
§1 ADVENTURE INTRODUCTION 1

March 22, 2002 at 22:33

1. Introduction. The ur-game for computers — Adventure — was originally written by Will Crowther
in 1975 and greatly extended by Don Woods in 1976. I have taken Woods’s original FORTRAN program for
Adventure Version 1.0 and recast it in the CWEB idiom.

I remember being fascinated by this game when John McCarthy showed it to me in 1977. I started with
no clues about the purpose of the game or what I should do; just the computer’s comment that I was at
the end of a forest road facing a small brick building. Little by little, the game revealed its secrets, just as
its designers had cleverly plotted. What a thrill it was when I first got past the green snake! Clearly the
game was potentially addictive, so I forced myself to stop playing — reasoning that it was great fun, sure,
but traditional computer science research is great fun too, possibly even more so.

Now here I am, 21 years later, returning to the great Adventure after having indeed had many exciting
adventures in Computer Science. I believe people who have played this game will be able to extend their
fun by reading its once-secret program. Of course I urge everybody to play the game first, at least ten times,
before reading on. But you cannot fully appreciate the astonishing brilliance of its design until you have
seen all of the surprises that have been built in.

I believe this program is entirely faithful to the behavior of Adventure Version 1.0, except that I have
slightly edited the computer messages (mostly so that they use both lowercase and uppercase letters). I have
also omitted Woods’s elaborate machinery for closing the cave during the hours of prime-time computing; I
believe John McCarthy insisted on this, when he saw the productivity of his AI Lab falling off dramatically
(although it is rumored that he had a special version of the program that allowed him to play whenever
he wanted). And I have not adopted the encryption scheme by which Woods made it difficult for users to
find any important clues in the binary program file or core image; such modifications would best be done
by making a special version of CTANGLE. All of the spelunking constraints and interactive behavior have
been retained, although the structure of this CWEB program is naturally quite different from the FORTRAN

version I began with.
Many of the phrases in the following documentation have been lifted directly from comments in the

FORTRAN code. Please regard me as merely a translator of the program, not as an author. I thank Don
Woods for helping me check the validity of this translation.

By the way, if you don’t like goto statements, don’t read this. (And don’t read any other programs that
simulate multistate systems.)

— Don Knuth, September 1998
/*ÃCopyrightÃ(C)Ã1998ÃbyÃDonÃWoodsÃandÃDonÃKnuth;ÃallÃrightsÃreservedÃ*/

2 INTRODUCTION ADVENTURE §2

2. To run the program with, say, a UNIX shell, just type ‘advent’ and follow instructions. (Many UNIX

systems come with an almost identical program called ‘adventure’ already built in; you might want to try
it too, for comparison.)
#include <stdio.h> /∗ basic input/output routines: fgets , printf ∗/
#include <ctype.h> /∗ isspace and tolower routines ∗/
#include <string.h> /∗ strncmp and strcpy to compare and copy strings ∗/
#include <time.h> /∗ current time , used as random number seed ∗/
#include <stdlib.h> /∗ exit ∗/
〈Macros for subroutine prototypes 3 〉
typedef enum {

false , true
} boolean;
〈Type definitions 5 〉
〈Global variables 7 〉
〈Subroutines 6 〉
main ()
{

register int j, k;
register char ∗p;
〈Additional local registers 22 〉;
〈 Initialize all tables 200 〉;
〈Simulate an adventure, going to quit when finished 75 〉;
〈Deal with death and resurrection 188 〉;

quit : 〈Print the score and say adieu 198 〉;
exit (0);

}

3. The subroutines of this program are declared first with a prototype, as in ANSI C, then with an old-style
C function definition. The following preprocessor commands make this work correctly with both new-style
and old-style compilers.
〈Macros for subroutine prototypes 3 〉 ≡
#ifdef __STDC__

#define ARGS(list) list
#else
#define ARGS(list) ()
#endif
This code is used in section 2.

§4 ADVENTURE THE VOCABULARY 3

4. The vocabulary. Throughout the remainder of this documentation, “you” are the user and “we” are
the game author and the computer. We don’t tell you what words to use, except indirectly; but we try to
understand enough words of English so that you can play without undue frustration. The first part of the
program specifies what we know about your language — about 300 words.

5. When you type a word, we first convert uppercase letters to lowercase; then we chop off all but the first
five characters, if the word was longer than that, and we look for your word in a small hash table. Each hash
table entry contains a string of length 5 or less, and two additional bytes for the word’s type and meaning.
Four types of words are distinguished: motion type , object type , action type , and message type .
〈Type definitions 5 〉 ≡

typedef enum {
no type ,motion type , object type , action type ,message type

} wordtype;
typedef struct {

char text [6]; /∗ string of length at most 5 ∗/
char word type ; /∗ a wordtype ∗/
char meaning ;

} hash entry;
See also sections 9, 11, 13, 18, and 19.

This code is used in section 2.

6. Here is the subroutine that puts words into our vocabulary, when the program is getting ready to run.
#define hash prime 1009 /∗ the size of the hash table ∗/
〈Subroutines 6 〉 ≡

void new word ARGS((char ∗, int));
void new word (w, m)

char ∗w; /∗ a string of length 5 or less ∗/
int m; /∗ its meaning ∗/

{
register int h, k;
register char ∗p;
for (h = 0, p = w; ∗p; p++) h = (∗p + h + h) % hash prime ;
while (hash table [h].word type) {

h++; if (h ≡ hash prime) h = 0;
}
for (k = 0, p = w; ∗p; p++, k++) hash table [h].text [k] = ∗p;
hash table [h].word type = current type ;
hash table [h].meaning = m;

}
See also sections 8, 64, 65, 66, 71, 72, 154, 160, 194, and 197.

This code is used in section 2.

7. 〈Global variables 7 〉 ≡
hash entry hash table [hash prime]; /∗ the table of words we know ∗/
wordtype current type ; /∗ the kind of word we are dealing with ∗/

See also sections 15, 17, 20, 21, 63, 73, 74, 77, 81, 84, 87, 89, 96, 103, 137, 142, 155, 159, 165, 168, 171, 177, 185, 190, 193, 196,
and 199.

This code is used in section 2.

4 THE VOCABULARY ADVENTURE §8

8. While we’re at it, let’s write the program that will look up a word. It returns the location of the word
in the hash table, or −1 if you’ve given a word like ‘tickle’ or ‘terse’ that is unknown.
#define streq (a, b) (strncmp(a, b, 5) ≡ 0) /∗ strings agree up to five letters ∗/
〈Subroutines 6 〉 +≡

int lookup ARGS((char ∗));
int lookup(w)

char ∗w; /∗ a string that you typed ∗/
{

register int h;
register char ∗p;
register char t;
t = w[5];
w[5] = ’\0’; /∗ truncate the word ∗/
for (h = 0, p = w; ∗p; p++) h = (∗p + h + h) % hash prime ; /∗ compute starting address ∗/
w[5] = t; /∗ restore original word ∗/
if (h < 0) return −1; /∗ a negative character might screw us up ∗/
while (hash table [h].word type) {

if (streq (w, hash table [h].text)) return h;
h++; if (h ≡ hash prime) h = 0;

}
return −1;

}

9. The motion words either specify a direction or a simple action or a place. Motion words take you from
one location to another, when the motion is permitted. Here is a list of their possible meanings.
〈Type definitions 5 〉 +≡

typedef enum {
N, S, E, W, NE, SE, NW, SW, U, D, L, R, IN, OUT, FORWARD, BACK,
OVER, ACROSS, UPSTREAM, DOWNSTREAM,
ENTER, CRAWL, JUMP, CLIMB, LOOK, CROSS,
ROAD, HILL, WOODS, VALLEY, HOUSE, GULLY, STREAM, DEPRESSION, ENTRANCE, CAVE,
ROCK, SLAB, BED, PASSAGE, CAVERN, CANYON, AWKWARD, SECRET, BEDQUILT, RESERVOIR,
GIANT, ORIENTAL, SHELL, BARREN, BROKEN, DEBRIS, VIEW, FORK,
PIT, SLIT, CRACK, DOME, HOLE, WALL, HALL, ROOM, FLOOR,
STAIRS, STEPS, COBBLES, SURFACE, DARK, LOW, OUTDOORS,
Y2, XYZZY, PLUGH, PLOVER, OFFICE, NOWHERE

} motion;

§10 ADVENTURE THE VOCABULARY 5

10. And here is how they enter our vocabulary.
If I were writing this program, I would allow the word woods, but Don apparently didn’t want to.

〈Build the vocabulary 10 〉 ≡
current type = motion type ;
new word ("north", N); new word ("n", N);
new word ("south", S); new word ("s", S);
new word ("east", E); new word ("e", E);
new word ("west", W); new word ("w", W);
new word ("ne", NE);
new word ("se", SE);
new word ("nw", NW);
new word ("sw", SW);
new word ("upwar", U); new word ("up", U); new word ("u", U); new word ("above", U);
new word ("ascen", U);
new word ("downw", D); new word ("down", D); new word ("d", D); new word ("desce", D);
new word ("left", L);
new word ("right", R);
new word ("inwar", IN); new word ("insid", IN); new word ("in", IN);
new word ("out", OUT); new word ("outsi", OUT);
new word ("exit", OUT);
new word ("leave", OUT);
new word ("forwa", FORWARD); new word ("conti", FORWARD); new word ("onwar", FORWARD);
new word ("back", BACK); new word ("retur", BACK); new word ("retre", BACK);
new word ("over", OVER);
new word ("acros", ACROSS);
new word ("upstr", UPSTREAM);
new word ("downs", DOWNSTREAM);
new word ("enter", ENTER);
new word ("crawl", CRAWL);
new word ("jump", JUMP);
new word ("climb", CLIMB);
new word ("look", LOOK); new word ("exami", LOOK); new word ("touch", LOOK);
new word ("descr", LOOK);
new word ("cross", CROSS);
new word ("road", ROAD);
new word ("hill", HILL);
new word ("forest", WOODS);
new word ("valle", VALLEY);
new word ("build", HOUSE); new word ("house", HOUSE);
new word ("gully", GULLY);
new word ("strea", STREAM);
new word ("depre", DEPRESSION);
new word ("entra", ENTRANCE);
new word ("cave", CAVE);
new word ("rock", ROCK);
new word ("slab", SLAB); new word ("slabr", SLAB);
new word ("bed", BED);
new word ("passa", PASSAGE); new word ("tunne", PASSAGE);
new word ("caver", CAVERN);
new word ("canyo", CANYON);
new word ("awkwa", AWKWARD);
new word ("secre", SECRET);

6 THE VOCABULARY ADVENTURE §10

new word ("bedqu", BEDQUILT);
new word ("reser", RESERVOIR);
new word ("giant", GIANT);
new word ("orien", ORIENTAL);
new word ("shell", SHELL);
new word ("barre", BARREN);
new word ("broke", BROKEN);
new word ("debri", DEBRIS);
new word ("view", VIEW);
new word ("fork", FORK);
new word ("pit", PIT);
new word ("slit", SLIT);
new word ("crack", CRACK);
new word ("dome", DOME);
new word ("hole", HOLE);
new word ("wall", WALL);
new word ("hall", HALL);
new word ("room", ROOM);
new word ("floor", FLOOR);
new word ("stair", STAIRS);
new word ("steps", STEPS);
new word ("cobbl", COBBLES);
new word ("surfa", SURFACE);
new word ("dark", DARK);
new word ("low", LOW);
new word ("outdo", OUTDOORS);
new word ("y2", Y2);
new word ("xyzzy", XYZZY);
new word ("plugh", PLUGH);
new word ("plove", PLOVER);
new word ("main", OFFICE); new word ("offic", OFFICE);
new word ("null", NOWHERE); new word ("nowhe", NOWHERE);

See also sections 12, 14, and 16.

This code is used in section 200.

§11 ADVENTURE THE VOCABULARY 7

11. The object words refer to things like a lamp, a bird, batteries, etc.; objects have properties that will be
described later. Here is a list of the basic objects. Objects GOLD and higher are the “treasures.” Extremely
large objects, which appear in more than one location, are listed more than once using ‘_’.
#define min treasure GOLD

#define is treasure (t) (t ≥ min treasure)
#define max obj CHAIN

〈Type definitions 5 〉 +≡
typedef enum {
NOTHING, KEYS, LAMP, GRATE, GRATE_, CAGE, ROD, ROD2, TREADS, TREADS_,
BIRD, DOOR, PILLOW, SNAKE, CRYSTAL, CRYSTAL_, TABLET, CLAM, OYSTER,
MAG, DWARF, KNIFE, FOOD, BOTTLE, WATER, OIL,
MIRROR, MIRROR_, PLANT, PLANT2, PLANT2_, STALACTITE, SHADOW, SHADOW_,
AXE, ART, PIRATE, DRAGON, DRAGON_, BRIDGE, BRIDGE_, TROLL, TROLL_, TROLL2, TROLL2_,
BEAR, MESSAGE, GEYSER, PONY, BATTERIES, MOSS,
GOLD, DIAMONDS, SILVER, JEWELS, COINS, CHEST, EGGS, TRIDENT, VASE,
EMERALD, PYRAMID, PEARL, RUG, RUG_, SPICES, CHAIN

} object;

8 THE VOCABULARY ADVENTURE §12

12. Most of the objects correspond to words in our vocabulary.
〈Build the vocabulary 10 〉 +≡

current type = object type ;
new word ("key", KEYS); new word ("keys", KEYS);
new word ("lamp", LAMP); new word ("lante", LAMP); new word ("headl", LAMP);
new word ("grate", GRATE);
new word ("cage", CAGE);
new word ("rod", ROD);
new word ("bird", BIRD);
new word ("door", DOOR);
new word ("pillo", PILLOW);
new word ("snake", SNAKE);
new word ("fissu", CRYSTAL);
new word ("table", TABLET);
new word ("clam", CLAM);
new word ("oyste", OYSTER);
new word ("magaz", MAG); new word ("issue", MAG); new word ("spelu", MAG);
new word ("\"spel", MAG);
new word ("dwarf", DWARF); new word ("dwarv", DWARF);
new word ("knife", KNIFE); new word ("knive", KNIFE);
new word ("food", FOOD); new word ("ratio", FOOD);
new word ("bottl", BOTTLE); new word ("jar", BOTTLE);
new word ("water", WATER); new word ("h2o", WATER);
new word ("oil", OIL);
new word ("mirro", MIRROR);
new word ("plant", PLANT); new word ("beans", PLANT);
new word ("stala", STALACTITE);
new word ("shado", SHADOW); new word ("figur", SHADOW);
new word ("axe", AXE);
new word ("drawi", ART);
new word ("pirat", PIRATE);
new word ("drago", DRAGON);
new word ("chasm", BRIDGE);
new word ("troll", TROLL);
new word ("bear", BEAR);
new word ("messa", MESSAGE);
new word ("volca", GEYSER); new word ("geyse", GEYSER);
new word ("vendi", PONY); new word ("machi", PONY);
new word ("batte", BATTERIES);
new word ("moss", MOSS); new word ("carpe", MOSS);
new word ("gold", GOLD); new word ("nugge", GOLD);
new word ("diamo", DIAMONDS);
new word ("silve", SILVER); new word ("bars", SILVER);
new word ("jewel", JEWELS);
new word ("coins", COINS);
new word ("chest", CHEST); new word ("box", CHEST); new word ("treas", CHEST);
new word ("eggs", EGGS); new word ("egg", EGGS); new word ("nest", EGGS);
new word ("tride", TRIDENT);
new word ("ming", VASE); new word ("vase", VASE); new word ("shard", VASE);
new word ("potte", VASE);
new word ("emera", EMERALD);
new word ("plati", PYRAMID); new word ("pyram", PYRAMID);

§12 ADVENTURE THE VOCABULARY 9

new word ("pearl", PEARL);
new word ("persi", RUG); new word ("rug", RUG);
new word ("spice", SPICES);
new word ("chain", CHAIN);

13. The action words tell us to do something that is usually nontrivial.
〈Type definitions 5 〉 +≡

typedef enum {
ABSTAIN, TAKE, DROP, OPEN, CLOSE, ON, OFF, WAVE, CALM, GO, RELAX,
POUR, EAT, DRINK, RUB, TOSS, WAKE, FEED, FILL, BREAK, BLAST, KILL,
SAY, READ, FEEFIE, BRIEF, FIND, INVENTORY, SCORE, QUIT

} action;

10 THE VOCABULARY ADVENTURE §14

14. Many of the action words have several synonyms. If an action does not meet special conditions, we
will issue a default message.
#define ok default msg [RELAX]
〈Build the vocabulary 10 〉 +≡

current type = action type ;
new word ("take", TAKE); new word ("carry", TAKE); new word ("keep", TAKE);
new word ("catch", TAKE); new word ("captu", TAKE); new word ("steal", TAKE);
new word ("get", TAKE); new word ("tote", TAKE);
default msg [TAKE] = "YouÃareÃalreadyÃcarryingÃit!";
new word ("drop", DROP); new word ("relea", DROP); new word ("free", DROP);
new word ("disca", DROP); new word ("dump", DROP);
default msg [DROP] = "YouÃaren’tÃcarryingÃit!";
new word ("open", OPEN); new word ("unloc", OPEN);
default msg [OPEN] = "IÃdon’tÃknowÃhowÃtoÃlockÃorÃunlockÃsuchÃaÃthing.";
new word ("close", CLOSE); new word ("lock", CLOSE);
default msg [CLOSE] = default msg [OPEN];
new word ("light", ON); new word ("on", ON);
default msg [ON] = "YouÃhaveÃnoÃsourceÃofÃlight.";
new word ("extin", OFF); new word ("off", OFF);
default msg [OFF] = default msg [ON];
new word ("wave", WAVE); new word ("shake", WAVE); new word ("swing", WAVE);
default msg [WAVE] = "NothingÃhappens.";
new word ("calm", CALM); new word ("placa", CALM); new word ("tame", CALM);
default msg [CALM] = "I’mÃgame.ÃÃWouldÃyouÃcareÃtoÃexplainÃhow?";
new word ("walk", GO); new word ("run", GO); new word ("trave", GO); new word ("go", GO);
new word ("proce", GO); new word ("explo", GO); new word ("goto", GO); new word ("follo", GO);
new word ("turn", GO);
default msg [GO] = "Where?";
new word ("nothi", RELAX);
default msg [RELAX] = "OK.";
new word ("pour", POUR);
default msg [POUR] = default msg [DROP];
new word ("eat", EAT); new word ("devou", EAT);
default msg [EAT] = "Don’tÃbeÃridiculous!";
new word ("drink", DRINK);
default msg [DRINK] =

"YouÃhaveÃtakenÃaÃdrinkÃfromÃtheÃstream.ÃÃTheÃwaterÃtastesÃstronglyÃof\n\
minerals,ÃbutÃisÃnotÃunpleasant.ÃÃItÃisÃextremelyÃcold.";

new word ("rub", RUB);
default msg [RUB] = "RubbingÃtheÃelectricÃlampÃisÃnotÃparticularlyÃrewarding.ÃAnyway,\n\

nothingÃexcitingÃhappens.";
new word ("throw", TOSS); new word ("toss", TOSS);
default msg [TOSS] = "Peculiar.ÃÃNothingÃunexpectedÃhappens.";
new word ("wake", WAKE); new word ("distu", WAKE);
default msg [WAKE] = default msg [EAT];
new word ("feed", FEED);
default msg [FEED] = "ThereÃisÃnothingÃhereÃtoÃeat.";
new word ("fill", FILL);
default msg [FILL] = "YouÃcan’tÃfillÃthat.";
new word ("break", BREAK); new word ("smash", BREAK); new word ("shatt", BREAK);
default msg [BREAK] = "ItÃisÃbeyondÃyourÃpowerÃtoÃdoÃthat.";

§14 ADVENTURE THE VOCABULARY 11

new word ("blast", BLAST); new word ("deton", BLAST); new word ("ignit", BLAST);
new word ("blowu", BLAST);
default msg [BLAST] = "BlastingÃrequiresÃdynamite.";
new word ("attac", KILL); new word ("kill", KILL); new word ("fight", KILL);
new word ("hit", KILL); new word ("strik", KILL); new word ("slay", KILL);
default msg [KILL] = default msg [EAT];
new word ("say", SAY); new word ("chant", SAY); new word ("sing", SAY); new word ("utter", SAY);
new word ("mumbl", SAY);
new word ("read", READ); new word ("perus", READ);
default msg [READ] = "I’mÃafraidÃIÃdon’tÃunderstand.";
new word ("fee", FEEFIE); new word ("fie", FEEFIE); new word ("foe", FEEFIE);
new word ("foo", FEEFIE); new word ("fum", FEEFIE);
default msg [FEEFIE] = "IÃdon’tÃknowÃhow.";
new word ("brief", BRIEF);
default msg [BRIEF] = "OnÃwhat?";
new word ("find", FIND); new word ("where", FIND);
default msg [FIND] = "IÃcanÃonlyÃtellÃyouÃwhatÃyouÃseeÃasÃyouÃmoveÃaboutÃandÃmanipulate\n\

things.ÃÃIÃcannotÃtellÃyouÃwhereÃremoteÃthingsÃare.";
new word ("inven", INVENTORY);
default msg [INVENTORY] = default msg [FIND];
new word ("score", SCORE);
default msg [SCORE] = "Eh?";
new word ("quit", QUIT);
default msg [QUIT] = default msg [SCORE];

15. 〈Global variables 7 〉 +≡
char ∗default msg [30]; /∗ messages for untoward actions, if nonzero ∗/

