage
undergraduate Computer Science students to
write informative and usable documentation, the
literate programming paradigm was incorporated
into the teaching of one undergraduate Computer
Science course at Augustana College. This paper
describes the concept of literate programming,
the experience of using literate programming to
teach good programming practices, and the
results from the experiment that showed that
literate programming encourages more
documentation.

Introduction

The ability to comprehend a program written by
other individuals is becoming increasingly
important in software development and
maintenance. Studies have shown that 30-90%
of software expenditure is spent on maintaining

existing software [15, 12]. Studies have also
shown that maintenance programmers spend
about half of their time studying the code and
related documentation. This has led Standish[12]
to conclude that the cost of comprehending a
program is the dominant cost of a program over
its entire life cycle.

A survey by Chapin[4] of maintainers showed
that they perceived poor documentation as the
biggest problem in software maintenance work.
Poor documentation has one or more of the
following characteristics [9, 4, 8] :
a. Nonexistent and incomplete.
b. Inconsistency between code and
documentation.
c. Difficulty in finding information.
d. Not appropriate for all levels of programmer
experience.

There are a number of CASE tools available that
claim to satisfy the documentation needs of
software maintenance. These tools generate
automatic documentation in the form of reports
by static analysis of source code. Examples of
documentation produced are: control flow chart,

data flow chart, cross-reference listings, metric
reports, call graphs, module hierarchy chart, etc.
All of this information is helpful to maintenance
programmers to become familiar with the
structure of a program and to navigate around the
program during maintenance investigation. What
this documentation fails to provide is insight into
why a particular program structure is used, or
how the program functions. It also fails to
provide information on other relationships
between program components other than these
syntactical relationships [4].

As computer science teachers we have the
responsibility to teach students about the
importance of informative and usable
documentation as well as readable code.
However, students usually see documentation
and sometimes the design process as non-
essential and extra compared to coding. They do
not see the need of documenting a program and
writing readable code. One method we are using
to encourage more readable programs is to assign
a relatively high percentage of the programming
assignment grade to documentation and
readability. In fact, the grading scheme used by
the author at Augustana College in all of his
computer science courses: 25% each for
correctness, design, readability, and
documentation. Such a grading scheme has been
found to be quite effective in forcing students
into the habit of using meaningful names and
effective program formatting, including internal
comments, and providing external program
design documentation in the form of a
pseudocode. However, the quality of the
documentation is far from being informative
since most of the comments are usually
commenting the obvious. In addition, most
students admit that they generate the pseudocode
document from the program code after the
program has been tested.

Literate programming [7] seemed an ideal
solution to the problem of teaching good
documentation practices and helping students
write informative and usable documentation.
Literate programming emphasizes writing
programs that are intended to be read by humans
rather than a computer. A literate program is a
single documentation (file) containing both
documentation and program. It presents the code
and documentation in an interleaved fashion that
matches the programmer's mental representation.

Program design, design and code decisions, and
other useful information for the reader are
included in a literate program. One key feature of
literate programming is that the source code and
documentation are created simultaneously.
Hence students writing literate programs see the
importance of documentation and clearly see the
relation between the design and code.

To test these ideas and the claim that literate
programming encourages more and better
documentation we introduced literate
programming into a junior level computer science
programming in Spring semester 1992. The
AOPS (Abstraction Oriented Programming
System) literate programming system [11] was
used. For an experiment in the class students did
two program assignments in AOPS and two in
Turbo C. This paper describes the experiences
teaching literate programming and results from
the experiment.

Literate Programming

Knuth [7] coined the term "literate programming"
to emphasize writing
code that is intended to be read by humans. He
believes that the format and structure of a
program should be designed to communicate
primarily with the humans who read the program
rather than the computers that execute the
program. The presentation of the code should
proceed according to the mental patterns of the
author/programmer rather than the patterns
demanded by the language and compiler. He
claims that programming in this way produces
better programs with better documentation.

The literate programmer writes a source file with
the program code and documentation interleaved.
The literate paradigm recognizes that two
different audiences, human readers and
compilers, will receive the program. For the
human readers, there is a filter program that
transforms the source file program code and
documentation into a form that can be processed
by a document formatter. For the computer,
there is a filter program that produces a source
code program suitable for input to a compiler
from the source file.

