Developing Good Programming Style

Toward Developing Good Programming Style

C version, August 1997
(McCann)

Every program you write that you intend to keep around for more than a couple of hours ought to have documentation
init. Don't talk yourself into putting off the documentation. A program that is perfectly clear today is clear only
because you just wrote it. Put it away for afew months, and it will most like take you awhile to figure out what it
does and how it doesit. If it takes you awhile to figure it out, how long would it take someone else to figure it out?

Programming style is aterm used to describe the effort a programmer should take to make his or her code easy to read
and easy to understand. Good organization of the code and meaningful variable names help readability, and liberal
use of comments can help the reader understand what the program does and why.

Probably the best way to demonstrate the value of good style is with asimple example. (Even if you don't know C
very well yet, keep reading; you can benefit from this example even if you can't understand it.) Take alook at this
program:

#i ncl ude <stdi o. h>
Int main(void) {
int seg[10] = {6,2,5,5,4,5,6,3,7, 6};
int dl1, d2, d3, d4, nF0O, td, ts;
for (d1=0; dl<2; dl++)
for (d2=0; d2<10; d2++)
for (d3=0; d3<6; d3++)
for (d4=0; d4<10; d4++)
if (('((d1==0)&&(d2==0))) && (!((d1l==1)&&(d2>2)))) {
if (di1==0) {
ts = seg[d2] + seg[d3] + seg[d4];
td = d2 + d3 + d4;
if (ts == td) { mt+;
printf(" %d: %dd%dd\n", d2,d3,d4); }
} else {
ts = seg[dl] + seg[d2] + seg[d3] + seg[d4];
td = dl + d2 + d3 + d4;
if (ts == td) { mt+;
printf("%ddo%dd: ¥4d%d\ n", d1, d2,d3,d4); }
b}

return 0; }

Do you have the faintest idea of what it accomplishes? How long would it take you to explain how it works? More to
the point: If you were assigned to fix a problem with this code, how frustrating would the task be to you and how
often would you curse the programmer who wrote it? Now imagine that you wrote it and some other programmer was
cursing you! (Worse: Imagine you wrote this, it didn't work, and you had to ask your instructor for help in finding the
problem. If | were your instructor, 1'd flat-out refuse to look at this until you cleaned it up.)

http://dogbert.comsc.ucok.edu/~mccann/style_c.html (1 of 14) [10/1/2000 7:47:17 PM]

Developing Good Programming Style

Style Principle
Structure and document your program the way you wish other programmers would.

INDENTATION

(For amore detailed treatment of code indentation, please see the Indenting C Programs page.)

One immediate problem that this program hasisthat it does not adhere to a consistent indentation pattern. There are
dozens of indentation styles that you could adopt, and some general ideas are common to most of them:

1. The styleisapplied consistently throughout the program.
2. Codewithin ablock (e.g., inside aloop, or in the body of a subprogram) should be indented.

3. If ablock is nested within another block the inner block's body should be indented relative to the enclosing
block.

4. Avoid excessive "stairstep” indentation (such as you often see with groups of nested | F statements) because this
will force you to attempt to squeeze code to fit on just the right half of the screen/page. If stairstepping becomes
a problem, reduce the number of spaces per indentation (from 8 to 4, for example) or switch to avertical style
temporarily.

Here's the code from above with a consistent indentation applied. | also took the liberty of adding alittle "white
gpace” (blank lines) to help set of f sections of the program. | think you'll agree that thisis an improvement, but not yet
acceptable:

#i ncl ude <stdi o. h>

I nt mai n(voi d)

{
int seg[10] = {6,2,5,5,4,5,6,3,7, 6};
int dl1, d2, d3, d4, ne0, td, ts;

for (d1=0; dil<2; dl1l++)
for (d2=0; d2<10; d2++)
for (d3=0; d3<6; d3++)
for (d4=0; d4<10; d4++)
if (('((d1==0)&&(d2==0))) &&
('((d1l==1) &&(d2>2))))
{

if (d1==0)
{
ts = seg[d2] + seg[d3]
+ seg[d4];
td = d2 + d3 + d4;
if (ts == td)
{
m++;
printf(" %d:"
"oddydd\ n",

http://dogbert.comsc.ucok.edu/~mccann/style_c.html (2 of 14) [10/1/2000 7:47:17 PM]

http://dogbert.comsc.ucok.edu/~mccann/indent_c.html

Developing Good Programming Style

return O;

d2, d3, d4);
}
}
el se
{
ts = seg[dl] + seg[d2]
+ seg[d3] + seg[d4];
td = dl1 + d2 + d3 + d4;
if (ts == td)
{
mt+;
printf("odd"
"0dd: 9ddvdd\ n",
di, d2, d3, d4);
}
}