12 THE VOCABULARY ADVENTURE §16

16. Finally, our vocabulary is rounded out by words like help, which trigger the printing of fixed messages.
#define new mess (x) message [k++] = x
#define mess wd (w) new word (w, k)
〈Build the vocabulary 10 〉 +≡

current type = message type ;
k = 0;
mess wd ("abra");
mess wd ("abrac");
mess wd ("opens");
mess wd ("sesam");
mess wd ("shaza");
mess wd ("hocus");
mess wd ("pocus");
new mess ("GoodÃtry,ÃbutÃthatÃisÃanÃoldÃworn−outÃmagicÃword.");
mess wd ("help");
mess wd ("?");
new mess ("IÃknowÃofÃplaces,Ãactions,ÃandÃthings.ÃMostÃofÃmyÃvocabulary\n\

describesÃplacesÃandÃisÃusedÃtoÃmoveÃyouÃthere.ÃÃToÃmove,ÃtryÃwords\n\
likeÃforest,Ãbuilding,Ãdownstream,Ãenter,Ãeast,Ãwest,Ãnorth,Ãsouth,\n\
up,ÃorÃdown.ÃÃIÃknowÃaboutÃaÃfewÃspecialÃobjects,ÃlikeÃaÃblackÃrod\n\
hiddenÃinÃtheÃcave.ÃÃTheseÃobjectsÃcanÃbeÃmanipulatedÃusingÃsomeÃof\n\
theÃactionÃwordsÃthatÃIÃknow.ÃÃUsuallyÃyouÃwillÃneedÃtoÃgiveÃbothÃthe\n\
objectÃandÃactionÃwordsÃ(inÃeitherÃorder),ÃbutÃsometimesÃIÃcanÃinfer\n\
theÃobjectÃfromÃtheÃverbÃalone.ÃÃSomeÃobjectsÃalsoÃimplyÃverbs;Ãin\n\
particular,Ã\"inventory\"ÃimpliesÃ\"takeÃinventory\",ÃwhichÃcausesÃmeÃto\n\
giveÃyouÃaÃlistÃofÃwhatÃyou’reÃcarrying.ÃÃTheÃobjectsÃhaveÃside\n\
effects;ÃforÃinstance,ÃtheÃrodÃscaresÃtheÃbird.ÃÃUsuallyÃpeopleÃhaving\n\
troubleÃmovingÃjustÃneedÃtoÃtryÃaÃfewÃmoreÃwords.ÃUsuallyÃpeople\n\
tryingÃunsuccessfullyÃtoÃmanipulateÃanÃobjectÃareÃattemptingÃsomething\n\
beyondÃtheirÃ(orÃmy!)ÃcapabilitiesÃandÃshouldÃtryÃaÃcompletely\n\
differentÃtack.ÃÃToÃspeedÃtheÃgameÃyouÃcanÃsometimesÃmoveÃlong\n\
distancesÃwithÃaÃsingleÃword.ÃÃForÃexample,Ã\"building\"ÃusuallyÃgets\n\
youÃtoÃtheÃbuildingÃfromÃanywhereÃaboveÃgroundÃexceptÃwhenÃlostÃinÃthe\n\
forest.ÃÃAlso,ÃnoteÃthatÃcaveÃpassagesÃturnÃaÃlot,ÃandÃthatÃleavingÃa\n\
roomÃtoÃtheÃnorthÃdoesÃnotÃguaranteeÃenteringÃtheÃnextÃfromÃtheÃsouth.\nGoodÃluck!");

mess wd ("tree");
mess wd ("trees");
new mess ("TheÃtreesÃofÃtheÃforestÃareÃlargeÃhardwoodÃoakÃandÃmaple,ÃwithÃan\n\

occasionalÃgroveÃofÃpineÃorÃspruce.ÃÃThereÃisÃquiteÃaÃbitÃofÃunder−\n\
growth,ÃlargelyÃbirchÃandÃashÃsaplingsÃplusÃnondescriptÃbushesÃof\n\
variousÃsorts.ÃÃThisÃtimeÃofÃyearÃvisibilityÃisÃquiteÃrestrictedÃby\n\
allÃtheÃleaves,ÃbutÃtravelÃisÃquiteÃeasyÃifÃyouÃdetourÃaroundÃthe\n\
spruceÃandÃberryÃbushes.");

mess wd ("dig");
mess wd ("excav");
new mess ("DiggingÃwithoutÃaÃshovelÃisÃquiteÃimpractical.ÃÃEvenÃwithÃaÃshovel\n\

progressÃisÃunlikely.");
mess wd ("lost");
new mess ("I’mÃasÃconfusedÃasÃyouÃare.");
new mess ("ThereÃisÃaÃloudÃexplosionÃandÃyouÃareÃsuddenlyÃsplashedÃacrossÃthe\n\

wallsÃofÃtheÃroom.");

§16 ADVENTURE THE VOCABULARY 13

new mess ("ThereÃisÃaÃloudÃexplosionÃandÃaÃtwenty−footÃholeÃappearsÃinÃtheÃfar\n\
wall,ÃburyingÃtheÃsnakesÃinÃtheÃrubble.ÃÃAÃriverÃofÃmoltenÃlavaÃpours\n\
inÃthroughÃtheÃhole,ÃdestroyingÃeverythingÃinÃitsÃpath,ÃincludingÃyou!");

mess wd ("mist");
new mess ("MistÃisÃaÃwhiteÃvapor,ÃusuallyÃwater,ÃseenÃfromÃtimeÃtoÃtimeÃin\n\

caverns.ÃÃItÃcanÃbeÃfoundÃanywhereÃbutÃisÃfrequentlyÃaÃsignÃofÃaÃdeep\n\
pitÃleadingÃdownÃtoÃwater.");

mess wd ("fuck");
new mess ("WatchÃit!");
new mess ("ThereÃisÃaÃloudÃexplosion,ÃandÃaÃtwenty−footÃholeÃappearsÃinÃtheÃfar\n\

wall,ÃburyingÃtheÃdwarvesÃinÃtheÃrubble.ÃÃYouÃmarchÃthroughÃtheÃhole\n\
andÃfindÃyourselfÃinÃtheÃmainÃoffice,ÃwhereÃaÃcheeringÃbandÃof\n\
friendlyÃelvesÃcarryÃtheÃconqueringÃadventurerÃoffÃintoÃtheÃsunset.");

mess wd ("stop");
new mess ("IÃdon’tÃknowÃtheÃwordÃ\"stop\".ÃÃUseÃ\"quit\"ÃifÃyouÃwantÃtoÃgiveÃup.");
mess wd ("info");
mess wd ("infor");
new mess ("IfÃyouÃwantÃtoÃendÃyourÃadventureÃearly,ÃsayÃ\"quit\".ÃÃToÃgetÃfull\n\

creditÃforÃaÃtreasure,ÃyouÃmustÃhaveÃleftÃitÃsafelyÃinÃtheÃbuilding,\n\
thoughÃyouÃgetÃpartialÃcreditÃjustÃforÃlocatingÃit.ÃÃYouÃloseÃpoints\n\
forÃgettingÃkilled,ÃorÃforÃquitting,ÃthoughÃtheÃformerÃcostsÃyouÃmore.\n\
ThereÃareÃalsoÃpointsÃbasedÃonÃhowÃmuchÃ(ifÃany)ÃofÃtheÃcaveÃyou’ve\n\
managedÃtoÃexplore;ÃinÃparticular,ÃthereÃisÃaÃlargeÃbonusÃjustÃfor\n\
gettingÃinÃ(toÃdistinguishÃtheÃbeginnersÃfromÃtheÃrestÃofÃtheÃpack),\n\
andÃthereÃareÃotherÃwaysÃtoÃdetermineÃwhetherÃyou’veÃbeenÃthroughÃsome\n\
ofÃtheÃmoreÃharrowingÃsections.ÃÃIfÃyouÃthinkÃyou’veÃfoundÃallÃthe\n\
treasures,ÃjustÃkeepÃexploringÃforÃaÃwhile.ÃÃIfÃnothingÃinteresting\n\
happens,ÃyouÃhaven’tÃfoundÃthemÃallÃyet.ÃÃIfÃsomethingÃinteresting\n\
DOESÃhappen,ÃitÃmeansÃyou’reÃgettingÃaÃbonusÃandÃhaveÃanÃopportunity\n\
toÃgarnerÃmanyÃmoreÃpointsÃinÃtheÃmaster’sÃsection.\n\
IÃmayÃoccasionallyÃofferÃhintsÃifÃyouÃseemÃtoÃbeÃhavingÃtrouble.\n\
IfÃIÃdo,ÃI’llÃwarnÃyouÃinÃadvanceÃhowÃmuchÃitÃwillÃaffectÃyourÃscore\n\
toÃacceptÃtheÃhints.ÃÃFinally,ÃtoÃsaveÃpaper,ÃyouÃmayÃspecifyÃ\"brief\",\n\
whichÃtellsÃmeÃneverÃtoÃrepeatÃtheÃfullÃdescriptionÃofÃaÃplace\n\
unlessÃyouÃexplicitlyÃaskÃmeÃto.");

mess wd ("swim");
new mess ("IÃdon’tÃknowÃhow.");

17. 〈Global variables 7 〉 +≡
char ∗message [13]; /∗ messages tied to certain vocabulary words ∗/

14 CAVE DATA ADVENTURE §18

18. Cave data. You might be in any of more than 100 places as you wander about in Colossal Cave.
Let’s enumerate them now, so that we can build the data structures that define the travel restrictions.

A special negative value called inhand is the location code for objects that you are carrying. But you
yourself are always situated in a place that has a nonnegative location code.

Nonnegative places ≤ outside are outside the cave, while places ≥ inside are inside. The upper part of
the cave, places < emist , is the easiest part to explore. (We will see later that dwarves do not venture this
close to the surface; they stay ≥ emist .)

Places between inside and dead2 , inclusive, form the main cave; the next places, up to and including barr ,
form the hidden cave on the other side of the troll bridge; then neend and swend are a private cave.

The remaining places, ≥ crack are dummy locations, not really part of the maze. As soon as you arrive
at a dummy location, the program immediately sends you somewhere else. In fact, the last three dummy
locations aren’t really even locations; they invoke special code. This device is a convenient way to provide
a variety of features without making the program logic any more cluttered than it already is.
#define min in cave inside
#define min lower loc emist
#define min forced loc crack
#define max loc didit
#define max spec troll
〈Type definitions 5 〉 +≡

typedef enum {
inhand = −1, limbo ,
road , hill , house , valley , forest ,woods , slit , outside ,
inside , cobbles , debris , awk , bird , spit ,
emist ,nugget , efiss ,wfiss ,wmist ,
like1 , like2 , like3 , like4 , like5 , like6 , like7 , like8 , like9 , like10 , like11 , like12 , like13 , like14 ,
brink , elong ,wlong ,
diff0 , diff1 , diff2 , diff3 , diff4 , diff5 , diff6 , diff7 , diff8 , diff9 , diff10 ,
pony , cross , hmk ,west , south ,ns , y2 , jumble ,windoe ,
dirty , clean ,wet , dusty , complex ,
shell , arch , ragged , sac , ante ,witt ,
bedquilt , cheese , soft ,
e2pit ,w2pit , epit ,wpit ,
narrow , giant , block , immense ,
falls , steep , abovep , sjunc , tite , low , crawl ,window ,
oriental ,misty , alcove , proom , droom ,
slab , abover ,mirror , res ,
scan1 , scan2 , scan3 , secret ,
wide , tight , tall , boulders ,
scorr , swside ,
dead0 , dead1 , dead2 , dead3 , dead4 , dead5 , dead6 , dead7 , dead8 , dead9 , dead10 , dead11 ,
neside , corr , fork ,warm , view , chamber , lime , fbarr , barr ,
neend , swend ,
crack ,neck , lose , cant , climb , check , snaked , thru , duck , sewer , upnout , didit ,
ppass , pdrop , troll

} location;

§19 ADVENTURE CAVE DATA 15

19. Speaking of program logic, the complex cave dynamics are essentially kept in a table. The table tells
us what to do when you ask for a particular motion in a particular location. Each entry of the table is called
an instruction; and each instruction has three parts: a motion, a condition, and a destination.

The motion part of an instruction is one of the motion verbs enumerated earlier. The condition part c is
a small integer, interpreted as follows:
• if c = 0, the condition is always true;
• if 0 < c < 100, the condition is true with probability c/100;
• if c = 100, the condition is always true, except for dwarves;
• if 100 < c <= 200, you must have object c mod 100;
• if 200 < c <= 300, object c mod 100 must be in the current place;
• if 300 < c <= 400, prop [c mod 100] must not be 0;
• if 400 < c <= 500, prop [c mod 100] must not be 1;
• if 500 < c <= 600, prop [c mod 100] must not be 2; etc.
(We will discuss properties of objects and the prop array later.) The destination d is either a location or a
number greater than max loc ; in the latter case, if d ≤ max spec we perform a special routine, otherwise we
print remarks [d−max spec] and stay in the current place.

If the motion matches what you said but the condition is not satisfied, we move on to the next instruction
that has a different destination and/or condition from this one. The next instruction might itself be
conditional in the same way. (Numerous examples appear below.)
〈Type definitions 5 〉 +≡

typedef struct {
motion mot ; /∗ a motion you might have requested ∗/
int cond ; /∗ if you did, this condition must also hold ∗/
location dest ; /∗ and if so, this is where you’ll go next ∗/

} instruction;

20. Suppose you’re at location l. Then start [l] is the first relevant instruction, and start [l + 1] − 1 is the
last. Also long desc [l] is a string that fully describes l; short desc [l] is an optional abbreviated description;
and visits [l] tells how many times you have been here. Special properties of this location, such as whether
a lantern is necessary or a hint might be advisable, are encoded in the bits of flags [l].
#define lighted 1 /∗ bit for a location that isn’t dark ∗/
#define oil 2 /∗ bit for presence of oil ∗/
#define liquid 4 /∗ bit for presence of a liquid (oil or water) ∗/
#define cave hint 8 /∗ bit for hint about trying to get in the cave ∗/
#define bird hint 16 /∗ bit for hint about catching the bird ∗/
#define snake hint 32 /∗ bit for hint about dealing with the snake ∗/
#define twist hint 64 /∗ bit for hint about being lost in a maze ∗/
#define dark hint 128 /∗ bit for hint about the dark room ∗/
#define witt hint 256 /∗ bit for hint about Witt’s End ∗/
#define travel size 740 /∗ at most this many instructions ∗/
#define rem size 15 /∗ at most this many remarks ∗/
〈Global variables 7 〉 +≡

instruction travels [travel size]; /∗ the table of instructions ∗/
instruction ∗start [max loc + 2]; /∗ references to starting instruction ∗/
char ∗long desc [max loc + 1]; /∗ long-winded descriptions of locations ∗/
char ∗short desc [max loc + 1]; /∗ short-winded descriptions, or 0 ∗/
int flags [max loc + 1]; /∗ bitmaps for special properties ∗/
char ∗remarks [rem size]; /∗ comments made when staying put ∗/
int rem count ; /∗ we’ve made this many comments ∗/
int visits [max loc + 1]; /∗ how often have you been here? ∗/

16 CAVE CONNECTIONS ADVENTURE §21

21. Cave connections. Now we are ready to build the fundamental table of location and transition
data, by filling in the arrays just declared. We will fill them in strict order of their location codes.

It is convenient to define several macros and constants.
#define make loc(x, l, s, f)

{ long desc [x] = l; short desc [x] = s; flags [x] = f ; start [x] = q; }
#define make inst (m, c, d)

{ q~mot = m; q~cond = c; q~dest = d; q++; }
#define ditto(m)

{ q~mot = m; q~cond = (q − 1)~cond ; q~dest = (q − 1)~dest ; q++; }
#define holds (o) 100 + o /∗ do instruction only if carrying object o ∗/
#define sees (o) 200 + o /∗ do instruction only if object o is present ∗/
#define not (o, k) 300 + o + 100 ∗ k /∗ do instruction only if prop [o] 6= k ∗/
#define remark (m) remarks [++rem count] = m
#define sayit max spec + rem count
〈Global variables 7 〉 +≡

char all alike [] = "YouÃareÃinÃaÃmazeÃofÃtwistyÃlittleÃpassages,ÃallÃalike.";
char dead end [] = "DeadÃend.";
int slit rmk , grate rmk , bridge rmk , loop rmk ; /∗ messages used more than once ∗/

22. 〈Additional local registers 22 〉 ≡
register instruction ∗q, ∗qq ;

See also sections 68 and 144.

This code is used in section 2.

23. The road is where you start; its long desc is now famous, having been quoted by Steven Levy in his
book Hackers.

The instructions here say that if you want to go west, or up, or on the road, we take you to hill ; if you
want to go east, or in, or to the house, or if you say ‘enter’, we take you to house ; etc. Of course you won’t
know about all the motions available at this point until you have played the game for awhile.
〈Build the travel table 23 〉 ≡

q = travels ;
make loc(road ,
"YouÃareÃstandingÃatÃtheÃendÃofÃaÃroadÃbeforeÃaÃsmallÃbrickÃbuilding.\n\

AroundÃyouÃisÃaÃforest.ÃÃAÃsmallÃstreamÃflowsÃoutÃofÃtheÃbuildingÃand\n\
downÃaÃgully.",

"You’reÃatÃendÃofÃroadÃagain.", lighted + liquid);
make inst (W, 0, hill); ditto(U); ditto(ROAD);
make inst (E, 0, house); ditto(IN); ditto(HOUSE); ditto(ENTER);
make inst (S, 0, valley); ditto(D); ditto(GULLY); ditto(STREAM); ditto(DOWNSTREAM);
make inst (N, 0, forest); ditto(WOODS);
make inst (DEPRESSION, 0, outside);

See also sections 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, and 62.

This code is used in section 200.

§24 ADVENTURE CAVE CONNECTIONS 17

24. There’s nothing up the hill, but a good explorer has to try anyway.
〈Build the travel table 23 〉 +≡

make loc(hill ,
"YouÃhaveÃwalkedÃupÃaÃhill,ÃstillÃinÃtheÃforest.ÃÃTheÃroadÃslopesÃback\n\

downÃtheÃotherÃsideÃofÃtheÃhill.ÃÃThereÃisÃaÃbuildingÃinÃtheÃdistance.",
"You’reÃatÃhillÃinÃroad.", lighted);
make inst (ROAD, 0, road); ditto(HOUSE); ditto(FORWARD); ditto(E); ditto(D);
make inst (WOODS, 0, forest); ditto(N); ditto(S);

25. The house initially contains several objects: keys, food, a bottle, and a lantern. We’ll put them in
there later.

Two magic words are understood in this house, for spelunkers who have been there and done that.
〈Build the travel table 23 〉 +≡

make loc(house ,
"YouÃareÃinsideÃaÃbuilding,ÃaÃwellÃhouseÃforÃaÃlargeÃspring.",
"You’reÃinsideÃbuilding.", lighted + liquid);
make inst (ENTER, 0, road); ditto(OUT); ditto(OUTDOORS); ditto(W);
make inst (XYZZY, 0, debris);
make inst (PLUGH, 0, y2);
make inst (DOWNSTREAM, 0, sewer); ditto(STREAM);

26. A foolish consistency is the hobgoblin of little minds. (Emerson)
〈Build the travel table 23 〉 +≡

make loc(valley ,
"YouÃareÃinÃaÃvalleyÃinÃtheÃforestÃbesideÃaÃstreamÃtumblingÃalongÃa\nrockyÃbed.",
"You’reÃinÃvalley.", lighted + liquid);
make inst (UPSTREAM, 0, road); ditto(HOUSE); ditto(N);
make inst (WOODS, 0, forest); ditto(E); ditto(W); ditto(U);
make inst (DOWNSTREAM, 0, slit); ditto(S); ditto(D);
make inst (DEPRESSION, 0, outside);

27. The instructions here keep you in the forest with probability 50%, otherwise they take you to the
woods . This gives the illusion that we maintain more state information about you than we really do.
〈Build the travel table 23 〉 +≡

make loc(forest ,
"YouÃareÃinÃopenÃforest,ÃwithÃaÃdeepÃvalleyÃtoÃoneÃside.",
"You’reÃinÃforest.", lighted);
make inst (VALLEY, 0, valley); ditto(E); ditto(D);
make inst (WOODS, 50, forest); ditto(FORWARD); ditto(N);
make inst (WOODS, 0,woods);
make inst (W, 0, forest); ditto(S);
make loc(woods ,
"YouÃareÃinÃopenÃforestÃnearÃbothÃaÃvalleyÃandÃaÃroad.",
short desc [forest], lighted);
make inst (ROAD, 0, road); ditto(N);
make inst (VALLEY, 0, valley); ditto(E); ditto(W); ditto(D);
make inst (WOODS, 0, forest); ditto(S);

18 CAVE CONNECTIONS ADVENTURE §28

28. You’re getting closer. (But the program has forgotten that DEPRESSION leads outside ; it knew this
when you were at the road or the valley .)
〈Build the travel table 23 〉 +≡

make loc(slit ,
"AtÃyourÃfeetÃallÃtheÃwaterÃofÃtheÃstreamÃsplashesÃintoÃaÃ2−inchÃslit\n\

inÃtheÃrock.ÃÃDownstreamÃtheÃstreambedÃisÃbareÃrock.",
"You’reÃatÃslitÃinÃstreambed.", lighted + liquid);
make inst (HOUSE, 0, road);
make inst (UPSTREAM, 0, valley); ditto(N);
make inst (WOODS, 0, forest); ditto(E); ditto(W);
make inst (DOWNSTREAM, 0, outside); ditto(ROCK); ditto(BED); ditto(S);
remark ("YouÃdon’tÃfitÃthroughÃaÃtwo−inchÃslit!");
make inst (SLIT, 0, sayit); ditto(STREAM); ditto(D);
slit rmk = sayit ;

29. We’ll see later that the GRATE will change from state 0 to state 1 if you unlock it. So let’s hope you
have the KEYS.
〈Build the travel table 23 〉 +≡

make loc(outside ,
"YouÃareÃinÃaÃ20−footÃdepressionÃflooredÃwithÃbareÃdirt.ÃÃSetÃintoÃthe\n\

dirtÃisÃaÃstrongÃsteelÃgrateÃmountedÃinÃconcrete.ÃÃAÃdryÃstreambed\n\
leadsÃintoÃtheÃdepression.",

"You’reÃoutsideÃgrate.", lighted + cave hint);
make inst (WOODS, 0, forest); ditto(E); ditto(W); ditto(S);
make inst (HOUSE, 0, road);
make inst (UPSTREAM, 0, slit); ditto(GULLY); ditto(N);
make inst (ENTER,not (GRATE, 0), inside); ditto(ENTER); ditto(IN); ditto(D);
remark ("YouÃcan’tÃgoÃthroughÃaÃlockedÃsteelÃgrate!");
grate rmk = sayit ;
make inst (ENTER, 0, sayit);

30. If you’ve come this far, you’re probably hooked, although your adventure has barely begun.
〈Build the travel table 23 〉 +≡

make loc(inside ,
"YouÃareÃinÃaÃsmallÃchamberÃbeneathÃaÃ3x3ÃsteelÃgrateÃtoÃtheÃsurface.\n\

AÃlowÃcrawlÃoverÃcobblesÃleadsÃinwardsÃtoÃtheÃwest.",
"You’reÃbelowÃtheÃgrate.", lighted);
make inst (OUT,not (GRATE, 0), outside); ditto(OUT); ditto(U);
make inst (OUT, 0, grate rmk);
make inst (CRAWL, 0, cobbles); ditto(COBBLES); ditto(IN); ditto(W);
make inst (PIT, 0, spit);
make inst (DEBRIS, 0, debris);

§31 ADVENTURE CAVE CONNECTIONS 19

31. Go West, young man. (If you’ve got a lamp.)
〈Build the travel table 23 〉 +≡

make loc(cobbles ,
"YouÃareÃcrawlingÃoverÃcobblesÃinÃaÃlowÃpassage.ÃÃThereÃisÃaÃdimÃlight\n\

atÃtheÃeastÃendÃofÃtheÃpassage.",
"You’reÃinÃcobbleÃcrawl.", lighted);
make inst (OUT, 0, inside); ditto(SURFACE); ditto(NOWHERE); ditto(E);
make inst (IN, 0, debris); ditto(DARK); ditto(W); ditto(DEBRIS);
make inst (PIT, 0, spit);
make loc(debris ,
"YouÃareÃinÃaÃdebrisÃroomÃfilledÃwithÃstuffÃwashedÃinÃfromÃtheÃsurface.\n\

AÃlowÃwideÃpassageÃwithÃcobblesÃbecomesÃpluggedÃwithÃmudÃandÃdebris\n\
here,ÃbutÃanÃawkwardÃcanyonÃleadsÃupwardÃandÃwest.ÃÃAÃnoteÃonÃtheÃwall\n\
saysÃ\"MAGICÃWORDÃXYZZY\".",