It is important to note that in literate programming
program code and documentation are created
simultaneously. Literate programming systems

contain mechanisms for associating
documentation with sections of code and give the
programmer freedom to write the program
sections in an order that maximizes program
comprehension. Hence instead of being
appended as extra information to the program,
documentation is viewed as an integral part of the
program. Its omission, rather than its inclusion,
is what is most noticeable.

WEB

To promote the literate programming concept,
Knuth [7] developed the WEB system as an
example literate programming system. In WEB a
programmer writes a source file with the program
code and documentation interleaved. WEB has
two filter programs: Weave and Tangle. Weave
transforms the source file into a form that can be
processed by TEX. Tangle extracts the program
code from the source file and puts it into a form
that can be input to a Pascal compiler. This
process is shown in Figure 1.

 Weave TEX
 ---------> file.human -------------> typeset
 | listing
 |

file.web ---|
 |
 | compiled
 ---------> file.machine -----------> program
 Tangle Pascal
 compiler

Figure 1. The Processing Paths in Web.

AOPS (Abstraction Oriented
Programming System)

Several Web-like literate programming systems
have been developed since 1984 [1, 5, 6, 10, 13,
14, 15]. However, all of these systems
including WEB are programming language and
typesetting language dependent, and they do not
allow flexible listing and viewing of program
code and documentation. Although AOPS [11]
is WEB-like, it is programming language and
typesetting language independent. Among the
other features of AOPS are a flexible lister which
allows users to print selected portions of the
program code and/or documentation and a
hypertext browser which allows users to display
relevant information on the screen while
suppressing irrelevant details.

AOPS Program

An AOPS program is written in levels of
abstractions. It consists of AOPS rules defining
the highest level abstraction and all the
abstractions used directly and indirectly by the
highest level abstraction. A rule consists of an
abstraction name, equal sign, type and a body.

The abstraction name (hereafter referred to as
AO-name) is a string of characters of any length
delimited by a character not used in the AOPS
source file for any other purpose. (We will use
the at sign, @, in our examples.) There are three
basic types of AOPS rules.

1. The Code Rule

The program code portion of an AOPS literate
program is constructed from code rules of the
form:

 AO-name=code AO-body

where AO-body consists of legal statements of
the underlying programming language with
embedded AO-names. (Think of an AO-name
embedded in an AO-body of a code rule as a
macro call.) The code rule in essence embodies
the goal-plan structure of computer programs.
The AO-name specifies the goal and the AO-body
specifies the plan used to achieve the goal.
AOPS provides the ability to explicitly describe
this goal-plan structure in a very natural way that
is not restricted by the syntax of the
programming language. For example, using

Pascal as the programming language, the code
rule for @8-queens program@ is defined as:

@8-queens program@=code
program eightqueens;

var @variables of 8-queens@
@procedures and functions of 8-

queens@
begin

@8-queens solution@
end

There are code rules that define each of the three
abstractions, @variables of 8-queens@,
@procedures and functions of 8-queens@, and
@8-queens solution@. These may occur before
or after the @8-queens program@ rule.

2. The Textdoc Rule

To help readers understand the code definition of
an abstraction, AOPS allows a programmer to
associate textual or graphical documentation with
the abstraction name. Textual documentation
such as design decisions, alternate solutions, or
anything that will help readers comprehend the
code refinement is defined by a textdoc rule of
the form:

 AO-name=textdoc AO-body

where AO-body is a string of any characters.
The textdoc rule (and the graphicdoc rule
described below) is completely invisible to the
compiler of the programming language. Hence
an AOPS user can use his or her favorite word
processor to typeset the documentation. For
example, the textdoc rule for
@8queensprogram@ is:

 @8-queens program@=textdoc Description:
Given are an 8X8 chessboard and 8 queens
which are hostile to each other. Find a

position for each queen such that no
queen may be taken by any other queen, i.e.,
every row, column, and diagonal contains at

most one queen.
Input: none
Output: The positions of the 8 hostile

queens

3. The Graphicdoc Rule

One major criticism of Knuth's several literate
programs is the lack of diagrams. This is not
because one cannot incorporate figures and
diagrams in a WEB program, but more likely due
to the fact that WEB does not encourage
programmers to include pictorial documentation.
AOPS, on the other hand, encourages users to
include pictures and diagrams by providing a
special rule for graphical documentation and
allowing users to use their favorite word
processors to compose the pictures. The
graphicdoc rule has the form:

AO-name=graphicdoc AO-body

where AO-body is a pictorial illustration. Figure
2 gives an example of a graphicdoc rule.