Do you see the stairstep effect caused by the indentation of the nested FOR loops? (Heck, how could you missiit?)
Add the IF statements to the code and there isn't much space left for code on each line if you're trying to stay within
the 80 column limit of most screens. Here's the program with avertical style applied to the loops (note that a similar
procedure can be applied to closely nested IF statements as well):

#i ncl ude <stdi o. h>

I nt mai n(voi d)

{ .
i nt
I nt

for
for
for
for

seg[10]

= {6’21575’4’576’3’776};

dl, d2, d3, d4, n=0, td, ts;

A~ AN AN~
o 0O 0O O
ﬁ(ﬁ)l\)'_\

TLLeLeee

—_—

d1<2; di++)
d2<10; d2++)
d3<6; d3++)
d4<10; d4++)
(('((d1==0) &&(d2==0))) && (! ((dl==1)&&(d2>2))))

i f (dl1==0)
{
ts = seg[d2] + seg[d3] + seg[d4];
td = d2 + d3 + d4;
if (ts == td)
{
mt+;
printf(" %d: %dd%dd\n", d2,d3, d4);
}
}
el se

http://dogbert.comsc.ucok.edu/~mccann/style_c.html (3 of 14) [10/1/2000 7:47:17 PM]

Developing Good Programming Style

{
ts = seg[dl] + seg[d2] + seg[d3] + seg[d4];
td = d1 + d2 + d3 + d4;
if (ts == td)
{
m++;
printf("%dudd: ¥dd%dd\n", d1, d2, d3, d4);
}
}
}
return O;

This looks much better because there's now room to indent the nested | F statements with enough room left over to do
a decent job with the statements inside the IFs. Not everyone likes this approach, however. Some people prefer that
programmers move the body of the loops to a subprogram instead. In my view thisis acceptable only if that section of
code can logically stand on its own. Even if this code-relocation idea doesn't sit right with you, play along; having a
subprogram will be handy as an example later on. Here's the complete program with this philosophy applied:

#i ncl ude <stdi o. h>
void count(int, int, int, int, int*);

I nt mai n(voi d)

{

int dl, d2, d3, d4, nme=O;

for (d1=0; d1<2; dl++)

for (d2=0; d2<10; d2++)
for (d3=0; d3<6; d3++)
for (d4=0; d4<10; d4++)
count (d1, d2, d3, d4, &m ;

return O;
}
void count (int dl, int d2, int d3, int d4, int *m
{

int seg[10] = {6,2,5,5,4,5,6,3,7, 6};
int ts,td;

if ((!((d1==0)&&(d2==0))) && (' ((d1==1)8&&(d2>2))))

{
i f (d1==0)
{
ts = seg[d2] + seg[d3] + seg[d4];
td = d2 + d3 + d4;
if (ts == td)

http://dogbert.comsc.ucok.edu/~mccann/style_c.html (4 of 14) [10/1/2000 7:47:17 PM]

Developing Good Programming Style

{ (*m ++;
printf(" %d: %dd%d\ n", d2, d3, d4);
}
}
el se
{
ts = seg[dl] + seg[d2] + seg[d3] + seg[d4];
td = dl + d2 + d3 + d4;
If (ts == td)
{ (*m) ++;
printf("%ddo%dd: %dd%d\ n", d1, d2, d3, d4);
}
}

Please note that the 'seg’ variable was moved into the subprogram because it is not used by the main routine at all.

MEANINGFUL VARIABLE NAMES

Another impediment to program readability is that the program'’s identifiers (variable names, subprogram names, etc.)
are mostly meaningless. Y ou should strive to give each object a name that gives the reader a strong hint as to the
object's purpose within the program. Many early languages limited the size of the allowable names, and that forced
programmers to use short, cryptic names. Modern languages permit identifier names to be quite lengthy, so there's no
excuse not to create good names. As with indentation, there are some principles that apply to naming:

1

Use good, meaningful names, but don't go overboard. If you have avariable in your program that holds the
number of hours an employee works in aweek, you might call it HOURS, although that name still leaves alot
of doubt as to the exact contents of the variable. On the other hand, a name such as

HOURS WORKED_IN_A_WEEK is much more descriptive but contains 22 symbols; a ssmple increment of
the variable might fill an entireline! A compromise such as HOURS PER_WEEK is agood solution, though
there are others (see below).