"You’reÃinÃdebrisÃroom.", 0);
make inst (DEPRESSION,not (GRATE, 0), outside);
make inst (ENTRANCE, 0, inside);
make inst (CRAWL, 0, cobbles); ditto(COBBLES); ditto(PASSAGE); ditto(LOW); ditto(E);
make inst (CANYON, 0, awk); ditto(IN); ditto(U); ditto(W);
make inst (XYZZY, 0, house);
make inst (PIT, 0, spit);
make loc(awk ,
"YouÃareÃinÃanÃawkwardÃslopingÃeast/westÃcanyon.", 0, 0);
make inst (DEPRESSION,not (GRATE, 0), outside);
make inst (ENTRANCE, 0, inside);
make inst (D, 0, debris); ditto(E); ditto(DEBRIS);
make inst (IN, 0, bird); ditto(U); ditto(W);
make inst (PIT, 0, spit);
make loc(bird ,
"YouÃareÃinÃaÃsplendidÃchamberÃthirtyÃfeetÃhigh.ÃÃTheÃwallsÃareÃfrozen\n\

riversÃofÃorangeÃstone.ÃÃAnÃawkwardÃcanyonÃandÃaÃgoodÃpassageÃexit\n\
fromÃeastÃandÃwestÃsidesÃofÃtheÃchamber.",

"You’reÃinÃbirdÃchamber.", bird hint);
make inst (DEPRESSION,not (GRATE, 0), outside);
make inst (ENTRANCE, 0, inside);
make inst (DEBRIS, 0, debris);
make inst (CANYON, 0, awk); ditto(E);
make inst (PASSAGE, 0, spit); ditto(PIT); ditto(W);
make loc(spit ,
"AtÃyourÃfeetÃisÃaÃsmallÃpitÃbreathingÃtracesÃofÃwhiteÃmist.ÃÃAnÃeast\n\

passageÃendsÃhereÃexceptÃforÃaÃsmallÃcrackÃleadingÃon.",
"You’reÃatÃtopÃofÃsmallÃpit.", 0);
make inst (DEPRESSION,not (GRATE, 0), outside);
make inst (ENTRANCE, 0, inside);
make inst (DEBRIS, 0, debris);
make inst (PASSAGE, 0, bird); ditto(E);
make inst (D, holds (GOLD),neck); ditto(PIT); ditto(STEPS);
make inst (D, 0, emist); /∗ good thing you weren’t loaded down with GOLD ∗/
make inst (CRACK, 0, crack); ditto(W);

20 CAVE CONNECTIONS ADVENTURE §32

32. Welcome to the main caverns and a deeper level of adventures.
〈Build the travel table 23 〉 +≡

make loc(emist ,
"YouÃareÃatÃoneÃendÃofÃaÃvastÃhallÃstretchingÃforwardÃoutÃofÃsightÃto\n\

theÃwest.ÃÃThereÃareÃopeningsÃtoÃeitherÃside.ÃÃNearby,ÃaÃwideÃstone\n\
staircaseÃleadsÃdownward.ÃÃTheÃhallÃisÃfilledÃwithÃwispsÃofÃwhiteÃmist\n\
swayingÃtoÃandÃfroÃalmostÃasÃifÃalive.ÃÃAÃcoldÃwindÃblowsÃupÃthe\n\
staircase.ÃÃThereÃisÃaÃpassageÃatÃtheÃtopÃofÃaÃdomeÃbehindÃyou.",

"You’reÃinÃHallÃofÃMists.", 0);
make inst (L, 0,nugget); ditto(S);
make inst (FORWARD, 0, efiss); ditto(HALL); ditto(W);
make inst (STAIRS, 0, hmk); ditto(D); ditto(N);
make inst (U, holds (GOLD), cant); ditto(PIT); ditto(STEPS);
ditto(DOME); ditto(PASSAGE); ditto(E);
make inst (U, 0, spit);
make inst (Y2, 0, jumble);

33. To the left or south of the misty threshold, you might spot the first treasure.
〈Build the travel table 23 〉 +≡

make loc(nugget ,
"ThisÃisÃaÃlowÃroomÃwithÃaÃcrudeÃnoteÃonÃtheÃwall.ÃÃTheÃnoteÃsays,\n\

\"YouÃwon’tÃgetÃitÃupÃtheÃsteps\".",
"You’reÃinÃnuggetÃofÃgoldÃroom.", 0);
make inst (HALL, 0, emist); ditto(OUT); ditto(N);

34. Unless you take a circuitous route to the other side of the Hall of Mists, via the Hall of the Mountain
King, you should make the CRYSTAL bridge appear (by getting it into state 1).
〈Build the travel table 23 〉 +≡

make loc(efiss ,
"YouÃareÃonÃtheÃeastÃbankÃofÃaÃfissureÃslicingÃclearÃacrossÃtheÃhall.\n\

TheÃmistÃisÃquiteÃthickÃhere,ÃandÃtheÃfissureÃisÃtooÃwideÃtoÃjump.",
"You’reÃonÃeastÃbankÃofÃfissure.", 0);
make inst (HALL, 0, emist); ditto(E);
remark ("IÃrespectfullyÃsuggestÃyouÃgoÃacrossÃtheÃbridgeÃinsteadÃofÃjumping.");
bridge rmk = sayit ;
make inst (JUMP,not (CRYSTAL, 0), sayit);
make inst (FORWARD,not (CRYSTAL, 1), lose);
remark ("ThereÃisÃnoÃwayÃacrossÃtheÃfissure.");
make inst (OVER,not (CRYSTAL, 1), sayit); ditto(ACROSS); ditto(W); ditto(CROSS);
make inst (OVER, 0,wfiss);
make loc(wfiss ,
"YouÃareÃonÃtheÃwestÃsideÃofÃtheÃfissureÃinÃtheÃHallÃofÃMists.", 0, 0);
make inst (JUMP,not (CRYSTAL, 0), bridge rmk);
make inst (FORWARD,not (CRYSTAL, 1), lose);
make inst (OVER,not (CRYSTAL, 1), sayit); ditto(ACROSS); ditto(E); ditto(CROSS);
make inst (OVER, 0, efiss);
make inst (N, 0, thru);
make inst (W, 0,wmist);

§35 ADVENTURE CAVE CONNECTIONS 21

35. What you see here isn’t exactly what you get; N takes you east and S sucks you in to an amazing maze.
〈Build the travel table 23 〉 +≡

make loc(wmist ,
"YouÃareÃatÃtheÃwestÃendÃofÃtheÃHallÃofÃMists.ÃÃAÃlowÃwideÃcrawl\n\

continuesÃwestÃandÃanotherÃgoesÃnorth.ÃÃToÃtheÃsouthÃisÃaÃlittle\n\
passageÃ6ÃfeetÃoffÃtheÃfloor.",

"You’reÃatÃwestÃendÃofÃHallÃofÃMists.", 0);
make inst (S, 0, like1); ditto(U); ditto(PASSAGE); ditto(CLIMB);
make inst (E, 0,wfiss);
make inst (N, 0, duck);
make inst (W, 0, elong); ditto(CRAWL);

22 CAVE CONNECTIONS ADVENTURE §36

36. The twisty little passages of this maze are said to be all alike, but they respond differently to different
motions. For example, you can go north, east, south, or west from like1 , but you can’t go north from like2 .
In that way you can psych out the whole maze of 14 similar locations. (And eventually you will want to
know every place where treasure might be hidden.) The only exits are to wmist and brink .
〈Build the travel table 23 〉 +≡

make loc(like1 , all alike , 0, twist hint);
make inst (U, 0,wmist);
make inst (N, 0, like1);
make inst (E, 0, like2);
make inst (S, 0, like4);
make inst (W, 0, like11);
make loc(like2 , all alike , 0, twist hint);
make inst (W, 0, like1);
make inst (S, 0, like3);
make inst (E, 0, like4);
make loc(like3 , all alike , 0, twist hint);
make inst (E, 0, like2);
make inst (D, 0, dead5);
make inst (S, 0, like6);
make inst (N, 0, dead9);
make loc(like4 , all alike , 0, twist hint);
make inst (W, 0, like1);
make inst (N, 0, like2);
make inst (E, 0, dead3);
make inst (S, 0, dead4);
make inst (U, 0, like14); ditto(D);
make loc(like5 , all alike , 0, twist hint);
make inst (E, 0, like6);
make inst (W, 0, like7);
make loc(like6 , all alike , 0, twist hint);
make inst (E, 0, like3);
make inst (W, 0, like5);
make inst (D, 0, like7);
make inst (S, 0, like8);
make loc(like7 , all alike , 0, twist hint);
make inst (W, 0, like5);
make inst (U, 0, like6);
make inst (E, 0, like8);
make inst (S, 0, like9);
make loc(like8 , all alike , 0, twist hint);
make inst (W, 0, like6);
make inst (E, 0, like7);
make inst (S, 0, like8);
make inst (U, 0, like9);
make inst (N, 0, like10);
make inst (D, 0, dead11);
make loc(like9 , all alike , 0, twist hint);
make inst (W, 0, like7);
make inst (N, 0, like8);
make inst (S, 0, dead6);

§36 ADVENTURE CAVE CONNECTIONS 23

make loc(like10 , all alike , 0, twist hint);
make inst (W, 0, like8);
make inst (N, 0, like10);
make inst (D, 0, dead7);
make inst (E, 0, brink);
make loc(like11 , all alike , 0, twist hint);
make inst (N, 0, like1);
make inst (W, 0, like11); ditto(S);
make inst (E, 0, dead1);
make loc(like12 , all alike , 0, twist hint);
make inst (S, 0, brink);
make inst (E, 0, like13);
make inst (W, 0, dead10);
make loc(like13 , all alike , 0, twist hint);
make inst (N, 0, brink);
make inst (W, 0, like12);
make inst (NW, 0, dead2); /∗ NW: a dirty trick! ∗/
make loc(like14 , all alike , 0, twist hint);
make inst (U, 0, like4); ditto(D);

37. 〈Build the travel table 23 〉 +≡
make loc(brink ,
"YouÃareÃonÃtheÃbrinkÃofÃaÃthirty−footÃpitÃwithÃaÃmassiveÃorangeÃcolumn\n\

downÃoneÃwall.ÃÃYouÃcouldÃclimbÃdownÃhereÃbutÃyouÃcouldÃnotÃgetÃback\n\
up.ÃÃTheÃmazeÃcontinuesÃatÃthisÃlevel.",

"You’reÃatÃbrinkÃofÃpit.", 0);
make inst (D, 0, bird); ditto(CLIMB);
make inst (W, 0, like10);
make inst (S, 0, dead8);
make inst (N, 0, like12);
make inst (E, 0, like13);

38. Crawling west from wmist instead of south, you encounter this.
〈Build the travel table 23 〉 +≡

make loc(elong ,
"YouÃareÃatÃtheÃeastÃendÃofÃaÃveryÃlongÃhallÃapparentlyÃwithoutÃside\n\

chambers.ÃÃToÃtheÃeastÃaÃlowÃwideÃcrawlÃslantsÃup.ÃÃToÃtheÃnorthÃa\n\
roundÃtwo−footÃholeÃslantsÃdown.",

"You’reÃatÃeastÃendÃofÃlongÃhall.", 0);
make inst (E, 0,wmist); ditto(U); ditto(CRAWL);
make inst (W, 0,wlong);
make inst (N, 0, cross); ditto(D); ditto(HOLE);
make loc(wlong ,
"YouÃareÃatÃtheÃwestÃendÃofÃaÃveryÃlongÃfeaturelessÃhall.ÃÃTheÃhall\n\

joinsÃupÃwithÃaÃnarrowÃnorth/southÃpassage.",
"You’reÃatÃwestÃendÃofÃlongÃhall.", 0);
make inst (E, 0, elong);
make inst (N, 0, cross);
make inst (S, 100, diff0);

24 CAVE CONNECTIONS ADVENTURE §39

39. Recall that the ‘100’ on the last instruction above means, “Dwarves not permitted.” It keeps them out
of the following maze, which is based on an 11× 11 latin square. (Each of the eleven locations leads to each
of the others under the ten motions N, S, E, W, NE, SE, NW, SW, U, D — except that diff0 goes down to the
entrance location wlong instead of to diff10 , and diff10 goes south to the dead-end location pony instead
of to diff0 . Furthermore, each location is accessible from all ten possible directions.)

Incidentally, if you ever get into a “little twisting maze of passages,” you’re really lost.
〈Build the travel table 23 〉 +≡

make loc(diff0 ,
"YouÃareÃinÃaÃmazeÃofÃtwistyÃlittleÃpassages,ÃallÃdifferent.", 0, 0);
make inst (S, 0, diff1); make inst (SW, 0, diff2); make inst (NE, 0, diff3); make inst (SE, 0, diff4);
make inst (U, 0, diff5); make inst (NW, 0, diff6); make inst (E, 0, diff7); make inst (W, 0, diff8);
make inst (N, 0, diff9); make inst (D, 0,wlong);
make loc(diff1 ,
"YouÃareÃinÃaÃmazeÃofÃtwistingÃlittleÃpassages,ÃallÃdifferent.", 0, 0);
make inst (W, 0, diff0); make inst (SE, 0, diff2); make inst (NW, 0, diff3); make inst (SW, 0, diff4);
make inst (NE, 0, diff5); make inst (U, 0, diff6); make inst (D, 0, diff7); make inst (N, 0, diff8);
make inst (S, 0, diff9); make inst (E, 0, diff10);
make loc(diff2 ,
"YouÃareÃinÃaÃlittleÃmazeÃofÃtwistyÃpassages,ÃallÃdifferent.", 0, 0);
make inst (NW, 0, diff0); make inst (U, 0, diff1); make inst (N, 0, diff3); make inst (S, 0, diff4);
make inst (W, 0, diff5); make inst (SW, 0, diff6); make inst (NE, 0, diff7); make inst (E, 0, diff8);
make inst (D, 0, diff9); make inst (SE, 0, diff10);
make loc(diff3 ,
"YouÃareÃinÃaÃtwistingÃmazeÃofÃlittleÃpassages,ÃallÃdifferent.", 0, 0);
make inst (U, 0, diff0); make inst (D, 0, diff1); make inst (W, 0, diff2); make inst (NE, 0, diff4);
make inst (SW, 0, diff5); make inst (E, 0, diff6); make inst (N, 0, diff7); make inst (NW, 0, diff8);
make inst (SE, 0, diff9); make inst (S, 0, diff10);
make loc(diff4 ,
"YouÃareÃinÃaÃtwistingÃlittleÃmazeÃofÃpassages,ÃallÃdifferent.", 0, 0);
make inst (NE, 0, diff0); make inst (N, 0, diff1); make inst (NW, 0, diff2); make inst (SE, 0, diff3);
make inst (E, 0, diff5); make inst (D, 0, diff6); make inst (S, 0, diff7); make inst (U, 0, diff8);
make inst (W, 0, diff9); make inst (SW, 0, diff10);
make loc(diff5 ,
"YouÃareÃinÃaÃtwistyÃlittleÃmazeÃofÃpassages,ÃallÃdifferent.", 0, 0);
make inst (N, 0, diff0); make inst (SE, 0, diff1); make inst (D, 0, diff2); make inst (S, 0, diff3);
make inst (E, 0, diff4); make inst (W, 0, diff6); make inst (SW, 0, diff7); make inst (NE, 0, diff8);
make inst (NW, 0, diff9); make inst (U, 0, diff10);
make loc(diff6 ,
"YouÃareÃinÃaÃtwistyÃmazeÃofÃlittleÃpassages,ÃallÃdifferent.", 0, 0);
make inst (E, 0, diff0); make inst (W, 0, diff1); make inst (U, 0, diff2); make inst (SW, 0, diff3);
make inst (D, 0, diff4); make inst (S, 0, diff5); make inst (NW, 0, diff7); make inst (SE, 0, diff8);
make inst (NE, 0, diff9); make inst (N, 0, diff10);
make loc(diff7 ,
"YouÃareÃinÃaÃlittleÃtwistyÃmazeÃofÃpassages,ÃallÃdifferent.", 0, 0);
make inst (SE, 0, diff0); make inst (NE, 0, diff1); make inst (S, 0, diff2); make inst (D, 0, diff3);
make inst (U, 0, diff4); make inst (NW, 0, diff5); make inst (N, 0, diff6); make inst (SW, 0, diff8);
make inst (E, 0, diff9); make inst (W, 0, diff10);
make loc(diff8 ,
"YouÃareÃinÃaÃmazeÃofÃlittleÃtwistingÃpassages,ÃallÃdifferent.", 0, 0);

§39 ADVENTURE CAVE CONNECTIONS 25

make inst (D, 0, diff0); make inst (E, 0, diff1); make inst (NE, 0, diff2); make inst (U, 0, diff3);
make inst (W, 0, diff4); make inst (N, 0, diff5); make inst (S, 0, diff6); make inst (SE, 0, diff7);
make inst (SW, 0, diff9); make inst (NW, 0, diff10);
make loc(diff9 ,
"YouÃareÃinÃaÃmazeÃofÃlittleÃtwistyÃpassages,ÃallÃdifferent.", 0, 0);
make inst (SW, 0, diff0); make inst (NW, 0, diff1); make inst (E, 0, diff2); make inst (W, 0, diff3);
make inst (N, 0, diff4); make inst (D, 0, diff5); make inst (SE, 0, diff6); make inst (U, 0, diff7);
make inst (S, 0, diff8); make inst (NE, 0, diff10);
make loc(diff10 ,
"YouÃareÃinÃaÃlittleÃmazeÃofÃtwistingÃpassages,ÃallÃdifferent.", 0, 0);
make inst (SW, 0, diff1); make inst (N, 0, diff2); make inst (E, 0, diff3); make inst (NW, 0, diff4);
make inst (SE, 0, diff5); make inst (NE, 0, diff6); make inst (W, 0, diff7); make inst (D, 0, diff8);
make inst (U, 0, diff9); make inst (S, 0, pony);
make loc(pony , dead end , 0, 0);
make inst (N, 0, diff10); ditto(OUT);

40. Going north of the long hall, we come to the vicinity of another large room, with royal treasures nearby.
(You probably first reached this part of the cavern from the east, via the Hall of Mists.) Unfortunately, a
vicious snake is here too; the conditional instructions for getting past the snake are worthy of study.
〈Build the travel table 23 〉 +≡

make loc(cross ,
"YouÃareÃatÃaÃcrossoverÃofÃaÃhighÃN/SÃpassageÃandÃaÃlowÃE/WÃone.", 0, 0);
make inst (W, 0, elong);
make inst (N, 0, dead0);
make inst (E, 0,west);
make inst (S, 0,wlong);
make loc(hmk ,
"YouÃareÃinÃtheÃHallÃofÃtheÃMountainÃKing,ÃwithÃpassagesÃoffÃinÃall\ndirections.",
"You’reÃinÃHallÃofÃMtÃKing.", snake hint);
make inst (STAIRS, 0, emist); ditto(U); ditto(E);
make inst (N,not (SNAKE, 0),ns); ditto(L);
make inst (S,not (SNAKE, 0), south); ditto(R);
make inst (W,not (SNAKE, 0),west); ditto(FORWARD);
make inst (N, 0, snaked);
make inst (SW, 35, secret);
make inst (SW, sees (SNAKE), snaked);
make inst (SECRET, 0, secret);
make loc(west ,
"YouÃareÃinÃtheÃwestÃsideÃchamberÃofÃtheÃHallÃofÃtheÃMountainÃKing.\n\

AÃpassageÃcontinuesÃwestÃandÃupÃhere.",
"You’reÃinÃwestÃsideÃchamber.", 0);
make inst (HALL, 0, hmk); ditto(OUT); ditto(E);
make inst (W, 0, cross); ditto(U);
make loc(south ,
"YouÃareÃinÃtheÃsouthÃsideÃchamber.", 0, 0);
make inst (HALL, 0, hmk); ditto(OUT); ditto(N);

26 CAVE CONNECTIONS ADVENTURE §41

41. North of the mountain king’s domain is a curious shuttle station called Y2, with magic connections to
two other places.