AOPS imposes no restriction on the ordering of
the rules so that an AOPS program can be
designed and developed in an order or style
preferred by the programmer free of the
restrictions of the programming

@8-queens program@=graphicdoc

One acceptable solution to the 8-queens problem is:

Q
Q

Q
Q

Q
Q

Q
Q

Figure 2: Example of graphicdoc rule.

language syntax. Hence an AOPS programmer
may break a task into subtasks, and tackle the
subtasks in whatever order he or she prefers.

Experience Teaching Literate
Programming

In Spring 1992, we used AOPS in one of our
course offerings. The course syllabus was
basically not affected by this incorporation except
one class period was used to discuss AOPS.

AOPS fit in nicely with teaching program design.
AOPS implicitly suggests the design
methodology Functional Design (FD) expressed
using a pseudocode PDL (Program Design
Language). Both FD and PDL are widely
practiced and taught in undergraduate
programming courses. AOPS treats the PDL
design embedded as code rules and supports a
smooth transition form design to code. Hence
students no longer see PDL design as an extra
and nonessential step but as a natural step in the
software development process, even for small
problems.

The Experiment

The experiment was designed to test one of the
claims of the literate programming paradigm: that
literate programming encourages more
documentation.

Hypothesis: Programmers are likely to include
more documentation, as measured by the ratio
between the number of comment characters and
the number of code characters, when using a
literate programming system than when using a
traditional programming system.

Independent and Dependent Variables:
The independent variable is the programming
system used: literate versus traditional. The
dependent variable is the ratio (number of
comment characters) /(number of code
characters), although the ratios (number of
comment words)/(number of code words) and
(number of comment lines)/(number of code
lines) were also computed and analyzed.

The reason that these ratios were used instead of
simply the comment counts is that the amount of
comments should be in proportion to amount of
code. That is, it seems reasonable for programs
with more code to contain more comments.
Comment counts alone ignore the amount of
code. So even if literate programs are found to
have more comments than traditional programs, it
could be because they have more code than
traditional programs and not because
programmers are likely to include more
comments using a literate system. The statistic
(comment character)/(code character) gives the
number of comment characters associated with
each code character.

Design: In order to control the wide individual
variability, a within-subjects design was used.

Each subject saw both experimental conditions
which served as a control for his or her own
performance.

Subjects: Our subjects were 16 students
enrolled in the class. Ten subjects were seniors,
three juniors, and three post college. As a part of
the class, they were required to learn and write
programs using AOPS and to write programs
using Turbo C.

Procedure: The subjects were randomly
divided into two groups, A and B, by matching
the students according to their GPA. The two
students in each of the matching pairs are
randomly assigned, one to group A and one to
group B. As part of the class all students were
instructed in the use of AOPS. Two
programming assignments were given. Group A
was to do the first assignment in AOPS and the
second in Turbo C while Group B was to do the
first in Turbo C and the second in AOPS. Both
groups were given the same problem
specifications. Both assignments were to follow
the same project guidelines handed out at the
beginning of the semester. They had ten days to
do each assignment. Graded assignments were
not handed back until after both assignments
were turned in.

During that three-week period when the students
are working on the programs, there was no
discussion about the documentation for their

program assignments. In addition, every
example program discussed in class was
presented both as a literate program and as a
traditional program, with the same amount of
documentation in both versions.

Results: Two filter programs and the UNIX
utility wc were used to obtain line, word, and
character counts for the students programs. One
filter program extracted the C source code
without comments and the other filter program
extracted the comments. Line, word, and
character counts for the source code and
comments for each program were obtained using
wc. Tables 1 and 2 give the average line, word,
and character counts for each group for program
assignments 1 and 2 respectively. Recall that
Group A did assignment 1 in AOPS and
assignment 2 in Turbo C while Group B did
assignment 1 in Turbo C and assignment 2 in
AOPS. Notice that the source code and comment
lines for each assignment are nearly identical, but
the group using AOPS had substantially more
comment words and comment characters.