Many languages now permit you to use underscores as part of names, as shown above. If you can't use them,
you can still improve name readability by mixing the case of the letters in the name. For example,
'HoursPerWeek' is much easier to read than 'hoursperweek'.

Always place acomment with each variable name declaration. The comment should give a brief phrase or
sentence that explains the purpose of the variable. If the variable name itself isn't enough to make the purpose
of the variable clear to the reader, the comment should clear up any confusion. (At the same time, you still want
to select good names; the reader doesn't want to have to keep referring to the declaration comment to refresh his
or her memory of avariable's purpose.

Common abbreviations are often acceptable in variable names. For example: HRS_PER_WEEK. But don't get
carried away; HRS _P_WK simply is not a good name.

Although thisisn't really a point about naming, it is related: Don't reuse variables in a subprogram. For
example, you may need aloop control integer variable at the top of the block, and you might also need a place
to store avalue for awhile at the bottom of the block. Resist the temptation to reuse that loop control variable
as the temporary holder. Such reuses can lead to areduction in readability of the code as well asto confusion in
program debugging.

http://dogbert.comsc.ucok.edu/~mccann/style_c.html (5 of 14) [10/1/2000 7:47:17 PM]

Developing Good Programming Style

Here's our program with better variable names and declaration comments.

#i ncl ude <stdi o. h>
voi d count _segnents(int, int, int, int, int*);

i nt mai n(voi d)

{
int hourl, /* the first (leftnost) digit in the hour two-digit pair */
hour2, /* the second (rightnost) digit in the hour */
tens, /* the ten's digit in the mnute two-digit pair */
ones, /* the one's digit in the mnute */
mat ches=0; /* the count of the times the suns match */
for (hour1=0; hour1<2; hourl++)
for (hour2=0; hour2<10; hour2++)
for (tens=0; tens<6; tens++)
for (ones=0; ones<10; ones++)
count _segnent s(hour 1, hour 2,
t ens, ones, &mat ches) ;
return O;
}

void count _segnents (int hourl, int hour2, int tens, int ones, int *matches)
{
int segnments[10] = {6,2,5,5,4,5,6,3,7, 6};
[* array of the nunber of segnents
needed to display each digit */
int total segnents, /* nunber of segnents used in the tinme */
total _digits; /* sumof the digits in the tinme value */

if (('((hour1==0)&&(hour2==0))) && (! ((hourl==1) &&(hour2>2))))
{
i f (hour1==0)
{
total segnents = segnents[hour2] + segnents[tens]
+ segnent s[ones] ;
total _digits = hour2 + tens + ones;
If (total _segnents == total _digits)
{
(*mat ches) ++;
printf(" %d: %dd%dd\n", hour 2, tens, ones);

el se

total segnents = segments[hourl] + segnents[hour 2]
+ segnents[tens] + segnents[ones];

http://dogbert.comsc.ucok.edu/~mccann/style_c.html (6 of 14) [10/1/2000 7:47:17 PM]

Developing Good Programming Style

total _digits = hourl + hour2 + tens + ones;

If (total _segnents == total _digits)
{
(*mat ches) ++;
printf("%d%d: %dd%ld\n",
hour 1, hour 2, t ens, ones) ;
}

Notice that the variable names are a little bit on the cryptic side, and the declarations are commented to provide
clarification. In my view thisis areasonable compromise. Aswe'll see, some variables are difficult to name, and a
short but slightly cryptic name with a good declaration comment is cleaner than a descriptive but lengthy and
awkward name. Also notice that the longer variable names forced us to split some lines and reorganize othersto get
them to fit in the 80 column lines. Readability does haveits price.

One place where short, cryptic variable names are often used: Loop control variables. These are often difficult to
name, and most programmers will simply use single letter names such as| and Jfor them. (Why | and J? Those letters
are frequently used for integer subscripts in mathematics. The early scientific language FORTRAN was designed so
that variables whose names started with | and J (and afew others) were of type INTEGER by default, which made
them easy to use asinteger loop control variables. The habit may never fade.)