(Real-world cave maps often use the symbol Y to stand for an entrance, and Y2 for a secondary entrance.)
〈Build the travel table 23 〉 +≡

make loc(ns ,
"YouÃareÃinÃaÃlowÃN/SÃpassageÃatÃaÃholeÃinÃtheÃfloor.ÃÃTheÃholeÃgoes\n\

downÃtoÃanÃE/WÃpassage.",
"You’reÃinÃN/SÃpassage.", 0);
make inst (HALL, 0, hmk); ditto(OUT); ditto(S);
make inst (N, 0, y2); ditto(Y2);
make inst (D, 0, dirty); ditto(HOLE);
make loc(y2 ,
"YouÃareÃinÃaÃlargeÃroom,ÃwithÃaÃpassageÃtoÃtheÃsouth,ÃaÃpassageÃtoÃthe\n\

west,ÃandÃaÃwallÃofÃbrokenÃrockÃtoÃtheÃeast.ÃÃThereÃisÃaÃlargeÃ\"Y2\"Ãon\n\
aÃrockÃinÃtheÃroom’sÃcenter.",

"You’reÃatÃ\"Y2\".", 0);
make inst (PLUGH, 0, house);
make inst (S, 0,ns);
make inst (E, 0, jumble); ditto(WALL); ditto(BROKEN);
make inst (W, 0,windoe);
make inst (PLOVER, holds (EMERALD), pdrop);
make inst (PLOVER, 0, proom);
make loc(jumble ,
"YouÃareÃinÃaÃjumbleÃofÃrock,ÃwithÃcracksÃeverywhere.", 0, 0);
make inst (D, 0, y2); ditto(Y2);
make inst (U, 0, emist);
make loc(windoe ,
"You’reÃatÃaÃlowÃwindowÃoverlookingÃaÃhugeÃpit,ÃwhichÃextendsÃupÃoutÃof\n\

sight.ÃÃAÃfloorÃisÃindistinctlyÃvisibleÃoverÃ50ÃfeetÃbelow.ÃÃTracesÃof\n\
whiteÃmistÃcoverÃtheÃfloorÃofÃtheÃpit,ÃbecomingÃthickerÃtoÃtheÃright.\n\
MarksÃinÃtheÃdustÃaroundÃtheÃwindowÃwouldÃseemÃtoÃindicateÃthat\n\
someoneÃhasÃbeenÃhereÃrecently.ÃÃDirectlyÃacrossÃtheÃpitÃfromÃyouÃand\n\
25ÃfeetÃawayÃthereÃisÃaÃsimilarÃwindowÃlookingÃintoÃaÃlightedÃroom.\n\
AÃshadowyÃfigureÃcanÃbeÃseenÃthereÃpeeringÃbackÃatÃyou.",

"You’reÃatÃwindowÃonÃpit.", 0);
make inst (E, 0, y2); ditto(Y2);
make inst (JUMP, 0,neck);

§42 ADVENTURE CAVE CONNECTIONS 27

42. Next let’s consider the east/west passage below ns .
〈Build the travel table 23 〉 +≡

make loc(dirty ,
"YouÃareÃinÃaÃdirtyÃbrokenÃpassage.ÃÃToÃtheÃeastÃisÃaÃcrawl.ÃÃToÃthe\n\

westÃisÃaÃlargeÃpassage.ÃÃAboveÃyouÃisÃaÃholeÃtoÃanotherÃpassage.",
"You’reÃinÃdirtyÃpassage.", 0);
make inst (E, 0, clean); ditto(CRAWL);
make inst (U, 0,ns); ditto(HOLE);
make inst (W, 0, dusty);
make inst (BEDQUILT, 0, bedquilt);
make loc(clean ,
"YouÃareÃonÃtheÃbrinkÃofÃaÃsmallÃcleanÃclimbableÃpit.ÃÃAÃcrawlÃleads\nwest.",
"You’reÃbyÃaÃcleanÃpit.", 0);
make inst (W, 0, dirty); ditto(CRAWL);
make inst (D, 0,wet); ditto(PIT); ditto(CLIMB);
make loc(wet ,
"YouÃareÃinÃtheÃbottomÃofÃaÃsmallÃpitÃwithÃaÃlittleÃstream,Ãwhich\n\

entersÃandÃexitsÃthroughÃtinyÃslits.",
"You’reÃinÃpitÃbyÃstream.", liquid);
make inst (CLIMB, 0, clean); ditto(U); ditto(OUT);
make inst (SLIT, 0, slit rmk); ditto(STREAM); ditto(D); ditto(UPSTREAM); ditto(DOWNSTREAM);
make loc(dusty ,
"YouÃareÃinÃaÃlargeÃroomÃfullÃofÃdustyÃrocks.ÃÃThereÃisÃaÃbigÃholeÃin\n\

theÃfloor.ÃÃThereÃareÃcracksÃeverywhere,ÃandÃaÃpassageÃleadingÃeast.",
"You’reÃinÃdustyÃrockÃroom.", 0);
make inst (E, 0, dirty); ditto(PASSAGE);
make inst (D, 0, complex); ditto(HOLE); ditto(FLOOR);
make inst (BEDQUILT, 0, bedquilt);
make loc(complex ,
"YouÃareÃatÃaÃcomplexÃjunction.ÃÃAÃlowÃhands−and−kneesÃpassageÃfromÃthe\n\

northÃjoinsÃaÃhigherÃcrawlÃfromÃtheÃeastÃtoÃmakeÃaÃwalkingÃpassage\n\
goingÃwest.ÃÃThereÃisÃalsoÃaÃlargeÃroomÃabove.ÃÃTheÃairÃisÃdampÃhere.",

"You’reÃatÃcomplexÃjunction.", 0);
make inst (U, 0, dusty); ditto(CLIMB); ditto(ROOM);
make inst (W, 0, bedquilt); ditto(BEDQUILT);
make inst (N, 0, shell); ditto(SHELL);
make inst (E, 0, ante);

28 CAVE CONNECTIONS ADVENTURE §43

43. A more-or-less self-contained cavelet can be found north of the complex passage. Its connections are
more vertical than horizontal.
〈Build the travel table 23 〉 +≡

make loc(shell ,
"You’reÃinÃaÃlargeÃroomÃcarvedÃoutÃofÃsedimentaryÃrock.ÃÃTheÃfloor\n\

andÃwallsÃareÃlitteredÃwithÃbitsÃofÃshellsÃembeddedÃinÃtheÃstone.\n\
AÃshallowÃpassageÃproceedsÃdownward,ÃandÃaÃsomewhatÃsteeperÃone\n\
leadsÃup.ÃÃAÃlowÃhands−and−kneesÃpassageÃentersÃfromÃtheÃsouth.",

"You’reÃinÃShellÃRoom.", 0);
make inst (U, 0, arch); ditto(HALL);
make inst (D, 0, ragged);
remark ("YouÃcan’tÃfitÃthisÃfive−footÃclamÃthroughÃthatÃlittleÃpassage!");
make inst (S, holds (CLAM), sayit);
remark ("YouÃcan’tÃfitÃthisÃfive−footÃoysterÃthroughÃthatÃlittleÃpassage!");
make inst (S, holds (OYSTER), sayit);
make inst (S, 0, complex);
make loc(arch ,
"YouÃareÃinÃanÃarchedÃhall.ÃÃAÃcoralÃpassageÃonceÃcontinuedÃupÃandÃeast\n\

fromÃhere,ÃbutÃisÃnowÃblockedÃbyÃdebris.ÃÃTheÃairÃsmellsÃofÃseaÃwater.",
"You’reÃinÃarchedÃhall.", 0);
make inst (D, 0, shell); ditto(SHELL); ditto(OUT);
make loc(ragged ,
"YouÃareÃinÃaÃlongÃslopingÃcorridorÃwithÃraggedÃsharpÃwalls.", 0, 0);
make inst (U, 0, shell); ditto(SHELL);
make inst (D, 0, sac);
make loc(sac ,
"YouÃareÃinÃaÃcul−de−sacÃaboutÃeightÃfeetÃacross.", 0, 0);
make inst (U, 0, ragged); ditto(OUT);
make inst (SHELL, 0, shell);

§44 ADVENTURE CAVE CONNECTIONS 29

44. A dangerous section lies east of the complex junction.
〈Build the travel table 23 〉 +≡

make loc(ante ,
"YouÃareÃinÃanÃanteroomÃleadingÃtoÃaÃlargeÃpassageÃtoÃtheÃeast.ÃÃSmall\n\

passagesÃgoÃwestÃandÃup.ÃÃTheÃremnantsÃofÃrecentÃdiggingÃareÃevident.\n\
AÃsignÃinÃmidairÃhereÃsaysÃ\"CAVEÃUNDERÃCONSTRUCTIONÃBEYONDÃTHISÃPOINT.\n\
PROCEEDÃATÃOWNÃRISK.ÃÃ[WITTÃCONSTRUCTIONÃCOMPANY]\"",

"You’reÃinÃanteroom.", 0);
make inst (U, 0, complex);
make inst (W, 0, bedquilt);
make inst (E, 0,witt);
make loc(witt ,
"YouÃareÃatÃWitt’sÃEnd.ÃÃPassagesÃleadÃoffÃinÃ\"all\"Ãdirections.",
"You’reÃatÃWitt’sÃEnd.",witt hint);
remark ("YouÃhaveÃcrawledÃaroundÃinÃsomeÃlittleÃholesÃandÃwoundÃupÃbackÃinÃthe\n\

mainÃpassage.");
loop rmk = sayit ;
make inst (E, 95, sayit); ditto(N); ditto(S);
ditto(NE); ditto(SE); ditto(SW); ditto(NW); ditto(U); ditto(D);
make inst (E, 0, ante); /∗ one chance in 20 ∗/
remark ("YouÃhaveÃcrawledÃaroundÃinÃsomeÃlittleÃholesÃandÃfoundÃyourÃway\n\

blockedÃbyÃaÃrecentÃcave−in.ÃÃYouÃareÃnowÃbackÃinÃtheÃmainÃpassage.");
make inst (W, 0, sayit);

30 CAVE CONNECTIONS ADVENTURE §45

45. Will Crowther, who actively explored and mapped many caves in Kentucky before inventing Adventure,
named Bedquilt after the Bedquilt Entrance to Colossal Cave. (The real Colossal Cave was discovered near
Mammoth Cave in 1895, and its Bedquilt Entrance was found in 1896; see The Longest Cave by Brucker
and Watson (New York: Knopf, 1976) for further details.)

Random exploration is the name of the game here.
〈Build the travel table 23 〉 +≡

make loc(bedquilt ,
"YouÃareÃinÃBedquilt,ÃaÃlongÃeast/westÃpassageÃwithÃholesÃeverywhere.\n\

ToÃexploreÃatÃrandomÃselectÃnorth,Ãsouth,Ãup,ÃorÃdown.",
"You’reÃinÃBedquilt.", 0);
make inst (E, 0, complex);
make inst (W, 0, cheese);
make inst (S, 80, loop rmk);
make inst (SLAB, 0, slab);
make inst (U, 80, loop rmk);
make inst (U, 50, abovep);
make inst (U, 0, dusty);
make inst (N, 60, loop rmk);
make inst (N, 75, low);
make inst (N, 0, sjunc);
make inst (D, 80, loop rmk);
make inst (D, 0, ante);
make loc(cheese ,
"YouÃareÃinÃaÃroomÃwhoseÃwallsÃresembleÃSwissÃcheese.ÃÃObviousÃpassages\n\

goÃwest,Ãeast,ÃNE,ÃandÃNW.ÃÃPartÃofÃtheÃroomÃisÃoccupiedÃbyÃaÃlarge\nbedrockÃblock.",
"You’reÃinÃSwissÃcheeseÃroom.", 0);
make inst (NE, 0, bedquilt);
make inst (W, 0, e2pit);
make inst (S, 80, loop rmk);
make inst (CANYON, 0, tall);
make inst (E, 0, soft);
make inst (NW, 50, loop rmk);
make inst (ORIENTAL, 0, oriental);
make loc(soft ,
"YouÃareÃinÃtheÃSoftÃRoom.ÃÃTheÃwallsÃareÃcoveredÃwithÃheavyÃcurtains,\n\

theÃfloorÃwithÃaÃthickÃpileÃcarpet.ÃÃMossÃcoversÃtheÃceiling.",
"You’reÃinÃSoftÃRoom.", 0);
make inst (W, 0, cheese); ditto(OUT);

§46 ADVENTURE CAVE CONNECTIONS 31

46. West of the quilt and the cheese is a room with two pits. Why would you want to descend into the
pits? Keep playing and you’ll find out.
〈Build the travel table 23 〉 +≡

make loc(e2pit ,
"YouÃareÃatÃtheÃeastÃendÃofÃtheÃTwopitÃRoom.ÃÃTheÃfloorÃhereÃis\n\

litteredÃwithÃthinÃrockÃslabs,ÃwhichÃmakeÃitÃeasyÃtoÃdescendÃtheÃpits.\n\
ThereÃisÃaÃpathÃhereÃbypassingÃtheÃpitsÃtoÃconnectÃpassagesÃfromÃeast\n\
andÃwest.ÃÃThereÃareÃholesÃallÃover,ÃbutÃtheÃonlyÃbigÃoneÃisÃonÃthe\n\
wallÃdirectlyÃoverÃtheÃwestÃpitÃwhereÃyouÃcan’tÃgetÃtoÃit.",

"You’reÃatÃeastÃendÃofÃTwopitÃRoom.", 0);
make inst (E, 0, cheese);
make inst (W, 0,w2pit); ditto(ACROSS);
make inst (D, 0, epit); ditto(PIT);
make loc(w2pit ,
"YouÃareÃatÃtheÃwestÃendÃofÃtheÃTwopitÃRoom.ÃÃThereÃisÃaÃlargeÃholeÃin\n\

theÃwallÃaboveÃtheÃpitÃatÃthisÃendÃofÃtheÃroom.",
"You’reÃatÃwestÃendÃofÃTwopitÃRoom.", 0);
make inst (E, 0, e2pit); ditto(ACROSS);
make inst (W, 0, slab); ditto(SLAB);
make inst (D, 0,wpit); ditto(PIT);
remark ("ItÃisÃtooÃfarÃupÃforÃyouÃtoÃreach.");
make inst (HOLE, 0, sayit);
make loc(epit ,
"YouÃareÃatÃtheÃbottomÃofÃtheÃeasternÃpitÃinÃtheÃTwopitÃRoom.ÃÃThereÃis\n\

aÃsmallÃpoolÃofÃoilÃinÃoneÃcornerÃofÃtheÃpit.",
"You’reÃinÃeastÃpit.", liquid + oil);
make inst (U, 0, e2pit); ditto(OUT);
make loc(wpit ,
"YouÃareÃatÃtheÃbottomÃofÃtheÃwesternÃpitÃinÃtheÃTwopitÃRoom.ÃÃThereÃis\n\

aÃlargeÃholeÃinÃtheÃwallÃaboutÃ25ÃfeetÃaboveÃyou.",
"You’reÃinÃwestÃpit.", 0);
make inst (U, 0,w2pit); ditto(OUT);
make inst (CLIMB,not (PLANT, 4), check);
make inst (CLIMB, 0, climb);

32 CAVE CONNECTIONS ADVENTURE §47

47. Oho, you climbed the plant in the west pit! Now you’re in another scenic area with rare treasures—if
you can get through the door.
〈Build the travel table 23 〉 +≡

make loc(narrow ,
"YouÃareÃinÃaÃlong,ÃnarrowÃcorridorÃstretchingÃoutÃofÃsightÃtoÃthe\n\

west.ÃÃAtÃtheÃeasternÃendÃisÃaÃholeÃthroughÃwhichÃyouÃcanÃseeÃa\n\
profusionÃofÃleaves.",

"You’reÃinÃnarrowÃcorridor.", 0);
make inst (D, 0,wpit); ditto(CLIMB); ditto(E);
make inst (JUMP, 0,neck);
make inst (W, 0, giant); ditto(GIANT);
make loc(giant ,
"YouÃareÃinÃtheÃGiantÃRoom.ÃÃTheÃceilingÃhereÃisÃtooÃhighÃupÃforÃyour\n\

lampÃtoÃshowÃit.ÃÃCavernousÃpassagesÃleadÃeast,Ãnorth,ÃandÃsouth.ÃÃOn\n\
theÃwestÃwallÃisÃscrawledÃtheÃinscription,Ã\"FEEÃFIEÃFOEÃFOO\"Ã[sic].",

"You’reÃinÃGiantÃRoom.", 0);
make inst (S, 0,narrow);
make inst (E, 0, block);
make inst (N, 0, immense);
make loc(block ,
"TheÃpassageÃhereÃisÃblockedÃbyÃaÃrecentÃcave−in.", 0, 0);
make inst (S, 0, giant); ditto(GIANT); ditto(OUT);
make loc(immense ,
"YouÃareÃatÃoneÃendÃofÃanÃimmenseÃnorth/southÃpassage.", 0, 0);
make inst (S, 0, giant); ditto(GIANT); ditto(PASSAGE);
make inst (N,not (DOOR, 0), falls); ditto(ENTER); ditto(CAVERN);
remark ("TheÃdoorÃisÃextremelyÃrustyÃandÃrefusesÃtoÃopen.");
make inst (N, 0, sayit);
make loc(falls ,
"YouÃareÃinÃaÃmagnificentÃcavernÃwithÃaÃrushingÃstream,ÃwhichÃcascades\n\

overÃaÃsparklingÃwaterfallÃintoÃaÃroaringÃwhirlpoolÃthatÃdisappears\n\
throughÃaÃholeÃinÃtheÃfloor.ÃÃPassagesÃexitÃtoÃtheÃsouthÃandÃwest.",

"You’reÃinÃcavernÃwithÃwaterfall.", liquid);
make inst (S, 0, immense); ditto(OUT);
make inst (GIANT, 0, giant);
make inst (W, 0, steep);
make loc(steep ,
"YouÃareÃatÃtheÃtopÃofÃaÃsteepÃinclineÃaboveÃaÃlargeÃroom.ÃÃYouÃcould\n\

climbÃdownÃhere,ÃbutÃyouÃwouldÃnotÃbeÃableÃtoÃclimbÃup.ÃÃThereÃisÃa\n\
passageÃleadingÃbackÃtoÃtheÃnorth.",

"You’reÃatÃsteepÃinclineÃaboveÃlargeÃroom.", 0);
make inst (N, 0, falls); ditto(CAVERN); ditto(PASSAGE);
make inst (D, 0, low); ditto(CLIMB);

§48 ADVENTURE CAVE CONNECTIONS 33

48. Meanwhile let’s backtrack to another part of the cave possibly reachable from Bedquilt.
〈Build the travel table 23 〉 +≡

make loc(abovep ,
"YouÃareÃinÃaÃsecretÃN/SÃcanyonÃaboveÃaÃsizableÃpassage.", 0, 0);
make inst (N, 0, sjunc);
make inst (D, 0, bedquilt); ditto(PASSAGE);
make inst (S, 0, tite);
make loc(sjunc ,
"YouÃareÃinÃaÃsecretÃcanyonÃatÃaÃjunctionÃofÃthreeÃcanyons,Ãbearing\n\

north,Ãsouth,ÃandÃSE.ÃÃTheÃnorthÃoneÃisÃasÃtallÃasÃtheÃotherÃtwo\ncombined.",
"You’reÃatÃjunctionÃofÃthreeÃsecretÃcanyons.", 0);
make inst (SE, 0, bedquilt);
make inst (S, 0, abovep);
make inst (N, 0,window);
make loc(tite ,
"AÃlargeÃstalactiteÃextendsÃfromÃtheÃroofÃandÃalmostÃreachesÃtheÃfloor\n\

below.ÃÃYouÃcouldÃclimbÃdownÃit,ÃandÃjumpÃfromÃitÃtoÃtheÃfloor,Ãbut\n\
havingÃdoneÃsoÃyouÃwouldÃbeÃunableÃtoÃreachÃitÃtoÃclimbÃbackÃup.",

"You’reÃonÃtopÃofÃstalactite.", 0);
make inst (N, 0, abovep);
make inst (D, 40, like6); ditto(JUMP); ditto(CLIMB);
make inst (D, 50, like9);
make inst (D, 0, like4); /∗ oh dear, you’re in a random part of the maze ∗/
make loc(low ,
"YouÃareÃinÃaÃlargeÃlowÃroom.ÃÃCrawlsÃleadÃnorth,ÃSE,ÃandÃSW.", 0, 0);
make inst (BEDQUILT, 0, bedquilt);
make inst (SW, 0, scorr);
make inst (N, 0, crawl);
make inst (SE, 0, oriental); ditto(ORIENTAL);
make loc(crawl ,
"DeadÃendÃcrawl.", 0, 0);
make inst (S, 0, low); ditto(CRAWL); ditto(OUT);

49. The described view from the west window, window , is identical to the view from the east window,
windoe , except for one word. What on earth do you see from those windows? (Don Woods has confided
that the shadowy figure is actually your own reflection, because mirror lies between the two window rooms.
An intentional false clue.)
〈Build the travel table 23 〉 +≡

make loc(window ,
"You’reÃatÃaÃlowÃwindowÃoverlookingÃaÃhugeÃpit,ÃwhichÃextendsÃupÃoutÃof\n\

sight.ÃÃAÃfloorÃisÃindistinctlyÃvisibleÃoverÃ50ÃfeetÃbelow.ÃÃTracesÃof\n\
whiteÃmistÃcoverÃtheÃfloorÃofÃtheÃpit,ÃbecomingÃthickerÃtoÃtheÃleft.\n\
MarksÃinÃtheÃdustÃaroundÃtheÃwindowÃwouldÃseemÃtoÃindicateÃthat\n\
someoneÃhasÃbeenÃhereÃrecently.ÃÃDirectlyÃacrossÃtheÃpitÃfromÃyouÃand\n\
25ÃfeetÃawayÃthereÃisÃaÃsimilarÃwindowÃlookingÃintoÃaÃlightedÃroom.\n\
AÃshadowyÃfigureÃcanÃbeÃseenÃthereÃpeeringÃbackÃtoÃyou.",

short desc [windoe], 0);
make inst (W, 0, sjunc);
make inst (JUMP, 0,neck);

34 CAVE CONNECTIONS ADVENTURE §50

50. More treasures await you via the low corridor.
〈Build the travel table 23 〉 +≡

make loc(oriental ,
"ThisÃisÃtheÃOrientalÃRoom.ÃÃAncientÃorientalÃcaveÃdrawingsÃcoverÃthe\n\

walls.ÃÃAÃgentlyÃslopingÃpassageÃleadsÃupwardÃtoÃtheÃnorth,Ãanother\n\
passageÃleadsÃSE,ÃandÃaÃhands−and−kneesÃcrawlÃleadsÃwest.",

"You’reÃinÃOrientalÃRoom.", 0);
make inst (SE, 0, cheese);
make inst (W, 0, low); ditto(CRAWL);
make inst (U, 0,misty); ditto(N); ditto(CAVERN);
make loc(misty ,
"YouÃareÃfollowingÃaÃwideÃpathÃaroundÃtheÃouterÃedgeÃofÃaÃlargeÃcavern.\n\

FarÃbelow,ÃthroughÃaÃheavyÃwhiteÃmist,ÃstrangeÃsplashingÃnoisesÃcanÃbe\n\
heard.ÃÃTheÃmistÃrisesÃupÃthroughÃaÃfissureÃinÃtheÃceiling.ÃÃTheÃpath\n\
exitsÃtoÃtheÃsouthÃandÃwest.",

"You’reÃinÃmistyÃcavern.", 0);
make inst (S, 0, oriental); ditto(ORIENTAL);
make inst (W, 0, alcove);

51. One of the darkest secrets is hidden here. You will discover that you must take the emerald from the
Plover Room to the alcove. But you don’t learn the name of the Plover Room until the second time you’ve
been there, since your first visit will be lampless until you know the secret.
〈Build the travel table 23 〉 +≡

make loc(alcove ,
"YouÃareÃinÃanÃalcove.ÃÃAÃsmallÃNWÃpathÃseemsÃtoÃwidenÃafterÃaÃshort\n\

distance.ÃÃAnÃextremelyÃtightÃtunnelÃleadsÃeast.ÃÃItÃlooksÃlikeÃaÃvery\n\
tightÃsqueeze.ÃÃAnÃeerieÃlightÃcanÃbeÃseenÃatÃtheÃotherÃend.",

"You’reÃinÃalcove.", dark hint);
make inst (NW, 0,misty); ditto(CAVERN);
make inst (E, 0, ppass); ditto(PASSAGE);
make inst (E, 0, proom); /∗ never performed, but seen by ‘go back’ ∗/
make loc(proom ,
"You’reÃinÃaÃsmallÃchamberÃlitÃbyÃanÃeerieÃgreenÃlight.ÃÃAnÃextremely\n\

narrowÃtunnelÃexitsÃtoÃtheÃwest.ÃÃAÃdarkÃcorridorÃleadsÃNE.",
"You’reÃinÃPloverÃRoom.", dark hint);
make inst (W, 0, ppass); ditto(PASSAGE); ditto(OUT);
make inst (W, 0, alcove); /∗ never performed, but seen by ‘go back’ ∗/
make inst (PLOVER, holds (EMERALD), pdrop);
make inst (PLOVER, 0, y2);
make inst (NE, 0, droom); ditto(DARK);
make loc(droom ,
"You’reÃinÃtheÃDark−Room.ÃÃAÃcorridorÃleadingÃsouthÃisÃtheÃonlyÃexit.",
"You’reÃinÃDark−Room.", dark hint);
make inst (S, 0, proom); ditto(PLOVER); ditto(OUT);

§52 ADVENTURE CAVE CONNECTIONS 35

52. We forgot to mention the circuitous passage leading west from the Twopit Room. It winds around
and takes you to a somewhat more mundane area, yet not without interest.
〈Build the travel table 23 〉 +≡

make loc(slab ,
"YouÃareÃinÃaÃlargeÃlowÃcircularÃchamberÃwhoseÃfloorÃisÃanÃimmenseÃslab\n\

fallenÃfromÃtheÃceilingÃ(SlabÃRoom).ÃÃThereÃonceÃwereÃlargeÃpassages\n\
toÃtheÃeastÃandÃwest,ÃbutÃtheyÃareÃnowÃfilledÃwithÃboulders.ÃÃLow\n\
smallÃpassagesÃgoÃnorthÃandÃsouth,ÃandÃtheÃsouthÃoneÃquicklyÃbends\n\
westÃaroundÃtheÃboulders.",