To compare the two methods (literate
programming and traditional) we used the ratio of
comment to source lines, words and characters
(see Table 3). An ANOVA showed a significant
difference (p = 0.01) between the two methods
for both the ratio of comments to source code
words and the ratio of comment to source code
characters.

Source Code Comments

Lines Words Chars Lines Words Chars
Group A 2 8 5 7 2 9 4 4 0 9 2 7 9 1 7 0 6 10,673
Group B 2 9 8 7 8 5 4 6 2 0 2 7 5 1 2 7 7 8,686

Table 1. Counts for Programming Assignment No. 1

Source Code Comments
Lines Words Chars Lines Words Chars

Group A 2 3 6 6 1 7 3 8 5 6 2 1 9 9 8 4 6,424
Group B 2 3 0 6 1 9 3 8 8 5 2 2 6 1 4 1 8 9,223

Table 2. Counts for Programming Assignment No. 2

Comment/Source Code
Lines Words Characters

Literate 0.98 2.32 2.52
Traditional 0.93 1.61 1.78

Table 3. Ratio of Comment to Source Code Lines, Words and Characters.

It was surprising that the literate programs
contained significantly more comment words and
characters, but not more comment lines than the
traditional programs. Table 4 shows a detailed
analysis of the non-blank comment lines for the
AOPS and Turbo C programs. A Mann-Whitney
U test showed a significant difference (p<0.001)
between the two methods for the number of
comments, lines per comment, words per
comment, and characters per comment. A major
reason for the differences is that the traditional
programs contained many marker comments such
as /*end of while*/ that occupied part of a line.
Whereas the literate program comments were
usually in paragraphs and occupied entire lines.

To discover what the "more" documentation in
literate programs is made up of, an analysis was
done in which each comment in both groups was
examined and a decision was made on whether
the comment included a what element, a how
element, or an example. A comment contains a
what element if it describes the purpose of its
associated block of code; it contains a how
element if it describes the algorithm used by its
associated block of code; and it contains an
example if it gives an illustration of what its
associated block of code does. The comment
was also checked against its associated block of
code to see if it was inconsistent. (An
inconsistent comment is a comment that does not
accurately describe its associated piece of code.)
The data is summarized in Table 5.

Non-Blank Line Comments
Number Lines Words Chars

Literate 3 1 2 5 3 1,562 9,948
Traditional 6 7 2 4 7 1,130 7,554

Table 4. Data for non-blank comment lines.

Number of comments that
include include include are
what how example inconsistent

Literate all (512) 25 5 0
Traditional all (1072) 0 0 0

Table 5. Analysis of Information Contents of Comments

All the comments examined in both groups were
deemed to contain the what element. For literate
programs, 25 comments (5%) were found to
contain the how element and 5 comments (1%)
were found to contain an example. No comment

in the traditional group contained the how
element or an example. This finding was very
surprising since both groups were using the same
commenting guidelines and grading scheme for
both assignments. That both the literate and
traditional versions contained "what comments"

follows from the grading scheme. What is
surprising is that only the literate versions
contained "how comments" and examples. This
suggests that literate programming inspires more
substantial comments than traditional
programming.

Although no inconsistencies were found between
the internal comments and the code in both
versions, we did find inconsistencies between the
source code and external documentation in the
traditional programs. For the traditional
programs the students had to hand in a
pseudocode design for their programs. The
pseudocode design was embedded in the AOPS
program. When we compared the pseudocode
design and the source code for the Turbo C
programs we found 10 instances of missing
steps, extra steps, misspelled names, etc. We
did not find any inconsistencies in the AOPS
programs. For more information about this
experiment, please refer to [11].