INTERNAL DOCUMENTATION

The variable declaration comments are one part of good internal documentation. Internal documentation is the set of
comments that are included within the code to help clarify algorithms. Some students take internal documentation to
mean that they should comment each line of code! Thisis obviously an example of overdoing agood idea. Any
programmer knows how to increment avalue in avariable; there's no reason to explain trivial operations such as that.
The value of some good internal documentation should be clear by looking at the latest version of our sample
program. Even with the good code organization and variable names, the function of this program is still not obvious.

Here'salist of items that should be included in your internal documentation:

1. "Block comments' (comments that are severa lines long) should be placed at the head of every subprogram.
These will include the subprogram name; the purpose of the subprogram; and alist of all parameters, including
direction of information transfer (into this routine, out from the routine back to the calling routine, or both), and
their purposes.

2. Meaningful variable names. In anod to tradition, simple loop variables may have single letter variable names,
but all others should be meaningful. Never use nonstandard abbreviations.

3. Each variable and constant must have a brief comment next to its declaration that explainsits purpose. This
appliesto al variables, aswell asto fields of struct declarations.

4. Complex sections of code and any other parts of the program that need some explanation should have
comments just ahead of them or embedded in them.

A critical point: Documentation, and internal documentation in particular, should be written and included in the
program as the code is being written. Students tend to get in the habit of writing the code and then tossing in some
documentation only if they have time before the due date. This makes documenting seem even more boring and
tediousthat it already is, and students who rush the documentation at the last minute usually do a very mediocre job.
Documentation should be written when the code is being written, and should be typed in as the code is typed in.

http://dogbert.comsc.ucok.edu/~mccann/style_c.html (7 of 14) [10/1/2000 7:47:17 PM]

Developing Good Programming Style

To demonstrate some of these points, here's yet another version of our program, this time containing some acceptable
internal documentation:

#i ncl ude <stdi o. h>

voi d count _segnents(int, int, int, int, int*);

I nt mai n(voi d)

{

int hourl, /* the first (leftnost) digit in the hour two-digit pair */
hour2, /* the second (rightnost) digit in the hour */
tens, /* the ten's digit in the mnute two-digit pair */
ones, /* the one's digit in the mnute */
mat ches=0; /* the count of the times the suns match */

for (hour1=0; hour1<2; hour1l++)
for (hour2=0; hour2<10; hour2++)
for (tens=0; tens<6; tens++)
for (ones=0; ones<10; ones++)
count _segnent s(hour 1, hour 2,
t ens, ones, &mat ches) ;

|
| Purpose: COUNT_SEGVENTS conputes the nunber of segnents a

| digital clock will need to display the tine given by

| the paraneters. It then conputes the sumof the digits

| and conpares the two totals. |If they match, the success
| is recorded by increnenting the sum' nmatches' and by

| di splaying the tine.

| The nunmber of segnents a digital clock uses to

| di splay any of the ten nunbers 0-9 is stored in the array
| "segnents'. The array is indexed by the digit; thus, the
| nunber of segnents needed to display a "0" is in elenent [O].
|

|

I

|

I

|

|

|

|

|

|

Par anet ers:

hourl (IN) - In a two-digit hour value, this is the |eftnost
digit. Ex: In the time 12:34, hourl would hold 1.
hour2 (IN) - In a two-digit hour value, this is the rightnost
digit. Ex: Inthe tinme 12:34, hour2 would hold 2.
tens (IN) - In atw-digit mnute value, this is the |eftnost
digit. Ex: Inthe tinme 12:34, tens would hold 3.
ones (IN) - In atw-digit mnute value, this is the rightnost

digit. Ex: Inthe tinme 12: 34, ones would hold 4.
mat ches (I N OQUT) - The sumof the tinmes the nunber of segnents

http://dogbert.comsc.ucok.edu/~mccann/style_c.html (8 of 14) [10/1/2000 7:47:17 PM]

Developing Good Programming Style
| equal s the sumof the digits.