"You’reÃinÃSlabÃRoom.", 0);
make inst (S, 0,w2pit);
make inst (U, 0, abover); ditto(CLIMB);
make inst (N, 0, bedquilt);
make loc(abover ,
"YouÃareÃinÃaÃsecretÃN/SÃcanyonÃaboveÃaÃlargeÃroom.", 0, 0);
make inst (D, 0, slab); ditto(SLAB);
make inst (S,not (DRAGON, 0), scan2);
make inst (S, 0, scan1);
make inst (N, 0,mirror);
make inst (RESERVOIR, 0, res);
make loc(mirror ,
"YouÃareÃinÃaÃnorth/southÃcanyonÃaboutÃ25ÃfeetÃacross.ÃÃTheÃfloorÃis\n\

coveredÃbyÃwhiteÃmistÃseepingÃinÃfromÃtheÃnorth.ÃÃTheÃwallsÃextend\n\
upwardÃforÃwellÃoverÃ100Ãfeet.ÃÃSuspendedÃfromÃsomeÃunseenÃpointÃfar\n\
aboveÃyou,ÃanÃenormousÃtwo−sidedÃmirrorÃisÃhangingÃparallelÃtoÃand\n\
midwayÃbetweenÃtheÃcanyonÃwalls.ÃÃ(TheÃmirrorÃisÃobviouslyÃprovided\n\
forÃtheÃuseÃofÃtheÃdwarves,ÃwhoÃasÃyouÃknowÃareÃextremelyÃvain.)\n\
AÃsmallÃwindowÃcanÃbeÃseenÃinÃeitherÃwall,ÃsomeÃfiftyÃfeetÃup.",

"You’reÃinÃmirrorÃcanyon.", 0);
make inst (S, 0, abover);
make inst (N, 0, res); ditto(RESERVOIR);
make loc(res ,
"YouÃareÃatÃtheÃedgeÃofÃaÃlargeÃundergroundÃreservoir.ÃÃAnÃopaqueÃcloud\n\

ofÃwhiteÃmistÃfillsÃtheÃroomÃandÃrisesÃrapidlyÃupward.ÃÃTheÃlakeÃis\n\
fedÃbyÃaÃstream,ÃwhichÃtumblesÃoutÃofÃaÃholeÃinÃtheÃwallÃaboutÃ10Ãfeet\n\
overheadÃandÃsplashesÃnoisilyÃintoÃtheÃwaterÃsomewhereÃwithinÃthe\n\
mist.ÃÃTheÃonlyÃpassageÃgoesÃbackÃtowardÃtheÃsouth.",

"You’reÃatÃreservoir.", liquid);
make inst (S, 0,mirror); ditto(OUT);

36 CAVE CONNECTIONS ADVENTURE §53

53. Four more secret canyons lead back to the Hall of the Mountain King. Three of them are actually
the same, but the dragon blocks the connection between the northern passage (to abover) and the eastern
passage (to secret). Once you’ve vanquished the dragon, scan2 takes the place of scan1 and scan3 .
〈Build the travel table 23 〉 +≡

make loc(scan1 ,
"YouÃareÃinÃaÃsecretÃcanyonÃthatÃexitsÃtoÃtheÃnorthÃandÃeast.", 0, 0);
make inst (N, 0, abover); ditto(OUT);
remark ("TheÃdragonÃlooksÃratherÃnasty.ÃÃYou’dÃbestÃnotÃtryÃtoÃgetÃby.");
make inst (E, 0, sayit); ditto(FORWARD);
make loc(scan2 , long desc [scan1], 0, 0);
make inst (N, 0, abover);
make inst (E, 0, secret);
make loc(scan3 , long desc [scan1], 0, 0);
make inst (E, 0, secret); ditto(OUT);
make inst (N, 0, sayit); ditto(FORWARD);
make loc(secret ,
"YouÃareÃinÃaÃsecretÃcanyon,ÃwhichÃhereÃrunsÃE/W.ÃÃItÃcrossesÃoverÃa\n\

veryÃtightÃcanyonÃ15ÃfeetÃbelow.ÃÃIfÃyouÃgoÃdownÃyouÃmayÃnotÃbeÃable\n\
toÃgetÃbackÃup.",

"You’reÃinÃsecretÃE/WÃcanyonÃaboveÃtightÃcanyon.", 0);
make inst (E, 0, hmk);
make inst (W,not (DRAGON, 0), scan2);
make inst (W, 0, scan3);
make inst (D, 0,wide);

54. Below secret there’s another way to reach the cheese.
〈Build the travel table 23 〉 +≡

make loc(wide ,
"YouÃareÃatÃaÃwideÃplaceÃinÃaÃveryÃtightÃN/SÃcanyon.", 0, 0);
make inst (S, 0, tight);
make inst (N, 0, tall);
make loc(tight ,
"TheÃcanyonÃhereÃbecomesÃtooÃtightÃtoÃgoÃfurtherÃsouth.", 0, 0);
make inst (N, 0,wide);
make loc(tall ,
"YouÃareÃinÃaÃtallÃE/WÃcanyon.ÃÃAÃlowÃtightÃcrawlÃgoesÃ3ÃfeetÃnorthÃand\n\

seemsÃtoÃopenÃup.",
"You’reÃinÃtallÃE/WÃcanyon.", 0);
make inst (E, 0,wide);
make inst (W, 0, boulders);
make inst (N, 0, cheese); ditto(CRAWL);
make loc(boulders ,
"TheÃcanyonÃrunsÃintoÃaÃmassÃofÃbouldersÃ−−−ÃdeadÃend.", 0, 0);
make inst (S, 0, tall);

§55 ADVENTURE CAVE CONNECTIONS 37

55. If you aren’t having fun yet, wait till you meet the troll. The only way to get here is to crawl southwest
from the low room. And then you have a new problem to solve; we’ll see later that the TROLL and the BRIDGE
are here.

(Don Woods got the idea for the mist-covered bridge after an early morning visit to Mount Diablo; see
Steven Levy, Hackers (New York: Delta, 1994), Chapter 7.)
〈Build the travel table 23 〉 +≡

make loc(scorr ,
"YouÃareÃinÃaÃlongÃwindingÃcorridorÃslopingÃoutÃofÃsightÃinÃboth\ndirections.",
"You’reÃinÃslopingÃcorridor.", 0);
make inst (D, 0, low);
make inst (U, 0, swside);
make loc(swside ,
"YouÃareÃonÃoneÃsideÃofÃaÃlarge,ÃdeepÃchasm.ÃÃAÃheavyÃwhiteÃmistÃrising\n\

upÃfromÃbelowÃobscuresÃallÃviewÃofÃtheÃfarÃside.ÃÃAÃSWÃpathÃleadsÃaway\n\
fromÃtheÃchasmÃintoÃaÃwindingÃcorridor.",

"You’reÃonÃSWÃsideÃofÃchasm.", 0);
make inst (SW, 0, scorr);
remark ("TheÃtrollÃrefusesÃtoÃletÃyouÃcross.");
make inst (OVER, sees (TROLL), sayit); ditto(ACROSS); ditto(CROSS); ditto(NE);
remark ("ThereÃisÃnoÃlongerÃanyÃwayÃacrossÃtheÃchasm.");
make inst (OVER,not (TROLL, 0), sayit);
make inst (OVER, 0, troll);
make inst (JUMP,not (TROLL, 0), lose);
make inst (JUMP, 0, bridge rmk);

38 CAVE CONNECTIONS ADVENTURE §56

56. The only things not yet explored on this side of the troll bridge are a dozen dead ends. They appear
at this place in the ordering of all locations because of the pirate logic explained later: The pirate will never
go to locations ≥ dead3 .
#define max pirate loc dead2
〈Build the travel table 23 〉 +≡

make loc(dead0 , dead end , 0, 0);
make inst (S, 0, cross); ditto(OUT);
make loc(dead1 , dead end , 0, twist hint);
make inst (W, 0, like11); ditto(OUT);
make loc(dead2 , dead end , 0, 0);
make inst (SE, 0, like13);
make loc(dead3 , dead end , 0, twist hint);
make inst (W, 0, like4); ditto(OUT);
make loc(dead4 , dead end , 0, twist hint);
make inst (E, 0, like4); ditto(OUT);
make loc(dead5 , dead end , 0, twist hint);
make inst (U, 0, like3); ditto(OUT);
make loc(dead6 , dead end , 0, twist hint);
make inst (W, 0, like9); ditto(OUT);
make loc(dead7 , dead end , 0, twist hint);
make inst (U, 0, like10); ditto(OUT);
make loc(dead8 , dead end , 0, 0);
make inst (E, 0, brink); ditto(OUT);
make loc(dead9 , dead end , 0, twist hint);
make inst (S, 0, like3); ditto(OUT);
make loc(dead10 , dead end , 0, twist hint);
make inst (E, 0, like12); ditto(OUT);
make loc(dead11 , dead end , 0, twist hint);
make inst (U, 0, like8); ditto(OUT);

§57 ADVENTURE CAVE CONNECTIONS 39

57. A whole nuther cave with nine sites and additional treasures is on tuther side of the troll bridge! This
cave was inspired in part by J. R. R. Tolkien’s stories.
〈Build the travel table 23 〉 +≡

make loc(neside ,
"YouÃareÃonÃtheÃfarÃsideÃofÃtheÃchasm.ÃÃAÃNEÃpathÃleadsÃawayÃfromÃthe\n\

chasmÃonÃthisÃside.",
"You’reÃonÃNEÃsideÃofÃchasm.", 0);
make inst (NE, 0, corr);
make inst (OVER, sees (TROLL), sayit − 1); ditto(ACROSS); ditto(CROSS); ditto(SW);
make inst (OVER, 0, troll);
make inst (JUMP, 0, bridge rmk);
make inst (FORK, 0, fork);
make inst (VIEW, 0, view);
make inst (BARREN, 0, fbarr);
make loc(corr ,
"You’reÃinÃaÃlongÃeast/westÃcorridor.ÃÃAÃfaintÃrumblingÃnoiseÃcanÃbe\n\

heardÃinÃtheÃdistance.",
"You’reÃinÃcorridor.", 0);
make inst (W, 0,neside);
make inst (E, 0, fork); ditto(FORK);
make inst (VIEW, 0, view);
make inst (BARREN, 0, fbarr);
make loc(fork ,
"TheÃpathÃforksÃhere.ÃÃTheÃleftÃforkÃleadsÃnortheast.ÃÃAÃdullÃrumbling\n\

seemsÃtoÃgetÃlouderÃinÃthatÃdirection.ÃÃTheÃrightÃforkÃleadsÃsoutheast\n\
downÃaÃgentleÃslope.ÃÃTheÃmainÃcorridorÃentersÃfromÃtheÃwest.",

"You’reÃatÃforkÃinÃpath.", 0);
make inst (W, 0, corr);
make inst (NE, 0,warm); ditto(L);
make inst (SE, 0, lime); ditto(R); ditto(D);
make inst (VIEW, 0, view);
make inst (BARREN, 0, fbarr);
make loc(warm ,
"TheÃwallsÃareÃquiteÃwarmÃhere.ÃÃFromÃtheÃnorthÃcanÃbeÃheardÃaÃsteady\n\

roar,ÃsoÃloudÃthatÃtheÃentireÃcaveÃseemsÃtoÃbeÃtrembling.ÃÃAnother\n\
passageÃleadsÃsouth,ÃandÃaÃlowÃcrawlÃgoesÃeast.",

"You’reÃatÃjunctionÃwithÃwarmÃwalls.", 0);
make inst (S, 0, fork); ditto(FORK);
make inst (N, 0, view); ditto(VIEW);
make inst (E, 0, chamber); ditto(CRAWL);
make loc(view ,
"YouÃareÃonÃtheÃedgeÃofÃaÃbreath−takingÃview.ÃÃFarÃbelowÃyouÃisÃan\n\

activeÃvolcano,ÃfromÃwhichÃgreatÃgoutsÃofÃmoltenÃlavaÃcomeÃsurging\n\
out,ÃcascadingÃbackÃdownÃintoÃtheÃdepths.ÃÃTheÃglowingÃrockÃfillsÃthe\n\
farthestÃreachesÃofÃtheÃcavernÃwithÃaÃblood−redÃglare,ÃgivingÃevery−\n\
thingÃanÃeerie,ÃmacabreÃappearance.ÃÃTheÃairÃisÃfilledÃwithÃflickering\n\
sparksÃofÃashÃandÃaÃheavyÃsmellÃofÃbrimstone.ÃÃTheÃwallsÃareÃhotÃto\n\
theÃtouch,ÃandÃtheÃthunderingÃofÃtheÃvolcanoÃdrownsÃoutÃallÃother\n\
sounds.ÃÃEmbeddedÃinÃtheÃjaggedÃroofÃfarÃoverheadÃareÃmyriadÃtwisted\n\
formations,ÃcomposedÃofÃpureÃwhiteÃalabaster,ÃwhichÃscatterÃtheÃmurky\n\
lightÃintoÃsinisterÃapparitionsÃuponÃtheÃwalls.ÃÃToÃoneÃsideÃisÃaÃdeep\n\

40 CAVE CONNECTIONS ADVENTURE §57

gorge,ÃfilledÃwithÃaÃbizarreÃchaosÃofÃtorturedÃrockÃthatÃseemsÃtoÃhave\n\
beenÃcraftedÃbyÃtheÃDevilÃhimself.ÃÃAnÃimmenseÃriverÃofÃfireÃcrashes\n\
outÃfromÃtheÃdepthsÃofÃtheÃvolcano,ÃburnsÃitsÃwayÃthroughÃtheÃgorge,\n\
andÃplummetsÃintoÃaÃbottomlessÃpitÃfarÃoffÃtoÃyourÃleft.ÃÃToÃthe\n\
right,ÃanÃimmenseÃgeyserÃofÃblisteringÃsteamÃeruptsÃcontinuously\n\
fromÃaÃbarrenÃislandÃinÃtheÃcenterÃofÃaÃsulfurousÃlake,ÃwhichÃbubbles\n\
ominously.ÃÃTheÃfarÃrightÃwallÃisÃaflameÃwithÃanÃincandescenceÃofÃits\n\
own,ÃwhichÃlendsÃanÃadditionalÃinfernalÃsplendorÃtoÃtheÃalready\n\
hellishÃscene.ÃÃAÃdark,ÃforebodingÃpassageÃexitsÃtoÃtheÃsouth.",

"You’reÃatÃbreath−takingÃview.", lighted);
make inst (S, 0,warm); ditto(PASSAGE); ditto(OUT);
make inst (FORK, 0, fork);
remark (default msg [EAT]);
make inst (D, 0, sayit); ditto(JUMP);
make loc(chamber ,
"YouÃareÃinÃaÃsmallÃchamberÃfilledÃwithÃlargeÃboulders.ÃÃTheÃwallsÃare\n\

veryÃwarm,ÃcausingÃtheÃairÃinÃtheÃroomÃtoÃbeÃalmostÃstiflingÃfromÃthe\n\
heat.ÃÃTheÃonlyÃexitÃisÃaÃcrawlÃheadingÃwest,ÃthroughÃwhichÃaÃlow\n\
rumblingÃnoiseÃisÃcoming.",

"You’reÃinÃchamberÃofÃboulders.", 0);
make inst (W, 0,warm); ditto(OUT); ditto(CRAWL);
make inst (FORK, 0, fork);
make inst (VIEW, 0, view);
make loc(lime ,
"YouÃareÃwalkingÃalongÃaÃgentlyÃslopingÃnorth/southÃpassageÃlinedÃwith\n\

oddlyÃshappedÃlimestoneÃformations.",
"You’reÃinÃlimestoneÃpassage.", 0);
make inst (N, 0, fork); ditto(U); ditto(FORK);
make inst (S, 0, fbarr); ditto(D); ditto(BARREN);
make inst (VIEW, 0, view);
make loc(fbarr ,
"YouÃareÃstandingÃatÃtheÃentranceÃtoÃaÃlarge,ÃbarrenÃroom.ÃÃAÃsign\n\

postedÃaboveÃtheÃentranceÃreads:ÃÃ\"CAUTION!ÃÃBEARÃINÃROOM!\"",
"You’reÃinÃfrontÃofÃbarrenÃroom.", 0); /∗ don’t laugh too loud ∗/
make inst (W, 0, lime); ditto(U);
make inst (FORK, 0, fork);
make inst (E, 0, barr); ditto(IN); ditto(BARREN); ditto(ENTER);
make inst (VIEW, 0, view);
make loc(barr ,
"YouÃareÃinsideÃaÃbarrenÃroom.ÃÃTheÃcenterÃofÃtheÃroomÃisÃcompletely\n\

emptyÃexceptÃforÃsomeÃdust.ÃÃMarksÃinÃtheÃdustÃleadÃawayÃtowardÃthe\n\
farÃendÃofÃtheÃroom.ÃÃTheÃonlyÃexitÃisÃtheÃwayÃyouÃcameÃin.",

"You’reÃinÃbarrenÃroom.", 0);
make inst (W, 0, fbarr); ditto(OUT);
make inst (FORK, 0, fork);
make inst (VIEW, 0, view);

§58 ADVENTURE CAVE CONNECTIONS 41

58. The two storage locations are accessible only from each other, and they lead only to each other.
〈Build the travel table 23 〉 +≡

make loc(neend ,
"YouÃareÃatÃtheÃnortheastÃendÃofÃanÃimmenseÃroom,ÃevenÃlargerÃthanÃthe\n\

GiantÃRoom.ÃÃItÃappearsÃtoÃbeÃaÃrepositoryÃforÃtheÃ\"Adventure\"\n\
program.ÃÃMassiveÃtorchesÃfarÃoverheadÃbatheÃtheÃroomÃwithÃsmoky\n\
yellowÃlight.ÃÃScatteredÃaboutÃyouÃcanÃbeÃseenÃaÃpileÃofÃbottlesÃ(all\n\
ofÃthemÃempty),ÃaÃnurseryÃofÃyoungÃbeanstalksÃmurmuringÃquietly,ÃaÃbed\n\
ofÃoysters,ÃaÃbundleÃofÃblackÃrodsÃwithÃrustyÃstarsÃonÃtheirÃends,Ãand\n\
aÃcollectionÃofÃbrassÃlanterns.ÃÃOffÃtoÃoneÃsideÃaÃgreatÃmanyÃdwarves\n\
areÃsleepingÃonÃtheÃfloor,ÃsnoringÃloudly.ÃÃAÃsignÃnearbyÃreads:Ã\"DO\n\
NOTÃDISTURBÃTHEÃDWARVES!\"ÃÃAnÃimmenseÃmirrorÃisÃhangingÃagainstÃone\n\
wall,ÃandÃstretchesÃtoÃtheÃotherÃendÃofÃtheÃroom,ÃwhereÃvariousÃother\n\
sundryÃobjectsÃcanÃbeÃglimpsedÃdimlyÃinÃtheÃdistance.",

"You’reÃatÃNEÃend.", lighted);
make inst (SW, 0, swend);
make loc(swend ,
"YouÃareÃatÃtheÃsouthwestÃendÃofÃtheÃrepository.ÃÃToÃoneÃsideÃisÃaÃpit\n\

fullÃofÃfierceÃgreenÃsnakes.ÃÃOnÃtheÃotherÃsideÃisÃaÃrowÃofÃsmall\n\
wickerÃcages,ÃeachÃofÃwhichÃcontainsÃaÃlittleÃsulkingÃbird.ÃÃInÃone\n\
cornerÃisÃaÃbundleÃofÃblackÃrodsÃwithÃrustyÃmarksÃonÃtheirÃends.\n\
AÃlargeÃnumberÃofÃvelvetÃpillowsÃareÃscatteredÃaboutÃonÃtheÃfloor.\n\
AÃvastÃmirrorÃstretchesÃoffÃtoÃtheÃnortheast.ÃÃAtÃyourÃfeetÃisÃa\n\
largeÃsteelÃgrate,ÃnextÃtoÃwhichÃisÃaÃsignÃthatÃreads,Ã\"TREASURE\n\
VAULT.ÃÃKEYSÃINÃMAINÃOFFICE.\"",

"You’reÃatÃSWÃend.", lighted);
make inst (NE, 0,neend);
make inst (D, 0, grate rmk);

59. When the current location is crack or higher, it’s a pseudo-location. In such cases we don’t ask you
for input; we assume that you have told us to force another instruction through. For example, if you try to
go through the crack by the small pit in the upper cave (location spit), the instruction there sends you to
crack , which immediately sends you back to spit .
#define forced move (loc) (loc ≥ min forced loc)
#define FORCE 0 /∗ actually any value will do here ∗/
〈Build the travel table 23 〉 +≡

make loc(crack ,
"TheÃcrackÃisÃfarÃtooÃsmallÃforÃyouÃtoÃfollow.", 0, 0);
make inst (FORCE, 0, spit);

60. Here are some forced actions that are less pleasant.
〈Build the travel table 23 〉 +≡

make loc(neck ,
"YouÃareÃatÃtheÃbottomÃofÃtheÃpitÃwithÃaÃbrokenÃneck.", 0, 0);
make inst (FORCE, 0, limbo);
make loc(lose , "YouÃdidn’tÃmakeÃit.", 0, 0);
make inst (FORCE, 0, limbo);

42 CAVE CONNECTIONS ADVENTURE §61

61. The rest are more-or-less routine, except for check—which executes a conditional forced command.
〈Build the travel table 23 〉 +≡

make loc(cant ,
"TheÃdomeÃisÃunclimbable.", 0, 0);
make inst (FORCE, 0, emist);
make loc(climb ,
"YouÃclamberÃupÃtheÃplantÃandÃscurryÃthroughÃtheÃholeÃatÃtheÃtop.", 0, 0);
make inst (FORCE, 0,narrow);
make loc(check , "", 0, 0);
make inst (FORCE,not (PLANT, 2), upnout);
make inst (FORCE, 0, didit);
make loc(snaked ,
"YouÃcan’tÃgetÃbyÃtheÃsnake.", 0, 0);
make inst (FORCE, 0, hmk);
make loc(thru ,
"YouÃhaveÃcrawledÃthroughÃaÃveryÃlowÃwideÃpassageÃparallelÃtoÃandÃnorth\n\

ofÃtheÃHallÃofÃMists.", 0, 0);
make inst (FORCE, 0,wmist);
make loc(duck , long desc [thru], 0, 0);
make inst (FORCE, 0,wfiss);
make loc(sewer ,
"TheÃstreamÃflowsÃoutÃthroughÃaÃpairÃofÃ1−foot−diameterÃsewerÃpipes.\n\

ItÃwouldÃbeÃadvisableÃtoÃuseÃtheÃexit.", 0, 0);
make inst (FORCE, 0, house);
make loc(upnout ,
"ThereÃisÃnothingÃhereÃtoÃclimb.ÃÃUseÃ\"up\"ÃorÃ\"out\"ÃtoÃleaveÃtheÃpit.", 0, 0);
make inst (FORCE, 0,wpit);
make loc(didit ,
"YouÃhaveÃclimbedÃupÃtheÃplantÃandÃoutÃofÃtheÃpit.", 0, 0);
make inst (FORCE, 0,w2pit);

62. The table of instructions ends here; the remaining “locations” ppass , pdrop , and troll are special.
〈Build the travel table 23 〉 +≡

start [ppass] = q;
if (q > &travels [travel size] ∨ rem count > rem size) {

printf ("Oops,ÃI’mÃbroken!\n"); exit (−1);
}

§63 ADVENTURE DATA STRUCTURES FOR OBJECTS 43

63. Data structures for objects. A fixed universe of objects was enumerated in the vocabulary section.
Most of the objects can move or be moved from place to place; so we maintain linked lists of the objects at
each location. The first object at location l is first [l], then comes link [first [l]], then link [link [first [l]]], etc.,
ending with 0 (which is the “object” called NOTHING).