Although this experiment showed that the literate
programs contain more documentation and better
documentation than the traditional programs, a
survey of general opinions about literate
programming drew mixed opinions. When
asked whether they would use a literate
programming system to develop their own
software, 13 out of 16 students responded yes.
When asked why they would use a literate
programming system, the majority responded
that it was because the pseudocode was
embedded in the source code which made the
design step a logical step to do. When asked if
they would use AOPS again, only 5 out of the 16
said they would. When asked why they would
not use AOPS, the majority said it was too
confusing and difficult to use AOPS when
debugging a program.

Conclusion

Our experiment shows the literate programming
paradigm indeed encourages more and consistent
documentation. The students seem to like the
literate programming style, except they do not
like the debugging process required by the literate
programming paradigm. However, this may be a
legacy of Knuth's belief that in literate
programming the source program should not be
changed without changing the associated
documentation. He purposely wanted the source

code to be difficult to read so that the source file
would be changed. The net result was that it was
more likely that the documentation would be
updated when a change was made to the program
source code.

This seems to hint that the state of debugging in
current literate programming systems is less than
desirable. Although AOPS is language
independent, it still could not escape the fact that
debugging using a literate programming system
is troublesome. Perhaps tools such as a
debugger should be made as an integral part of a
literate programming system.

Finally, a version of AOPS program including
the the processor AOP, the lister AOL, and the
hypertext browser AOB have been implemented
for the IBM-PC using Turbo C. We will gladly
furnish a copy of the AOPS program to anyone
who sends us a diskette.

References

1. Avenarius, A. and Oppermann, S., "FWEB:
A Literate Programming System For
FORTRAN8x", ACM SIGPLAN Notices,
Vol.25, No.1, pp. 52-58, Jan 1990.

2. Brown, M., and Cordes, D., "A Literate
Programming Design Language", Proc.
CompEuro 90, IEEE International Conf.
Computer Systems and Software Engineering,
IEEE CS Press, Los Alamitos, Calif., 1990, pp.
548-549.

3. Chapin, N., "Software Maintenance: A
Different View", AFIPS Conference Proceeding,
54th National Computer Conference, 1985, pp.
509-513.

4. Fletton N., and Munro, M. "Redocumenting
Software Systems Using Hypertext
Technology", IEEE Conference on Software
Maintenance, 1988, pp. 54-59.

5. Gurari, E. and Wu, J., "A WYSIWYG
Literate Programming System [Preliminary
Report]",Proceedings CSC '91, 1991, pp. 94-
104.

6. Hyman, M., "Literate C++", Computer
Language, Jul 1990, Vol. 7, No.7, pp. 67-79.

7. Knuth, D. E., "Literate Programming", The
Computer Journal, Vol. 27, No. 2, 1984, pp.
97-111.

8. Martin, J. and McClure, C., Software
Maintenance: The Problem and Its Solutions.
Prentice-Hall, 1983.

9. Y. Nakamoto, Y., Iwamoto, T., Hori, M.,
Hagihara, K., Tokura, N., "An Editor for
Documentation in C-system to Support Software
Development and Maintenance", IEEE 6th
International Conference on Software
Engineering, 1982, pp. 330-339.

10. Reenskaug, T., Skaar A., "An Environment
For Literate Smalltalk Programming", OOPSLA
1989 Proceedings, pp. 337-345.

11. Shum, S., Cook, C., "AOPS: An
Abstraction Oriented Programming System For
Literate Programming", Software Engineering
Journal , Vol. 8 No. 3 (May 1993), pp. 113-
120.

12. Standish, T., "An Essay on Software
Reuse", IEEE Trans on Software Engineering,
Vol.SE-10, No.5, pp. 494-497, Sep 1984.

13. Thimbleby, H., "Experience of 'Literate
Programming' Using CWEB [a Variant of
Knuth's WEB]", The Computer Journal, Vol.
29, No. 3, 1986, pp. 201-211.

14. Tung, S. H., "A Structured Method For
Literate Programming", Structured
Programming, 1989, Vol. 10, No. 2, pp.113-
120.

15. Wu,Y. and Baker,T., "A Source Code
Documentation System For Ada", ACM Ada
Letters, Vol.9, No.5, pp. 84-88, Jul/Aug 1989.

16. Zvegintzov, N., "Nanotrends", Datamation,
Aug 1983, pp. 106-116.