Returns: Nothing. (This is a void function.)

voi d count _segnents (int hourl, int hour2, int tens, int ones, int *nmatches)
{
int segnents[10] = {6,2,5,5,4,5,6, 3,7, 6};
/* array of the nunber of segnents
needed to display each digit */
int total segnments, /* nunber of segnments used in the tine */
total _digits; /* sumof the digits in the tinme value */

/[* W don't want to consider tines that start wth
* "00" (like 00:35) or anything with hours over
* 12" (like 16:14).
*/

if (('((hour1==0)&&(hour2==0))) && (! ((hourl==1)&&(hour2>2))))
{

/[* If the time is between 12:59 and 10: 00, the
* |eftnost hour digit is 0. A clock doesn't
* display that 0, so we shouldn't count its
* segnents.
*/
i f (hour1==0)
{

total segnents = segnents[hour2] + segnents[tens]
+ segnent s[ones] ;

total _digits = hour2 + tens + ones;

If (total _segnents == total _digits)

{
(*mat ches) ++;
printf(" %dd: %dd%dd\n", hour 2, tens, ones);

}
}
el se /* Here we do count the |eftnost hour digit */
{
total segnents = segnents[hourl] + segnents[hour?2]
+ segnents[tens] + segnents[ones];
total _digits = hourl + hour2 + tens + ones;
if (total _segments == total _digits)
{
(*mat ches) ++;
printf("%ddvdd: ¥dd%dd\ n",
hour 1, hour 2, t ens, ones) ;
}
}

http://dogbert.comsc.ucok.edu/~mccann/style_c.html (9 of 14) [10/1/2000 7:47:17 PM]

Developing Good Programming Style

}

The trick with internal documentation isto make it easy to find while at the same time ensuring that it's not making
the code hard to read. Block comments can be partially boxed (as shown) to separate them from the code. The use of
the *' at the start of each line of the shorter clarifying comments in the code serves a similar purpose. There's no one
right way to do this, but it does need to be done. Experiment with some styles and pick one you like. One piece of
advice: Don't fall in love with the "complete box" style. Lots of students like to completely enclose the block
comments within abox. This looks great, but the right-hand wall of the box is very hard to keep lined up as you make
adjustments and additions to the comments. The "three wall" style shown above is much easier to deal with and looks
almost as good.

EXTERNAL DOCUMENTATION

In aprofessional programmer's shop, large projects are documented in great detail, not only with commentsin the
code but with descriptions that are maintained separately from the code. In such an environment, programmers are
often asked to fix problemsin code that they didn't write. Many times, the author of the code isn't even with the
company any longer. The documentation may be all the programmer has as reference material to help him or her
make the necessary modifications.

External documentation doesn't deal with details of the code. Instead, it serves as a general description of the project,
including such information as what the code does, who wrote it and when, which common algorithms it uses, upon
which other programs or librariesit is dependent, which systems it was designed to work with, what form and source
of input it requires, the format of the output it produces, etc. Often the external documentation will include structure
charts of the outline of the program that were produced when the program was being designed. All of thisinformation
IS necessary to help other programmers understand the program. One seemingly innocent change in a program can
have unpredictable consequences on other parts of the system. Good documentation can help prevent such problems.

In most programming classes, it isimpractical for instructors to require large amounts of external documentation for
programs that are only afew hundred lines long. Instead, it is common for instructors to require that a small amount
of external documentation be included at the top of the program in the form of alarge block comment. This
condensed version should include at |east the following pieces of information:

1. Your name, the course name, assignment name/number, instructor's name, and due date.
2. Description of the problem the program was written to solve.

3. Approach used to solve the problem. This should always include a brief description of the major algorithms
used, or their namesif they are common algorithms.

4. The program's operational requirements. Which language system you used, special compilation information,
where the input can be located on disk, etc.

5. Required features of the assignment that you were not able to include.

6. Known bugs should be reported here as well. If a particular feature does not work correctly, it isin your best
interest to be honest and complete about your program's shortcomings.

Thefinal version of the program is given at the end of this document. Look it over carefully. Do you understand what
the program does? More importantly for this discussion, do you understand how it doesit? If the indentation,
identifier names, and documentation helped, then they were well worth the time it took the programmer to put them
in. Hopefully, you'll now see the value of putting such documentation in your programs as well.

Take the time to ask yourself if you think the design of the commentsis a good one; are the comments easy to find
and to read? Do they distract from the code excessively? Are there too many of them to suit you, or too few? By

http://dogbert.comsc.ucok.edu/~mccann/style_c.html (10 of 14) [10/1/2000 7:47:17 PM]

Developing Good Programming Style

asking and answering questions such as these, you will begin to develop a style of your own. When you see
documentation styles that you like, consider adopting them into your own style. Soon you'll have one you like, and as
aresult you'll be more likely to useit.