Some of the objects are placed in groups of one or more objects. In such cases base [t] is the smallest object
in the group containing object t. Objects that belong to groups are immovable; they always stay in the same
location. Other objects have base [t] = NOTHING and they are free to leave one list and join another. For
example, it turns out that the KEYS are movable, but the SNAKE is always in the Hall of the Mountain King;
we set base [KEYS] = NOTHING and base [SNAKE] = SNAKE. Several groups, such as the GRATE and GRATE_,
consist of two objects. This program supports operations on groups of more than two objects, but no such
objects actually occur.

Each movable or base object t has a current property prop [t], which is initially −1 for treasures, otherwise
initially 0. We change prop [t] to 0 when you first see treasure t; and property values often change further as
the game progresses. For example, the PLANT can grow. When you see an object, we usually print a message
that corresponds to its current property value. That message is the string note [prop [t] + offset [t]].

(Exception: When you first see the RUG or the CHAIN, its property value is set to 1, not 0. The reason
for this hack is that you get maximum score only if the property values of all treasures are zero when you
finish.)

Each object is in at most one list, place [t]. If you are carrying object t, the value of place [t] is inhand ,
which is negative. The special location limbo has value 0; we don’t maintain a list first [limbo] for objects
that have place [t] = limbo . Thus object t is in a list if and only if place [t] > 0. The global variable holding
counts how many objects you are carrying.

One more array completes our set of data structures: Objects that appear in inventory reports have a
name, name [t].
#define toting (t) (place [t] < 0)
〈Global variables 7 〉 +≡

object first [max loc + 1]; /∗ the first object present at a location ∗/
object link [max obj + 1]; /∗ the next object present in the same location ∗/
object base [max obj + 2]; /∗ the smallest object in each object’s group, if any ∗/
int prop [max obj + 1]; /∗ each object’s current property value ∗/
location place [max obj + 1]; /∗ each object’s current location ∗/
char ∗name [max obj + 1]; /∗ name of object for inventory listing ∗/
char ∗note [100]; /∗ descriptions of object properties ∗/
int offset [max obj + 1]; /∗ where notes for each object start ∗/
int holding ; /∗ how many objects have prop [t] < 0? ∗/
int note ptr = 0; /∗ how many notes have we stored? ∗/

44 DATA STRUCTURES FOR OBJECTS ADVENTURE §64

64. Here then is a simple subroutine to place an object at a given location, when the object isn’t presently
in a list.
〈Subroutines 6 〉 +≡

void drop ARGS((object, location));
void drop(t, l)

object t;
location l;

{
if (toting (t)) holding −−;
place [t] = l;
if (l < 0) holding ++;
else if (l > 0) {

link [t] = first [l];
first [l] = t;

}
}

65. Similarly, we need a subroutine to pick up an object.
#define move (t, l) { carry (t); drop(t, l); }
#define destroy (t) move (t, limbo)
〈Subroutines 6 〉 +≡

void carry ARGS((object));
void carry (t)

object t;
{ register location l = place [t];

if (l ≥ limbo) {
place [t] = inhand ;
holding ++;
if (l > limbo) {

register object r, s;
for (r = 0, s = first [l]; s 6= t; r = s, s = link [s]) ;
if (r ≡ 0) first [l] = link [s];
else link [r] = link [s]; /∗ remove t from list ∗/

}
}

}

66. The is at loc subroutine tests if a possibly multipart object is at a particular place. It uses the fact
that multipart objects have consecutive values, and base [max obj + 1] ≡ NOTHING.
〈Subroutines 6 〉 +≡

boolean is at loc ARGS((object));
boolean is at loc(t)

object t;
{

register object tt ;
if (base [t] ≡ NOTHING) return place [t] ≡ loc ;
for (tt = t; base [tt] ≡ t; tt ++)

if (place [tt] ≡ loc) return true ;
return false ;

}

§67 ADVENTURE DATA STRUCTURES FOR OBJECTS 45

67. A few macros make it easy to get each object started.
#define new obj (t, n, b, l)

{ /∗ object t named n with base b starts at l ∗/
name [t] = n;
base [t] = b;
offset [t] = note ptr ;
prop [t] = (is treasure (t) ? −1 : 0);
drop(t, l);

}
#define new note (n) note [note ptr ++] = n

68. 〈Additional local registers 22 〉 +≡
register object t;

46 OBJECT DATA ADVENTURE §69

69. Object data. Now it’s time to build the object structures just defined.
We put the objects into their initial locations backwards, that is, highest first; moreover, we place all

two-part objects before placing the others. Then low-numbered objects will appear first in the list, and
two-part objects will appear last.

Here are the two-part objects, which are mostly unnamed because you won’t be picking them up.
〈Build the object tables 69 〉 ≡

new obj (RUG_, 0, RUG, scan3);
new obj (RUG, "PersianÃrug", RUG, scan1);
new note ("ThereÃisÃaÃPersianÃrugÃspreadÃoutÃonÃtheÃfloor!");
new note ("TheÃdragonÃisÃsprawledÃoutÃonÃaÃPersianÃrug!!");
new obj (TROLL2_, 0, TROLL2, limbo);
new obj (TROLL2, 0, TROLL2, limbo);
new note ("TheÃtrollÃisÃnowhereÃtoÃbeÃseen.");
new obj (TROLL_, 0, TROLL,neside);
new obj (TROLL, 0, TROLL, swside);
new note ("AÃburlyÃtrollÃstandsÃbyÃtheÃbridgeÃandÃinsistsÃyouÃthrowÃhimÃa\n\

treasureÃbeforeÃyouÃmayÃcross.");
new note ("TheÃtrollÃstepsÃoutÃfromÃbeneathÃtheÃbridgeÃandÃblocksÃyourÃway.");
new note (0);
new obj (BRIDGE_, 0, BRIDGE,neside);
new obj (BRIDGE, 0, BRIDGE, swside);
new note ("AÃricketyÃwoodenÃbridgeÃextendsÃacrossÃtheÃchasm,ÃvanishingÃintoÃthe\n\

mist.ÃÃAÃsignÃpostedÃonÃtheÃbridgeÃreads,Ã\"STOP!ÃÃPAYÃTROLL!\"");
new note ("TheÃwreckageÃofÃaÃbridgeÃ(andÃaÃdeadÃbear)ÃcanÃbeÃseenÃatÃtheÃbottom\n\

ofÃtheÃchasm.");
new obj (DRAGON_, 0, DRAGON, scan3);
new obj (DRAGON, 0, DRAGON, scan1);
new note ("AÃhugeÃgreenÃfierceÃdragonÃbarsÃtheÃway!");
new note ("Congratulations!ÃÃYouÃhaveÃjustÃvanquishedÃaÃdragonÃwithÃyourÃbare\n\

hands!Ã(Unbelievable,Ãisn’tÃit?)");
new note ("TheÃbodyÃofÃaÃhugeÃgreenÃdeadÃdragonÃisÃlyingÃoffÃtoÃoneÃside.");
new obj (SHADOW_, 0, SHADOW,window);
new obj (SHADOW, 0, SHADOW,windoe);
new note ("TheÃshadowyÃfigureÃseemsÃtoÃbeÃtryingÃtoÃattractÃyourÃattention.");
new obj (PLANT2_, 0, PLANT2, e2pit);
new obj (PLANT2, 0, PLANT2,w2pit);
new note (0);
new note ("TheÃtopÃofÃaÃ12−foot−tallÃbeanstalkÃisÃpokingÃoutÃofÃtheÃwestÃpit.");
new note ("ThereÃisÃaÃhugeÃbeanstalkÃgrowingÃoutÃofÃtheÃwestÃpitÃupÃtoÃtheÃhole.");
new obj (CRYSTAL_, 0, CRYSTAL,wfiss);
new obj (CRYSTAL, 0, CRYSTAL, efiss);
new note (0);
new note ("AÃcrystalÃbridgeÃnowÃspansÃtheÃfissure.");
new note ("TheÃcrystalÃbridgeÃhasÃvanished!");
new obj (TREADS_, 0, TREADS, emist);
new obj (TREADS, 0, TREADS, spit);
new note ("RoughÃstoneÃstepsÃleadÃdownÃtheÃpit.");
new note ("RoughÃstoneÃstepsÃleadÃupÃtheÃdome.");
new obj (GRATE_, 0, GRATE, inside);
new obj (GRATE, 0, GRATE, outside);
new note ("TheÃgrateÃisÃlocked.");
new note ("TheÃgrateÃisÃopen.");

§69 ADVENTURE OBJECT DATA 47

new obj (MIRROR_, 0, MIRROR, limbo); /∗ joins up with MIRROR later ∗/
See also section 70.

This code is used in section 200.

48 OBJECT DATA ADVENTURE §70

70. And here are the one-place objects, some of which are immovable (because they are in a group of size
one).
〈Build the object tables 69 〉 +≡

new obj (CHAIN, "GoldenÃchain", CHAIN, barr);
new note ("ThereÃisÃaÃgoldenÃchainÃlyingÃinÃaÃheapÃonÃtheÃfloor!");
new note ("TheÃbearÃisÃlockedÃtoÃtheÃwallÃwithÃaÃgoldenÃchain!");
new note ("ThereÃisÃaÃgoldenÃchainÃlockedÃtoÃtheÃwall!");
new obj (SPICES, "RareÃspices", 0, chamber);
new note ("ThereÃareÃrareÃspicesÃhere!");
new obj (PEARL, "GlisteningÃpearl", 0, limbo);
new note ("OffÃtoÃoneÃsideÃliesÃaÃglisteningÃpearl!");
new obj (PYRAMID, "PlatinumÃpyramid", 0, droom);
new note ("ThereÃisÃaÃplatinumÃpyramidÃhere,Ã8ÃinchesÃonÃaÃside!");
new obj (EMERALD, "Egg−sizedÃemerald", 0, proom);
new note ("ThereÃisÃanÃemeraldÃhereÃtheÃsizeÃofÃaÃplover’sÃegg!");
new obj (VASE, "MingÃvase", 0, oriental);
new note ("ThereÃisÃaÃdelicate,Ãprecious,ÃMingÃvaseÃhere!");
new note ("TheÃvaseÃisÃnowÃresting,Ãdelicately,ÃonÃaÃvelvetÃpillow.");
new note ("TheÃfloorÃisÃlitteredÃwithÃworthlessÃshardsÃofÃpottery.");
new note ("TheÃMingÃvaseÃdropsÃwithÃaÃdelicateÃcrash.");
new obj (TRIDENT, "JeweledÃtrident", 0, falls);
new note ("ThereÃisÃaÃjewel−encrustedÃtridentÃhere!");
new obj (EGGS, "GoldenÃeggs", 0, giant);
new note ("ThereÃisÃaÃlargeÃnestÃhere,ÃfullÃofÃgoldenÃeggs!");
new note ("TheÃnestÃofÃgoldenÃeggsÃhasÃvanished!");
new note ("Done!");
new obj (CHEST, "TreasureÃchest", 0, limbo);
new note ("TheÃpirate’sÃtreasureÃchestÃisÃhere!");
new obj (COINS, "RareÃcoins", 0,west);
new note ("ThereÃareÃmanyÃcoinsÃhere!");
new obj (JEWELS, "PreciousÃjewelry", 0, south);
new note ("ThereÃisÃpreciousÃjewelryÃhere!");
new obj (SILVER, "BarsÃofÃsilver", 0,ns);
new note ("ThereÃareÃbarsÃofÃsilverÃhere!");
new obj (DIAMONDS, "SeveralÃdiamonds", 0,wfiss);
new note ("ThereÃareÃdiamondsÃhere!");
new obj (GOLD, "LargeÃgoldÃnugget", 0,nugget);
new note ("ThereÃisÃaÃlargeÃsparklingÃnuggetÃofÃgoldÃhere!");
new obj (MOSS, 0, MOSS, soft);
new note (0);
new obj (BATTERIES, "Batteries", 0, limbo);
new note ("ThereÃareÃfreshÃbatteriesÃhere.");
new note ("SomeÃworn−outÃbatteriesÃhaveÃbeenÃdiscardedÃnearby.");
new obj (PONY, 0, PONY, pony);
new note ("ThereÃisÃaÃmassiveÃvendingÃmachineÃhere.ÃÃTheÃinstructionsÃonÃitÃread:\n\

\"DropÃcoinsÃhereÃtoÃreceiveÃfreshÃbatteries.\"");
new obj (GEYSER, 0, GEYSER, view);
new note (0);
new obj (MESSAGE, 0, MESSAGE, limbo);
new note ("ThereÃisÃaÃmessageÃscrawledÃinÃtheÃdustÃinÃaÃfloweryÃscript,Ãreading:\n\

\"ThisÃisÃnotÃtheÃmazeÃwhereÃtheÃpirateÃhidesÃhisÃtreasureÃchest.\"");
new obj (BEAR, 0, BEAR, barr);

§70 ADVENTURE OBJECT DATA 49

new note ("ThereÃisÃaÃferociousÃcaveÃbearÃeyingÃyouÃfromÃtheÃfarÃendÃofÃtheÃroom!");
new note ("ThereÃisÃaÃgentleÃcaveÃbearÃsittingÃplacidlyÃinÃoneÃcorner.");
new note ("ThereÃisÃaÃcontented−lookingÃbearÃwanderingÃaboutÃnearby.");
new note (0);
new obj (PIRATE, 0, PIRATE, limbo);
new note (0);
new obj (ART, 0, ART, oriental);
new note (0);
new obj (AXE, "Dwarf’sÃaxe", 0, limbo);
new note ("ThereÃisÃaÃlittleÃaxeÃhere.");
new note ("ThereÃisÃaÃlittleÃaxeÃlyingÃbesideÃtheÃbear.");
new obj (STALACTITE, 0, STALACTITE, tite);
new note (0);
new obj (PLANT, 0, PLANT,wpit);
new note ("ThereÃisÃaÃtinyÃlittleÃplantÃinÃtheÃpit,ÃmurmuringÃ\"Water,Ãwater,Ã...\"");
new note ("TheÃplantÃspurtsÃintoÃfuriousÃgrowthÃforÃaÃfewÃseconds.");
new note ("ThereÃisÃaÃ12−foot−tallÃbeanstalkÃstretchingÃupÃoutÃofÃtheÃpit,\n\

bellowingÃ\"Water!!ÃÃWater!!\"");
new note ("TheÃplantÃgrowsÃexplosively,ÃalmostÃfillingÃtheÃbottomÃofÃtheÃpit.");
new note ("ThereÃisÃaÃgiganticÃbeanstalkÃstretchingÃallÃtheÃwayÃupÃtoÃtheÃhole.");
new note ("You’veÃover−wateredÃtheÃplant!ÃÃIt’sÃshrivelingÃup!ÃÃIt’s,Ãit’s...");
new obj (MIRROR, 0, MIRROR,mirror);
new note (0);
new obj (OIL, "OilÃinÃtheÃbottle", 0, limbo);
new obj (WATER, "WaterÃinÃtheÃbottle", 0, limbo);
new obj (BOTTLE, "SmallÃbottle", 0, house);
new note ("ThereÃisÃaÃbottleÃofÃwaterÃhere.");
new note ("ThereÃisÃanÃemptyÃbottleÃhere.");
new note ("ThereÃisÃaÃbottleÃofÃoilÃhere.");
new obj (FOOD, "TastyÃfood", 0, house);
new note ("ThereÃisÃfoodÃhere.");
new obj (KNIFE, 0, 0, limbo);
new obj (DWARF, 0, DWARF, limbo);
new obj (MAG, "\"SpelunkerÃToday\"", 0, ante);
new note ("ThereÃareÃaÃfewÃrecentÃissuesÃofÃ\"SpelunkerÃToday\"ÃmagazineÃhere.");
new obj (OYSTER, "GiantÃoysterÃ>GROAN!<", 0, limbo);
new note ("ThereÃisÃanÃenormousÃoysterÃhereÃwithÃitsÃshellÃtightlyÃclosed.");
new note ("Interesting.ÃÃThereÃseemsÃtoÃbeÃsomethingÃwrittenÃonÃtheÃundersideÃof\n\

theÃoyster.");
new obj (CLAM, "GiantÃclamÃ>GRUNT!<", 0, shell);
new note ("ThereÃisÃanÃenormousÃclamÃhereÃwithÃitsÃshellÃtightlyÃclosed.");
new obj (TABLET, 0, TABLET, droom);
new note ("AÃmassiveÃstoneÃtabletÃembeddedÃinÃtheÃwallÃreads:\n\

\"CONGRATULATIONSÃONÃBRINGINGÃLIGHTÃINTOÃTHEÃDARK−ROOM!\"");
new obj (SNAKE, 0, SNAKE, hmk);
new note ("AÃhugeÃgreenÃfierceÃsnakeÃbarsÃtheÃway!");
new note (0);
new obj (PILLOW, "VelvetÃpillow", 0, soft);
new note ("AÃsmallÃvelvetÃpillowÃliesÃonÃtheÃfloor.");
new obj (DOOR, 0, DOOR, immense);
new note ("TheÃwayÃnorthÃisÃbarredÃbyÃaÃmassive,Ãrusty,ÃironÃdoor.");
new note ("TheÃwayÃnorthÃleadsÃthroughÃaÃmassive,Ãrusty,ÃironÃdoor.");

50 OBJECT DATA ADVENTURE §70

new obj (BIRD, "LittleÃbirdÃinÃcage", 0, bird);
new note ("AÃcheerfulÃlittleÃbirdÃisÃsittingÃhereÃsinging.");
new note ("ThereÃisÃaÃlittleÃbirdÃinÃtheÃcage.");
new obj (ROD2, "BlackÃrod", 0, limbo);
new note ("AÃthree−footÃblackÃrodÃwithÃaÃrustyÃmarkÃonÃanÃendÃliesÃnearby.");
new obj (ROD, "BlackÃrod", 0, debris);
new note ("AÃthree−footÃblackÃrodÃwithÃaÃrustyÃstarÃonÃanÃendÃliesÃnearby.");
new obj (CAGE, "WickerÃcage", 0, cobbles);
new note ("ThereÃisÃaÃsmallÃwickerÃcageÃdiscardedÃnearby.");
new obj (LAMP, "BrassÃlantern", 0, house);
new note ("ThereÃisÃaÃshinyÃbrassÃlampÃnearby.");
new note ("ThereÃisÃaÃlampÃshiningÃnearby.");
new obj (KEYS, "SetÃofÃkeys", 0, house);
new note ("ThereÃareÃsomeÃkeysÃonÃtheÃgroundÃhere.");

§71 ADVENTURE LOW-LEVEL INPUT 51

71. Low-level input. Sometimes we need to ask you a question, for which the answer is either yes or
no. The subroutine yes (q, y, n) prints q, waits for you to answer, and then prints y or n depending on your
answer. It returns a nonzero value if your answer was affirmative.
〈Subroutines 6 〉 +≡

boolean yes ARGS((char ∗, char ∗, char ∗));
boolean yes (q, y, n)

char ∗q, ∗y, ∗n;
{

while (1) {
printf ("%s\n**Ã", q); fflush (stdout);
fgets (buffer , buf size , stdin);
if (tolower (∗buffer) ≡ ’y’) {

if (y) printf ("%s\n", y); return true ;
}
else if (tolower (∗buffer) ≡ ’n’) {

if (n) printf ("%s\n", n); return false ;
}
else printf ("ÃPleaseÃanswerÃYesÃorÃNo.\n");

}
}

52 LOW-LEVEL INPUT ADVENTURE §72

72. The only other kind of input is almost as simple. You are supposed to tell us what to do next in your
adventure, by typing one- or two-word commands. We put the first word in word1 and the (possibly null)
second word in word2 . Words are separated by white space; otherwise white space is ignored.
〈Subroutines 6 〉 +≡

void listen ARGS((void));
void listen () {

register char ∗p, ∗q;
while (1) {

printf ("*Ã"); fflush (stdout);
fgets (buffer , buf size , stdin);
for (p = buffer ; isspace (∗p); p++) ;
if (∗p ≡ 0) {

printf ("ÃTellÃmeÃtoÃdoÃsomething.\n"); continue;
}
for (q = word1 ; ∗p; p++, q++) {

if (isspace (∗p)) break;
∗q = tolower (∗p);

}
∗q = ’\0’; /∗ end of word1 ∗/
for (p++; isspace (∗p); p++) ;
if (∗p ≡ 0) {
∗word2 = ’\0’; return;

}
for (q = word2 ; ∗p; p++, q++) {

if (isspace (∗p)) break;
∗q = tolower (∗p);

}
∗q = ’\0’; /∗ end of word2 ∗/
for (p++; isspace (∗p); p++) ;
if (∗p ≡ 0) return;
printf ("ÃPleaseÃstickÃtoÃ1−ÃandÃ2−wordÃcommands.\n");

}
}

73. A 20-character buffer would probably be big enough, but what the heck.
#define buf size 72
〈Global variables 7 〉 +≡

char buffer [buf size]; /∗ your input goes here ∗/
char word1 [buf size], word2 [buf size]; /∗ and then we snarf it to here ∗/

§74 ADVENTURE THE MAIN CONTROL LOOP 53

74. The main control loop. Now we’ve got enough low-level mechanisms in place to start thinking of
the program from the top down, and to specify the high-level control.

A global variable loc represents where you currently live in the simulated cave. Another variable newloc
represents where you will go next, unless something like a dwarf blocks you. We also keep track of oldloc
(the previous value of loc) and oldoldloc (the previous previous value), for use when you ask to ‘go back’.
#define here (t) (toting (t) ∨ place [t] ≡ loc) /∗ is object t present? ∗/
#define water here ((flags [loc] & (liquid + oil)) ≡ liquid)
#define oil here ((flags [loc] & (liquid + oil)) ≡ liquid + oil)
#define no liquid here ((flags [loc] & liquid) ≡ 0)
〈Global variables 7 〉 +≡

location oldoldloc , oldloc , loc , newloc ; /∗ recent and future locations ∗/

75. Here is our overall strategy for administering the game. It is understood that the program might
goto quit from within any of the subsections named here, even though the section names don’t mention this
explicitly. For example, while checking for interference we might find out that time has run out, or that a
dwarf has killed you and no more reincarnations are possible.