There are plenty of decisions that were made in the design and documentation of this program that can be questioned
and improved on. As you gain more experience in programming, consider revisiting this program and trying to
rewrite it from scratch. Perhaps you can think of a better way to generate the times, for example. There isn't a program
in existence that can't be improved, and this one is certainly no exception.

MISCELLANEOUS COMMENTS

In aprogramming class, instructors don't want you to write the most efficient programs; they'd much rather you learn
the material well and learn good programming style at the same time. Never pursue efficiency at the expense of
clarity. An efficient program is better than an inefficient one, of course, but it is also true that a slow, correct program
is better than a fast, buggy one. Clear, well-designed programs are more likely to be correctly functioning programs.
Get the program working before you worry too much about making it work quickly.

A styletopic that this document didn't cover is Top-Down Design. In TDD, theideaisto design a program by first
identifying the major tasks of the program. For each task, break it down into smaller subtasks. Continue this process
until it is clear how each task is to be accomplished. Each task that you have identified is a candidate to be a
subprogram, with the main program consisting mostly of callsto the top-level subtasks. This approach requires that
you have the discipline to plan the structure of your program before you write any code. If you can do it, the process
of planning the program will help minimize the number of logical errorsin your program. Typically, you'll spend less
time planning than you would have spent debugging the code you didn't plan. Thisis alesson most programmers can
only learn by experiencing along, late-night debugging marathon firsthand. For examples of Top-Down Design, refer
to an introductory programming text. Most of them cover it in detail.

Finally, no document on style would be complete without a mention of the GOTO problem. The unconditional branch
(GOTO) operation is provided in nearly all languages, and its use is frequently discouraged, particularly by
instructors. When you're learning to program, it's important that you learn to avoid using a GOTO. Programs with
several GOTOs can quickly become hard to understand and thus hard to repair or modify. However, in some isolated
situations, a nice unconditional branch can do the job of alot of convoluted but well-structured logic. If you ever feel
the need to use a GOTO, be sure to ask your instructor if he or she will sanction its usein that situation. They may be
able to show you a more structured solution to the problem.

/*:::
| Assignnment: Program#0 -- Digital Cock Digit and Segnent Suns
|
| Aut hor: [Student's Nanme Her e]
| Language: ANSI C (tested using xlc on an | BM RS/ 6000 runni ng Al X)
| To Conpile: xlc segnent.c
I
| Class: COvsC 0000
| Instructor: Dr. Staff
| Due Date: Decenber 32nd, 2024, at the begi nning of class
I
o o o o o e o o o o o o e o o e e o e e e e e e e o e m e e e m - =

|
| Description: A common digital display clock, such as an al arm cl ock or
| a digital wistwatch, creates nunbers by lighting segnents in a

http://dogbert.comsc.ucok.edu/~mccann/style_c.html (11 of 14) [10/1/2000 7:47:17 PM]

Developing Good Programming Style

standard 7-segnent display. This program assunes that the digits
| ook |ike this:

Thus, 6 segnents are needed to display the digit 0, for exanple.
The programcreates all |egal twelve-hour tines (plus sone illegal
ones that are logically elimnated from consideration) and for each
determnes if the nunmber of segnents in the displayed tine equals
the sumof the digits in the display. For exanple, 7:21 requires
10 segnents and the sumof the digits is also 10 (7+2+1). Al such
times are output by the program and the total nunber of such

tinmes is also determ ned.

Input: No input (either fromthe keyboard or froma file) is
requi red by this program

Qutput: The tines are displayed one per line to the standard out put.
The nunber of tines displayed is output at the end.

Algorithm The times are generated by a set of 4 nested FOR | oops.

Times are conposed of 4 digits, one |oop per digit. Legal
times can start wwth a 0 or a 1, but the 0 is never shown
on a clock. Hours go fromO01 through 12, so the second
digit of the hour value can range fromO through 9, as can
the rightnost digit of the mnute. The left digit in the
m nute value ranges fromO through 5 only. For each tine
generated by the | oops, the COUNT_SEGMVENTS subprogram
determnes if the segnent sumequals the digit sum

see the internal docunentation of COUNT_SEGVENTS f or
details on its operation

Requi red Features Not I|ncluded: The program adheres to al

requi rements stated in the program assi gnnment, and al
requi red features are included.