The execution consists of two nested loops: There are “minor cycles” inside of “major cycles.” Actions
define minor cycles in which you stay in the same place and we tell you the result of your action. Motions
define major cycles in which you move and we tell you what you can see at the new place.
〈Simulate an adventure, going to quit when finished 75 〉 ≡

while (1) {
〈Check for interference with the proposed move to newloc 153 〉;
loc = newloc ; /∗ hey, we actually moved you ∗/
〈Possibly move dwarves and the pirate 161 〉;

commence : 〈Report the current state 86 〉;
while (1) {
〈Get user input; goto try move if motion is requested 76 〉;
〈Perform an action in the current place 79 〉;

}
try move : 〈Handle special motion words 140 〉;

oldoldloc = oldloc ;
oldloc = loc ;

go for it : 〈Determine the next location, newloc 146 〉;
}

This code is used in section 2.

54 THE MAIN CONTROL LOOP ADVENTURE §76

76. Our main task in the simulation loop is to parse your input. Depending on the kind of command you
give, the following section of the program will exit in one of four ways:
• goto try move with mot set to a desired motion.
• goto transitive with verb set to a desired action and obj set to the object of that motion.
• goto intransitive with verb set to a desired action and obj = NOTHING; no object has been specified.
• goto speakit with hash table [k].meaning the index of a message for a vocabulary word of message type .
Sometimes we have to ask you to complete an ambiguous command before we know both a verb and its
object. In most cases the words can be in either order; for example, take rod is equivalent to rod take.
A motion word overrides a previously given action or object.

Lots of special cases make the program a bit messy. For example, if the verb is say, we don’t want to look
up the object in our vocabulary; we simply want to “say” it.
〈Get user input; goto try move if motion is requested 76 〉 ≡

verb = oldverb = ABSTAIN;
oldobj = obj ;
obj = NOTHING;

cycle : 〈Check if a hint applies, and give it if requested 195 〉;
〈Make special adjustments before looking at new input 85 〉;
listen ();

pre parse : turns ++;
〈Handle special cases of input 82 〉;
〈Check the clocks and the lamp 178 〉;
〈Handle additional special cases of input 83 〉;

parse : 〈Give advice about going WEST 80 〉;
〈Look at word1 and exit to the right place if it completes a command 78 〉;

shift : strcpy (word1 ,word2); ∗word2 = ’\0’; goto parse ;
This code is used in section 75.

77. 〈Global variables 7 〉 +≡
motion mot ; /∗ currently specified motion, if any ∗/
action verb ; /∗ currently specified action, if any ∗/
action oldverb ; /∗ verb before it was changed ∗/
object obj ; /∗ currently specified object, if any ∗/
object oldobj ; /∗ former value of obj ∗/
wordtype command type ; /∗ type of word found in hash table ∗/
int turns ; /∗ how many times we’ve read your commands ∗/

§78 ADVENTURE THE MAIN CONTROL LOOP 55

78. The try motion macro is often used to end a major cycle.
#define try motion (m) { mot = m; goto try move ; }
#define stay put try motion (NOWHERE)
〈Look at word1 and exit to the right place if it completes a command 78 〉 ≡

k = lookup(word1);
if (k < 0) { /∗ Gee, I don’t understand ∗/

printf ("Sorry,ÃIÃdon’tÃknowÃtheÃwordÃ\"%s\".\n",word1); goto cycle ;
}

branch : command type = hash table [k].word type ;
switch (command type) {
case motion type : try motion (hash table [k].meaning);
case object type : obj = hash table [k].meaning ;
〈Make sure obj is meaningful at the current location 90 〉;
if (∗word2) break;
if (verb) goto transitive ;
printf ("WhatÃdoÃyouÃwantÃtoÃdoÃwithÃtheÃ%s?\n",word1); goto cycle ;

case action type : verb = hash table [k].meaning ;
if (verb ≡ SAY) obj = ∗word2 ;
else if (∗word2) break;
if (obj) goto transitive ; else goto intransitive ;

case message type : goto speakit ;
}

This code is used in section 76.

56 THE MAIN CONTROL LOOP ADVENTURE §79

79. Here is the multiway branch where many kinds of actions can be launched.
If a verb can only be transitive, but no object has been given, we must go back and ask for an object.
If a verb can only be intransitive, but an object has been given, we issue the default message for that verb

and start over.
The variable k, initially zero, is used to count various things in several of the action routines.
The report macro is often used to end a minor cycle.

#define report (m) { printf ("%s\n",m); continue; }
#define default to(v) report (default msg [v])
#define change to(v) { oldverb = verb ; verb = v; goto transitive ; }
〈Perform an action in the current place 79 〉 ≡
intransitive : k = 0;

switch (verb) {
case GO: case RELAX: goto report default ;
case ON: case OFF: case POUR: case FILL: case DRINK: case BLAST: case KILL: goto transitive ;
〈Handle cases of intransitive verbs and continue 92 〉;

default: goto get object ;
}

transitive : k = 0;
switch (verb) {
〈Handle cases of transitive verbs and continue 97 〉;

default: goto report default ;
}

speakit : report (message [hash table [k].meaning]);
report default : if (default msg [verb]) report (default msg [verb]) else continue;
get object : printf ("%sÃwhat?\n",word1); goto cycle ;
cant see it : if ((verb ≡ FIND ∨ verb ≡ INVENTORY) ∧ ∗word2 ≡ ’\0’) goto transitive ;

printf ("IÃseeÃnoÃ%sÃhere.\n",word1); continue;
This code is used in section 75.

80. Here’s a freely offered hint that may save you typing.
〈Give advice about going WEST 80 〉 ≡

if (streq (word1 , "west")) {
west count ++;
if (west count ≡ 10) printf ("ÃIfÃyouÃprefer,ÃsimplyÃtypeÃWÃratherÃthanÃWEST.\n");

}
This code is used in section 76.

81. 〈Global variables 7 〉 +≡
int west count ; /∗ how many times have we parsed the word ‘west’? ∗/

82. Maybe you said ‘say’ and we said ‘say what?’ and you replied with two things to say. Then we assume
you don’t really want us to say anything.
〈Handle special cases of input 82 〉 ≡

if (verb ≡ SAY) {
if (∗word2) verb = ABSTAIN; else goto transitive ;

}
See also section 138.

This code is used in section 76.

§83 ADVENTURE THE MAIN CONTROL LOOP 57

83. The verb ‘enter’ is listed in our vocabulary as a motion rather than an action. Here we deal with
cases where you try to use it as an action. Notice that ‘H2O’ is not a synonym for ‘water’ in this context.
〈Handle additional special cases of input 83 〉 ≡

if (streq (word1 , "enter")) {
if (streq (word2 , "water") ∨ streq (word2 , "strea")) {

if (water here) report ("YourÃfeetÃareÃnowÃwet.");
default to(GO);

}
else if (∗word2) goto shift ;

}
See also section 105.

This code is used in section 76.

84. Cavers can become cadavers if they don’t have light. We keep a variable was dark to remember how
dark things were when you gave your last command.
#define dark ((flags [loc] & lighted) ≡ 0 ∧ (prop [LAMP] ≡ 0 ∨ ¬here (LAMP)))
〈Global variables 7 〉 +≡

boolean was dark ; /∗ you’ve recently been in the dark ∗/

85. 〈Make special adjustments before looking at new input 85 〉 ≡
was dark = dark ;

See also sections 158, 169, and 182.

This code is used in section 76.

86. After moving to newloc , we act as your eyes. We print the long description of newloc if you haven’t
been there before; but when you return to a previously seen place, we often use a short form. The long form
is used every 5th time, unless you say ‘brief’, in which case we use the shortest form we know. You can
always ask for the long form by saying ‘look’.
〈Report the current state 86 〉 ≡

if (loc ≡ limbo) goto death ;
if (dark ∧ ¬forced move (loc)) {

if (was dark ∧ pct (35)) goto pitch dark ;
p = pitch dark msg ;

}
else if (short desc [loc] ≡ 0 ∨ visits [loc] % interval ≡ 0) p = long desc [loc];
else p = short desc [loc];
if (toting (BEAR)) printf ("YouÃareÃbeingÃfollowedÃbyÃaÃveryÃlarge,ÃtameÃbear.\n");
printf ("\n%s\n", p);
if (forced move (loc)) goto try move ;
〈Give optional plugh hint 157 〉;
if (¬dark) 〈Describe the objects at this location 88 〉;

This code is used in section 75.

87. 〈Global variables 7 〉 +≡
int interval = 5; /∗ will change to 10000 if you want us to be BRIEF ∗/
char pitch dark msg [] =

"ItÃisÃnowÃpitchÃdark.ÃÃIfÃyouÃproceedÃyouÃwillÃmostÃlikelyÃfallÃintoÃaÃpit.";

58 THE MAIN CONTROL LOOP ADVENTURE §88

88. If TREADS are present but you have a heavy load, we don’t describe them. The treads never actually
get property value 1; we use the note for property 1 only when they are seen from above.

The global variable tally counts the number of treasures you haven’t seen. Another variable, lost treasures ,
counts those you never will see.
〈Describe the objects at this location 88 〉 ≡
{ register object tt ;

visits [loc]++;
for (t = first [loc]; t; t = link [t]) {

tt = (base [t] ? base [t] : t);
if (prop [tt] < 0) { /∗ you’ve spotted a treasure ∗/

if (closed) continue; /∗ no automatic prop change after hours ∗/
prop [tt] = (tt ≡ RUG ∨ tt ≡ CHAIN); /∗ initialize the property value ∗/
tally −−;
〈Zap the lamp if the remaining treasures are too elusive 183 〉;

}
if (tt ≡ TREADS ∧ toting (GOLD)) continue;
p = note [prop [tt] + offset [tt] + (tt ≡ TREADS ∧ loc ≡ emist)];
if (p) printf ("%s\n", p);

}
}

This code is used in section 86.

89. 〈Global variables 7 〉 +≡
int tally = 15; /∗ treasures awaiting you ∗/
int lost treasures ; /∗ treasures that you won’t find ∗/

90. When you specify an object, it must be at the current location, unless the verb is already known to
be FIND or INVENTORY. A few other special cases also are permitted; for example, water and oil are funny,
since they are never actually dropped at any location, but they might be present inside the bottle or as a
feature of the location.
#define object in bottle ((obj ≡ WATER ∧ prop [BOTTLE] ≡ 0) ∨ (obj ≡ OIL ∧ prop [BOTTLE] ≡ 2))
〈Make sure obj is meaningful at the current location 90 〉 ≡

if (¬toting (obj) ∧ ¬is at loc(obj))
switch (obj) {
case GRATE: 〈 If GRATE is actually a motion word, move to it 91 〉;

goto cant see it ;
case DWARF: if (dflag ≥ 2 ∧ dwarf ()) break; else goto cant see it ;
case PLANT: if (is at loc(PLANT2) ∧ prop [PLANT2]) {

obj = PLANT2; break;
}
else goto cant see it ;

case KNIFE: if (loc 6= knife loc) goto cant see it ;
knife loc = −1;
report ("TheÃdwarves’ÃknivesÃvanishÃasÃtheyÃstrikeÃtheÃwallsÃofÃtheÃcave.");

case ROD: if (¬here (ROD2)) goto cant see it ;
obj = ROD2; break;

case WATER: case OIL: if (here (BOTTLE) ∧ object in bottle) break;
if ((obj ≡ WATER ∧ water here) ∨ (obj ≡ OIL ∧ oil here)) break;

default: goto cant see it ;
}

This code is used in section 78.

§91 ADVENTURE THE MAIN CONTROL LOOP 59

91. Henning Makholm has pointed out that the logic here makes GRATE a motion word regardless of the
verb. For example, you can get to the grate by saying ‘wave grate’ from the road or the valley (but curiously
not from the slit).
〈 If GRATE is actually a motion word, move to it 91 〉 ≡

if (loc < min lower loc)
switch (loc) {
case road : case valley : case slit : try motion (DEPRESSION);
case cobbles : case debris : case awk : case bird : case spit : try motion (ENTRANCE);
default: break;
}

This code is used in section 90.

60 SIMPLE VERBS ADVENTURE §92

92. Simple verbs. Let’s get experience implementing the actions by dispensing with the easy cases first.
First there are several “intransitive” verbs that reduce to transitive when we identify an appropriate object.

For example, ‘take’ makes sense by itself if there’s only one possible thing to take.
〈Handle cases of intransitive verbs and continue 92 〉 ≡
case TAKE: if (first [loc] ≡ 0 ∨ link [first [loc]] ∨ dwarf ()) goto get object ;

obj = first [loc]; goto transitive ;
case EAT: if (¬here (FOOD)) goto get object ;

obj = FOOD; goto transitive ;
See also sections 93, 94, 95, and 136.

This code is used in section 79.

93. Only the objects GRATE, DOOR, CLAM/OYSTER, and CHAIN can be opened or closed. And only a few
objects can be read.
〈Handle cases of intransitive verbs and continue 92 〉 +≡
case OPEN: case CLOSE: if (place [GRATE] ≡ loc ∨ place [GRATE_] ≡ loc) obj = GRATE;

else if (place [DOOR] ≡ loc) obj = DOOR;
else if (here (CLAM)) obj = CLAM;
else if (here (OYSTER)) obj = OYSTER;
if (here (CHAIN)) {

if (obj) goto get object ; else obj = CHAIN;
}
if (obj) goto transitive ;
report ("ThereÃisÃnothingÃhereÃwithÃaÃlock!");

case READ: if (dark) goto get object ; /∗ can’t read in the dark ∗/
if (here (MAG)) obj = MAG;
if (here (TABLET)) {

if (obj) goto get object ; else obj = TABLET;
}
if (here (MESSAGE)) {

if (obj) goto get object ; else obj = MESSAGE;
}
if (closed ∧ toting (OYSTER)) obj = OYSTER;
if (obj) goto transitive ; else goto get object ;

94. A request for an inventory is pretty simple too.
〈Handle cases of intransitive verbs and continue 92 〉 +≡
case INVENTORY:

for (t = 1; t ≤ max obj ; t++)
if (toting (t) ∧ (base [t] ≡ NOTHING ∨ base [t] ≡ t) ∧ t 6= BEAR) {

if (k ≡ 0) k = 1, printf ("YouÃareÃcurrentlyÃholdingÃtheÃfollowing:\n");
printf ("Ã%s\n",name [t]);

}
if (toting (BEAR)) report ("YouÃareÃbeingÃfollowedÃbyÃaÃveryÃlarge,ÃtameÃbear.");
if (k ≡ 0) report ("You’reÃnotÃcarryingÃanything.");
continue;

§95 ADVENTURE SIMPLE VERBS 61

95. Here are other requests about the mechanics of the game.
〈Handle cases of intransitive verbs and continue 92 〉 +≡
case BRIEF: interval = 10000;

look count = 3;
report ("Okay,ÃfromÃnowÃonÃI’llÃonlyÃdescribeÃaÃplaceÃinÃfullÃtheÃfirstÃtime\n\

youÃcomeÃtoÃit.ÃÃToÃgetÃtheÃfullÃdescription,ÃsayÃ\"LOOK\".");
case SCORE: printf ("IfÃyouÃwereÃtoÃquitÃnow,ÃyouÃwouldÃscoreÃ%d\noutÃofÃaÃpossibleÃ%d.\n",

score ()− 4,max score);
if (¬yes ("DoÃyouÃindeedÃwishÃtoÃquitÃnow?", ok , ok)) continue;
goto give up ;

case QUIT: if (¬yes ("DoÃyouÃreallyÃwishÃtoÃquitÃnow?", ok , ok)) continue;
give up : gave up = true ; goto quit ;

96. 〈Global variables 7 〉 +≡
boolean gave up ; /∗ did you quit while you were alive? ∗/

97. The SAY routine is just an echo unless you say a magic word.
〈Handle cases of transitive verbs and continue 97 〉 ≡
case SAY: if (∗word2) strcpy (word1 ,word2);

k = lookup(word1);
switch (hash table [k].meaning) {
case XYZZY: case PLUGH: case PLOVER: case FEEFIE: ∗word2 = ’\0’; obj = NOTHING; goto branch ;
default: printf ("Okay,Ã\"%s\".\n",word1); continue;
}

See also sections 98, 99, 100, 101, 102, 106, 107, 110, 112, 117, 122, 125, 129, 130, and 135.

This code is used in section 79.

98. Hungry?
〈Handle cases of transitive verbs and continue 97 〉 +≡
case EAT:

switch (obj) {
case FOOD: destroy (FOOD);

report ("ThankÃyou,ÃitÃwasÃdelicious!");
case BIRD: case SNAKE: case CLAM: case OYSTER: case DWARF: case DRAGON: case TROLL: case BEAR:

report ("IÃthinkÃIÃjustÃlostÃmyÃappetite.");
default: goto report default ;
}

62 SIMPLE VERBS ADVENTURE §99

99. Waving to the shadowy figure has no effect; but you might wave a rod at the fissure. Blasting has no
effect unless you’ve got dynamite, which is a neat trick! Rubbing yields only snide remarks.
〈Handle cases of transitive verbs and continue 97 〉 +≡
case WAVE: if (obj 6= ROD ∨ (loc 6= efiss ∧ loc 6= wfiss) ∨

¬toting (obj) ∨ closing) {
if (toting (obj) ∨ (obj ≡ ROD ∧ toting (ROD2))) goto report default ;
default to(DROP);

}
prop [CRYSTAL] = 1− prop [CRYSTAL];
report (note [offset [CRYSTAL] + 2− prop [CRYSTAL]]);

case BLAST: if (closed ∧ prop [ROD2] ≥ 0) {
bonus = (here (ROD2) ? 25 : loc ≡ neend ? 30 : 45);
printf ("%s\n",message [bonus/5]); goto quit ;

}
else goto report default ;

case RUB: if (obj ≡ LAMP) goto report default ;
default to(TOSS);

100. If asked to find an object that isn’t visible, we give a caveat.
〈Handle cases of transitive verbs and continue 97 〉 +≡
case FIND: case INVENTORY: if (toting (obj)) default to(TAKE);

if (closed) report ("IÃdaresayÃwhateverÃyouÃwantÃisÃaroundÃhereÃsomewhere.");
if (is at loc(obj) ∨ (object in bottle ∧ place [BOTTLE] ≡ loc) ∨

(obj ≡ WATER ∧ water here) ∨ (obj ≡ OIL ∧ oil here) ∨
(obj ≡ DWARF ∧ dwarf ())) report ("IÃbelieveÃwhatÃyouÃwantÃisÃrightÃhereÃwithÃyou.");

goto report default ;

101. Breaking and/or waking have no effect until the cave is closed, except of course that you might break
the vase. The dwarves like mirrors and hate being awakened.
〈Handle cases of transitive verbs and continue 97 〉 +≡
case BREAK: if (obj ≡ VASE ∧ prop [VASE] ≡ 0) {

if (toting (VASE)) drop(VASE, loc); /∗ crash ∗/
printf ("YouÃhaveÃtakenÃtheÃvaseÃandÃhurledÃitÃdelicatelyÃtoÃtheÃground.\n");

smash : prop [VASE] = 2; base [VASE] = VASE; /∗ it’s no longer movable ∗/
continue;

}
else if (obj 6= MIRROR) goto report default ;
if (closed) {

printf ("YouÃstrikeÃtheÃmirrorÃaÃresoundingÃblow,ÃwhereuponÃitÃshattersÃintoÃa\n\
myriadÃtinyÃfragments.");

goto dwarves upset ;
}
report ("ItÃisÃtooÃfarÃupÃforÃyouÃtoÃreach.");

case WAKE: if (closed ∧ obj ≡ DWARF) {
printf ("YouÃprodÃtheÃnearestÃdwarf,ÃwhoÃwakesÃupÃgrumpily,ÃtakesÃoneÃlookÃat\n\

you,Ãcurses,ÃandÃgrabsÃforÃhisÃaxe.\n");
goto dwarves upset ;

}
else goto report default ;

§102 ADVENTURE SIMPLE VERBS 63

102. Here we deal with lighting or extinguishing the lamp. The variable limit tells how much juice you’ve
got left.
〈Handle cases of transitive verbs and continue 97 〉 +≡
case ON: if (¬here (LAMP)) goto report default ;

if (limit < 0) report ("YourÃlampÃhasÃrunÃoutÃofÃpower.");
prop [LAMP] = 1;
printf ("YourÃlampÃisÃnowÃon.\n");
if (was dark) goto commence ;
continue;

case OFF: if (¬here (LAMP)) goto report default ;
prop [LAMP] = 0;
printf ("YourÃlampÃisÃnowÃoff.\n");
if (dark) printf ("%s\n", pitch dark msg);
continue;

103. 〈Global variables 7 〉 +≡
int limit ; /∗ countdown till darkness ∗/

64 LIQUID ASSETS ADVENTURE §104

104. Liquid assets. Readers of this program will already have noticed that the BOTTLE is a rather
complicated object, since it can be empty or filled with either water or oil. Let’s consider now the main
actions that involve liquids.

When you are carrying a bottle full of water, place [WATER] will be inhand ; hence both toting (WATER) and
toting (BOTTLE) are true. A similar remark applies to a bottle full of oil.

The value of prop [BOTTLE] is 0 if it holds water, 2 if it holds oil, otherwise either 1 or −2. (The value −2
is used after closing the cave.)
#define bottle empty (prop [BOTTLE] ≡ 1 ∨ prop [BOTTLE] < 0)

105. Sometimes ‘water’ and ‘oil’ are used as verbs.
〈Handle additional special cases of input 83 〉 +≡

if ((streq (word1 , "water") ∨ streq (word1 , "oil")) ∧
(streq (word2 , "plant") ∨ streq (word2 , "door")) ∧
(loc = place [hash table [lookup(word2)].meaning])) strcpy (word2 , "pour");

106. If you ask simply to drink, we assume that you want water. If there’s water in the bottle, you drink
that; otherwise you must be at a water location.
〈Handle cases of transitive verbs and continue 97 〉 +≡
case DRINK: if (obj ≡ NOTHING) {

if (¬water here ∧ ¬(here (BOTTLE) ∧ prop [BOTTLE] ≡ 0)) goto get object ;
}
else if (obj 6= WATER) default to(EAT);
if (¬(here (BOTTLE) ∧ prop [BOTTLE] ≡ 0)) goto report default ;
prop [BOTTLE] = 1; place [WATER] = limbo ;
report ("TheÃbottleÃofÃwaterÃisÃnowÃempty.");

107. Pouring involves liquid from the bottle.
〈Handle cases of transitive verbs and continue 97 〉 +≡
case POUR: if (obj ≡ NOTHING ∨ obj ≡ BOTTLE) {

obj = (prop [BOTTLE] ≡ 0 ? WATER : prop [BOTTLE] ≡ 2 ? OIL : 0);
if (obj ≡ NOTHING) goto get object ;

}
if (¬toting (obj)) goto report default ;
if (obj 6= WATER ∧ obj 6= OIL) report ("YouÃcan’tÃpourÃthat.");
prop [BOTTLE] = 1; place [obj] = limbo ;
if (loc ≡ place [PLANT]) 〈Try to water the plant 108 〉;
if (loc ≡ place [DOOR]) 〈Pour water or oil on the door 109 〉;
goto report default ;

108. 〈Try to water the plant 108 〉 ≡
{

if (obj 6= WATER)
report ("TheÃplantÃindignantlyÃshakesÃtheÃoilÃoffÃitsÃleavesÃandÃasks,Ã\"Water?\"");

printf ("%s\n",note [prop [PLANT] + 1 + offset [PLANT]]);
prop [PLANT] += 2; if (prop [PLANT] > 4) prop [PLANT] = 0;
prop [PLANT2] = prop [PLANT] À 1;
stay put ;

}
This code is used in section 107.