Known Bugs: There are no known bugs renmamining in this program

#i ncl ude <stdi o. h>

voi d count _segnents(int, int, int, int, int*);

I nt mai n(voi d)

{

int hourl, /* the first (leftnost) digit in the hour two-digit pair */
hour2, /* the second (rightnost) digit in the hour */
tens, /* the ten's digit in the mnute two-digit pair */
ones, /* the one's digit in the mnute */

http://dogbert.comsc.ucok.edu/~mccann/style_c.html (12 of 14) [10/1/2000 7:47:17 PM]

Developing Good Programming Style

mat ches=0; /* the count of the times the suns match */

for (hour1=0; hour1<2; hour1l++)
for (hour2=0; hour2<10; hour2++)
for (tens=0; tens<6; tens++)
for (ones=0; ones<10; ones++)
count _segnent s(hour 1, hour 2,
t ens, ones, &mat ches) ;

printf("\nThe nunber of tinmes displayed is %.\n", mat ches);

return O;

Pur pose: COUNT_SEGMVENTS conputes the nunber of segnents a
digital clock will need to display the tine given by
the paraneters. It then conputes the sumof the digits
and conpares the two totals. |[|f they match, the success
is recorded by increnenting the sum' natches' and by
di spl aying the tine.
The nunber of segnents a digital clock uses to
di splay any of the ten nunbers 0-9 is stored in the array
"segnents'. The array is indexed by the digit; thus, the
nunber of segnents needed to display a '0" is in elenent [O].

hourl (IN) - In a two-digit hour value, this is the |eftnost
digit. Ex: Inthe tinme 12:34, hourl would hold 1.
hour2 (IN) - In a two-digit hour value, this is the rightnost
digit. Ex: Inthe tinme 12:34, hour2 would hold 2.
tens (IN) - In a tw-digit mnute value, this is the | eftnost
digit. Ex: In the tine 12:34, tens would hold 3.
ones (IN) - In atw-digit mnute value, this is the rightnost

digit. Ex: In the tinme 12: 34, ones would hold 4.
mat ches (I N OQUT) - The sumof the tinmes the nunber of segnents
equal s the sumof the digits.

*

I

|

I

I

I

I

I

I

I

I

I

I

I

| Paraneters:
I

I

I

|

I

I

I

I

I

|

| Returns: Nothing. (This is a void function.)
|
*

void count_segnments (int hourl, int hour2, int tens, int ones, int *matches)
{
int segnents[10] = {6,2,5,5,4,5,6, 3,7, 6};
/* array of the nunber of segnents
needed to display each digit */
int total segnents, /* nunber of segnents used in the tinme */
total _digits; /[* sumof the digits in the tinme value */

http://dogbert.comsc.ucok.edu/~mccann/style_c.html (13 of 14) [10/1/2000 7:47:17 PM]

Developing Good Programming Style

[* W don't want to consider tines that start wth
* '00" (like 00:35) or anything with hours over

* 112 (like 16:14).
*)

if (('((hour1==0)&&(hour2==0))) && (! ((hourl==1)&&(hour2>2))))

{

/[* If the tine is between 12:59 and 10: 00, the

* |eftnost hour digit is O.

A cl ock doesn't

* display that 0, so we shouldn't count its

* segnents.
*/

i f (hour 1==0)
{

total segnents = segnents[hour2] + segnents[tens]

+ segnent s[ones] ;

total _digits = hour2 + tens + ones;
If (total _segnents == total _digits)

{

(*mat ches) ++;

printf(" %d: %dd%dd\n", hour 2, tens, ones);

}

el se /* Here we do count the leftnost hour digit */

total segnents = segments[hourl] + segnents[hour?2]
+ segnents[tens] + segnents[ones];

total _digits = hourl + hour2 + tens + ones;

if (total _segments == total _digits)

{

(*mat ches) ++;

printf("%dldodd: 9ddydd\ n",
hour 1, hour 2, t ens, ones) ;

http://dogbert.comsc.ucok.edu/~mccann/style_c.html (14 of 14) [10/1/2000 7:47:17 PM]

	ucok.edu
	Developing Good Programming Style