§109 ADVENTURE LIQUID ASSETS 65

109. 〈Pour water or oil on the door 109 〉 ≡
switch (obj) {
case WATER: prop [DOOR] = 0;

report ("TheÃhingesÃareÃquiteÃthoroughlyÃrustedÃnowÃandÃwon’tÃbudge.");
case OIL: prop [DOOR] = 1;

report ("TheÃoilÃhasÃfreedÃupÃtheÃhingesÃsoÃthatÃtheÃdoorÃwillÃnowÃopen.");
}

This code is used in section 107.

110. You can fill the bottle only when it’s empty and liquid is available. You can’t fill the lamp with oil.
〈Handle cases of transitive verbs and continue 97 〉 +≡
case FILL: if (obj ≡ VASE) 〈Try to fill the vase 111 〉;

if (¬here (BOTTLE)) {
if (obj ≡ NOTHING) goto get object ; else goto report default ;

}
else if (obj 6= NOTHING ∧ obj 6= BOTTLE) goto report default ;
if (¬bottle empty) report ("YourÃbottleÃisÃalreadyÃfull.");
if (no liquid here) report ("ThereÃisÃnothingÃhereÃwithÃwhichÃtoÃfillÃtheÃbottle.");
prop [BOTTLE] = flags [loc] & oil ;
if (toting (BOTTLE)) place [prop [BOTTLE] ? OIL : WATER] = inhand ;
printf ("YourÃbottleÃisÃnowÃfullÃofÃ%s.\n", prop [BOTTLE] ? "oil" : "water");
continue;

111. Filling the vase is a nasty business.
〈Try to fill the vase 111 〉 ≡
{

if (no liquid here) report ("ThereÃisÃnothingÃhereÃwithÃwhichÃtoÃfillÃtheÃvase.\n");
if (¬toting (VASE)) report (default msg [DROP]);
printf ("TheÃsuddenÃchangeÃinÃtemperatureÃhasÃdelicatelyÃshatteredÃtheÃvase.\n");
goto smash ;

}
This code is used in section 110.

66 LIQUID ASSETS ADVENTURE §112

112. Picking up a liquid depends, of course, on the status of the bottle. Other objects need special
handling, too, because of various side effects and the fact that we can’t take bird and cage separately when
the bird is in the cage.
〈Handle cases of transitive verbs and continue 97 〉 +≡
case TAKE: if (toting (obj)) goto report default ; /∗ already carrying it ∗/

if (base [obj]) { /∗ it is immovable ∗/
if (obj ≡ CHAIN ∧ prop [BEAR]) report ("TheÃchainÃisÃstillÃlocked.");
if (obj ≡ BEAR ∧ prop [BEAR] ≡ 1) report ("TheÃbearÃisÃstillÃchainedÃtoÃtheÃwall.");
if (obj ≡ PLANT ∧ prop [PLANT] ≤ 0)

report ("TheÃplantÃhasÃexceptionallyÃdeepÃrootsÃandÃcannotÃbeÃpulledÃfree.");
report ("YouÃcan’tÃbeÃserious!");

}
if (obj ≡ WATER ∨ obj ≡ OIL) 〈Check special cases for taking a liquid 113 〉;
if (holding ≥ 7)

report ("YouÃcan’tÃcarryÃanythingÃmore.ÃÃYou’llÃhaveÃtoÃdropÃsomethingÃfirst.");
if (obj ≡ BIRD ∧ prop [BIRD] ≡ 0) 〈Check special cases for taking a bird 114 〉;
if (obj ≡ BIRD ∨ (obj ≡ CAGE ∧ prop [BIRD])) carry (BIRD + CAGE − obj);
carry (obj);
if (obj ≡ BOTTLE ∧ ¬bottle empty) place [prop [BOTTLE] ? OIL : WATER] = inhand ;
default to(RELAX); /∗ OK, we’ve taken it ∗/

113. 〈Check special cases for taking a liquid 113 〉 ≡
if (here (BOTTLE) ∧ object in bottle) obj = BOTTLE;
else {

obj = BOTTLE;
if (toting (BOTTLE)) change to(FILL);
report ("YouÃhaveÃnothingÃinÃwhichÃtoÃcarryÃit.");

}
This code is used in section 112.

114. 〈Check special cases for taking a bird 114 〉 ≡
{

if (toting (ROD))
report ("TheÃbirdÃwasÃunafraidÃwhenÃyouÃentered,ÃbutÃasÃyouÃapproachÃitÃbecomes\n\

disturbedÃandÃyouÃcannotÃcatchÃit.");
if (toting (CAGE)) prop [BIRD] = 1;
else report ("YouÃcanÃcatchÃtheÃbird,ÃbutÃyouÃcannotÃcarryÃit.");

}
This code is used in section 112.

115. Similarly, when dropping the bottle we must drop also its liquid contents, if any.
〈Check special cases for dropping a liquid 115 〉 ≡

if (object in bottle) obj = BOTTLE;
if (obj ≡ BOTTLE ∧ ¬bottle empty) place [prop [BOTTLE] ? OIL : WATER] = limbo ;

This code is used in section 117.

§116 ADVENTURE THE OTHER ACTIONS 67

116. The other actions. Now that we understand how to write action routines, we’re ready to complete
the set.

117. Dropping an object has special cases for the bird (which might attack the snake or the dragon), the
cage, the vase, etc. The verb THROW also reduces to DROP for most objects.
〈Handle cases of transitive verbs and continue 97 〉 +≡
case DROP: if (obj ≡ ROD ∧ toting (ROD2) ∧ ¬toting (ROD)) obj = ROD2;

if (¬toting (obj)) goto report default ;
if (obj ≡ COINS ∧ here (PONY)) 〈Put coins in the vending machine 118 〉;
if (obj ≡ BIRD) 〈Check special cases for dropping the bird 120 〉;
if (obj ≡ VASE ∧ loc 6= soft) 〈Check special cases for dropping the vase 121 〉;
if (obj ≡ BEAR ∧ is at loc(TROLL)) 〈Chase the troll away 119 〉;
〈Check special cases for dropping a liquid 115 〉;
if (obj ≡ BIRD) prop [BIRD] = 0;
else if (obj ≡ CAGE ∧ prop [BIRD]) drop(BIRD, loc);
drop(obj , loc);
if (k) continue; else default to(RELAX);

118. 〈Put coins in the vending machine 118 〉 ≡
{

destroy (COINS);
drop(BATTERIES, loc);
prop [BATTERIES] = 0;
report (note [offset [BATTERIES]]);

}
This code is used in section 117.

119. TROLL2 is the absent troll. We move the troll bridge up to first in the list of things at its location.
〈Chase the troll away 119 〉 ≡
{

printf ("TheÃbearÃlumbersÃtowardÃtheÃtroll,ÃwhoÃletsÃoutÃaÃstartledÃshriekÃand\n\
scurriesÃaway.ÃÃTheÃbearÃsoonÃgivesÃupÃtheÃpursuitÃandÃwandersÃback.\n");

k = 1; /∗ suppress the “OK” message ∗/
destroy (TROLL); destroy (TROLL_);
drop(TROLL2, swside); drop(TROLL2_,neside);
prop [TROLL] = 2;
move (BRIDGE, swside); move (BRIDGE_,neside); /∗ put first in their lists ∗/

}
This code is used in section 117.

68 THE OTHER ACTIONS ADVENTURE §120

120. 〈Check special cases for dropping the bird 120 〉 ≡
{

if (here (SNAKE)) {
printf ("TheÃlittleÃbirdÃattacksÃtheÃgreenÃsnake,ÃandÃinÃanÃastoundingÃflurry\n\

drivesÃtheÃsnakeÃaway.\n");
k = 1;
if (closed) goto dwarves upset ;
destroy (SNAKE);
prop [SNAKE] = 1; /∗ used in conditional instructions ∗/

}
else if (is at loc(DRAGON) ∧ prop [DRAGON] ≡ 0) {

destroy (BIRD); prop [BIRD] = 0;
if (place [SNAKE] ≡ hmk) lost treasures ++;
report ("TheÃlittleÃbirdÃattacksÃtheÃgreenÃdragon,ÃandÃinÃanÃastoundingÃflurry\n\

getsÃburntÃtoÃaÃcinder.ÃÃTheÃashesÃblowÃaway.");
}

}
This code is used in section 117.

121. 〈Check special cases for dropping the vase 121 〉 ≡
{

prop [VASE] = (place [PILLOW] ≡ loc ? 0 : 2);
printf ("%s\n",note [offset [VASE] + 1 + prop [VASE]]); k = 1;
if (prop [VASE]) base [VASE] = VASE;

}
This code is used in section 117.

122. Throwing is like dropping, except that it covers a few more cases.
〈Handle cases of transitive verbs and continue 97 〉 +≡
case TOSS: if (obj ≡ ROD ∧ toting (ROD2) ∧ ¬toting (ROD)) obj = ROD2;

if (¬toting (obj)) goto report default ;
if (is treasure (obj) ∧ is at loc(TROLL)) 〈Snarf a treasure for the troll 124 〉;
if (obj ≡ FOOD ∧ here (BEAR)) {

obj = BEAR; change to(FEED);
}
if (obj 6= AXE) change to(DROP);
if (dwarf ()) 〈Throw the axe at a dwarf 163 〉;
if (is at loc(DRAGON) ∧ prop [DRAGON] ≡ 0)

printf ("TheÃaxeÃbouncesÃharmlesslyÃoffÃtheÃdragon’sÃthickÃscales.\n");
else if (is at loc(TROLL))

printf ("TheÃtrollÃdeftlyÃcatchesÃtheÃaxe,ÃexaminesÃitÃcarefully,ÃandÃtossesÃit\n\
back,Ãdeclaring,Ã\"GoodÃworkmanship,ÃbutÃit’sÃnotÃvaluableÃenough.\n");

else if (here (BEAR) ∧ prop [BEAR]) 〈Throw the axe at the bear 123 〉
else {

obj = NOTHING;
change to(KILL);

}
drop(AXE, loc); stay put ;

§123 ADVENTURE THE OTHER ACTIONS 69

123. This’ll teach you a lesson.
〈Throw the axe at the bear 123 〉 ≡
{

drop(AXE, loc);
prop [AXE] = 1; base [AXE] = AXE; /∗ it becomes immovable ∗/
if (place [BEAR] ≡ loc) move (BEAR, loc); /∗ put bear first in its list ∗/
report ("TheÃaxeÃmissesÃandÃlandsÃnearÃtheÃbearÃwhereÃyouÃcan’tÃgetÃatÃit");

}
This code is used in section 122.

124. If you toss the vase, the skillful troll will catch it before it breaks.
〈Snarf a treasure for the troll 124 〉 ≡
{

drop(obj , limbo);
destroy (TROLL); destroy (TROLL_);
drop(TROLL2, swside); drop(TROLL2_,neside);
move (BRIDGE, swside); move (BRIDGE_,neside);
report ("TheÃtrollÃcatchesÃyourÃtreasureÃandÃscurriesÃawayÃoutÃofÃsight");

}
This code is used in section 122.

125. When you try to attack, the action becomes violent.
〈Handle cases of transitive verbs and continue 97 〉 +≡
case KILL: if (obj ≡ NOTHING) 〈See if there’s a unique object to attack 126 〉;

switch (obj) {
case 0: report ("ThereÃisÃnothingÃhereÃtoÃattack.");
case BIRD: 〈Dispatch the poor bird 127 〉;
case DRAGON: if (prop [DRAGON] ≡ 0) 〈Fun stuff for dragon 128 〉;
cry : report ("ForÃcryingÃoutÃloud,ÃtheÃpoorÃthingÃisÃalreadyÃdead!");
case CLAM: case OYSTER: report ("TheÃshellÃisÃveryÃstrongÃandÃimperviousÃtoÃattack.");
case SNAKE: report ("AttackingÃtheÃsnakeÃbothÃdoesn’tÃworkÃandÃisÃveryÃdangerous.");
case DWARF: if (closed) goto dwarves upset ;

report ("WithÃwhat?ÃÃYourÃbareÃhands?");
case TROLL: report ("TrollsÃareÃcloseÃrelativesÃwithÃtheÃrocksÃandÃhaveÃskinÃasÃtoughÃas\n\

aÃrhinocerosÃhide.ÃÃTheÃtrollÃfendsÃoffÃyourÃblowsÃeffortlessly.");
case BEAR:

switch (prop [BEAR]) {
case 0: report ("WithÃwhat?ÃÃYourÃbareÃhands?ÃÃAgainstÃHISÃbearÃhands?");
case 3: goto cry ;
default: report ("TheÃbearÃisÃconfused;ÃheÃonlyÃwantsÃtoÃbeÃyourÃfriend.");
}

default: goto report default ;
}

70 THE OTHER ACTIONS ADVENTURE §126

126. Attackable objects fall into two categories: enemies (snake, dwarf, etc.) and others (bird, clam).
We might get here when you threw an axe; you can’t attack the bird with an axe.

〈See if there’s a unique object to attack 126 〉 ≡
{

if (dwarf ()) k++, obj = DWARF;
if (here (SNAKE)) k++, obj = SNAKE;
if (is at loc(DRAGON) ∧ prop [DRAGON] ≡ 0) k++, obj = DRAGON;
if (is at loc(TROLL)) k++, obj = TROLL;
if (here (BEAR) ∧ prop [BEAR] ≡ 0) k++, obj = BEAR;
if (k ≡ 0) { /∗ no enemies present ∗/

if (here (BIRD) ∧ oldverb 6= TOSS) k++, obj = BIRD;
if (here (CLAM) ∨ here (OYSTER)) k++, obj = CLAM;

/∗ no harm done to call the oyster a clam in this case ∗/
}
if (k > 1) goto get object ;

}
This code is used in section 125.

127. 〈Dispatch the poor bird 127 〉 ≡
{

if (closed) report ("Oh,ÃleaveÃtheÃpoorÃunhappyÃbirdÃalone.");
destroy (BIRD); prop [BIRD] = 0;
if (place [SNAKE] ≡ hmk) lost treasures ++;
report ("TheÃlittleÃbirdÃisÃnowÃdead.ÃÃItsÃbodyÃdisappears.");

}
This code is used in section 125.

128. Here we impersonate the main dialog loop. If you insist on attacking the dragon, you win! He dies,
the Persian rug becomes free, and scan2 takes the place of scan1 and scan3 .
〈Fun stuff for dragon 128 〉 ≡
{

printf ("WithÃwhat?ÃÃYourÃbareÃhands?\n");
verb = ABSTAIN; obj = NOTHING;
listen ();
if (¬(streq (word1 , "yes") ∨ streq (word1 , "y"))) goto pre parse ;
printf (note [offset [DRAGON] + 1]);
prop [DRAGON] = 2; /∗ dead ∗/
prop [RUG] = 0; base [RUG] = NOTHING; /∗ now it’s a usable treasure ∗/
base [DRAGON_] = DRAGON_;
destroy (DRAGON_); /∗ inaccessible ∗/
base [RUG_] = RUG_;
destroy (RUG_); /∗ inaccessible ∗/
for (t = 1; t ≤ max obj ; t++)

if (place [t] ≡ scan1 ∨ place [t] ≡ scan3) move (t, scan2);
loc = scan2 ; stay put ;

}
This code is used in section 125.

§129 ADVENTURE THE OTHER ACTIONS 71

129. Feeding various animals leads to various quips. Feeding a dwarf is a bad idea. The bear is special.
〈Handle cases of transitive verbs and continue 97 〉 +≡
case FEED:

switch (obj) {
case BIRD: report ("It’sÃnotÃhungryÃ(it’sÃmerelyÃpinin’ÃforÃtheÃfjords).ÃÃBesides,Ãyou\n\

haveÃnoÃbirdÃseed.");
case TROLL: report ("GluttonyÃisÃnotÃoneÃofÃtheÃtroll’sÃvices.ÃÃAvarice,Ãhowever,Ãis.");
case DRAGON: if (prop [DRAGON]) report (default msg [EAT]);

break;
case SNAKE: if (closed ∨ ¬here (BIRD)) break;

destroy (BIRD); prop [BIRD] = 0; lost treasures ++;
report ("TheÃsnakeÃhasÃnowÃdevouredÃyourÃbird.");

case BEAR: if (¬here (FOOD)) {
if (prop [BEAR] ≡ 0) break;
if (prop [BEAR] ≡ 3) change to(EAT);
goto report default ;

}
destroy (FOOD); prop [BEAR] = 1;
prop [AXE] = 0; base [AXE] = NOTHING; /∗ axe is movable again ∗/
report ("TheÃbearÃeagerlyÃwolfsÃdownÃyourÃfood,ÃafterÃwhichÃheÃseemsÃtoÃcalm\n\

downÃconsiderablyÃandÃevenÃbecomesÃratherÃfriendly.");
case DWARF: if (¬here (FOOD)) goto report default ;

dflag ++;
report ("YouÃfool,ÃdwarvesÃeatÃonlyÃcoal!ÃÃNowÃyou’veÃmadeÃhimÃREALLYÃmad!");

default: report (default msg [CALM]);
}
report ("There’sÃnothingÃhereÃitÃwantsÃtoÃeatÃ(exceptÃperhapsÃyou).");

130. Locking and unlocking involves several interesting special cases.
〈Handle cases of transitive verbs and continue 97 〉 +≡
case OPEN: case CLOSE:

switch (obj) {
case OYSTER: k = 1;
case CLAM: 〈Open/close clam/oyster 134 〉;
case GRATE: case CHAIN: if (¬here (KEYS)) report ("YouÃhaveÃnoÃkeys!");
〈Open/close grate/chain 131 〉;

case KEYS: report ("YouÃcan’tÃlockÃorÃunlockÃtheÃkeys.");
case CAGE: report ("ItÃhasÃnoÃlock.");
case DOOR: if (prop [DOOR]) default to(RELAX);

report ("TheÃdoorÃisÃextremelyÃrustyÃandÃrefusesÃtoÃopen.");
default: goto report default ;
}

72 THE OTHER ACTIONS ADVENTURE §131

131. 〈Open/close grate/chain 131 〉 ≡
if (obj ≡ CHAIN) 〈Open/close chain 132 〉;
if (closing) {
〈Panic at closing time 180 〉; continue;

}
k = prop [GRATE];
prop [GRATE] = (verb ≡ OPEN);
switch (k + 2 ∗ prop [GRATE]) {
case 0: report ("ItÃwasÃalreadyÃlocked.");
case 1: report ("TheÃgrateÃisÃnowÃlocked.");
case 2: report ("TheÃgrateÃisÃnowÃunlocked.");
case 3: report ("ItÃwasÃalreadyÃunlocked.");
}

This code is used in section 130.

132. 〈Open/close chain 132 〉 ≡
{

if (verb ≡ OPEN) 〈Open chain 133 〉;
if (loc 6= barr) report ("ThereÃisÃnothingÃhereÃtoÃwhichÃtheÃchainÃcanÃbeÃlocked.");
if (prop [CHAIN]) report ("ItÃwasÃalreadyÃlocked.");
prop [CHAIN] = 2, base [CHAIN] = CHAIN;
if (toting (CHAIN)) drop(CHAIN, loc);
report ("TheÃchainÃisÃnowÃlocked.");

}
This code is used in section 131.

133. 〈Open chain 133 〉 ≡
{

if (prop [CHAIN] ≡ 0) report ("ItÃwasÃalreadyÃunlocked.");
if (prop [BEAR] ≡ 0)

report ("ThereÃisÃnoÃwayÃtoÃgetÃpastÃtheÃbearÃtoÃunlockÃtheÃchain,ÃwhichÃis\n\
probablyÃjustÃasÃwell.");

prop [CHAIN] = 0, base [CHAIN] = NOTHING; /∗ chain is free ∗/
if (prop [BEAR] ≡ 3) base [BEAR] = BEAR;
else prop [BEAR] = 2, base [BEAR] = NOTHING;
report ("TheÃchainÃisÃnowÃunlocked.");

}
This code is used in section 132.

§134 ADVENTURE THE OTHER ACTIONS 73

134. The clam/oyster is extremely heavy to carry, although not as heavy as the gold.
#define clam oyster (obj ≡ CLAM ? "clam" : "oyster")
〈Open/close clam/oyster 134 〉 ≡

if (verb ≡ CLOSE) report ("What?");
if (¬toting (TRIDENT)) {

printf ("YouÃdon’tÃhaveÃanythingÃstrongÃenoughÃtoÃopenÃtheÃ%s", clam oyster);
report (".");

}
if (toting (obj)) {

printf ("IÃadviseÃyouÃtoÃputÃdownÃtheÃ%sÃbeforeÃopeningÃit.ÃÃ", clam oyster);
report (obj ≡ CLAM ? ">STRAIN!<" : ">WRENCH!<");

}
if (obj ≡ CLAM) {

destroy (CLAM); drop(OYSTER, loc); drop(PEARL, sac);
report ("AÃglisteningÃpearlÃfallsÃoutÃofÃtheÃclamÃandÃrollsÃaway.ÃÃGoodness,\n\

thisÃmustÃreallyÃbeÃanÃoyster.ÃÃ(IÃneverÃwasÃveryÃgoodÃatÃidentifying\n\
bivalves.)ÃÃWhateverÃitÃis,ÃitÃhasÃnowÃsnappedÃshutÃagain.");

} else report ("TheÃoysterÃcreaksÃopen,ÃrevealingÃnothingÃbutÃoysterÃinside.\n\
ItÃpromptlyÃsnapsÃshutÃagain.");

This code is used in section 130.

135. You get little satisfaction from asking us to read, unless you hold the oyster—after the cave is closed.
〈Handle cases of transitive verbs and continue 97 〉 +≡
case READ: if (dark) goto cant see it ;

switch (obj) {
case MAG: report ("I’mÃafraidÃtheÃmagazineÃisÃwrittenÃinÃdwarvish.");
case TABLET: report ("\"CONGRATULATIONSÃONÃBRINGINGÃLIGHTÃINTOÃTHEÃDARK−ROOM!\"");
case MESSAGE:

report ("\"ThisÃisÃnotÃtheÃmazeÃwhereÃtheÃpirateÃhidesÃhisÃtreasureÃchest.\"");
case OYSTER: if (hinted [1]) {

if (toting (OYSTER)) report ("ItÃsaysÃtheÃsameÃthingÃitÃdidÃbefore.");
}
else if (closed ∧ toting (OYSTER)) {

offer (1); continue;
}

default: goto report default ;
}

136. OK, that just about does it. We’re left with only one more “action verb” to handle, and it is
intransitive. In order to penetrate this puzzle, you must pronounce the magic incantation in its correct
order, as it appears on the wall of the Giant Room. A global variable foobar records your progress.
〈Handle cases of intransitive verbs and continue 92 〉 +≡
case FEEFIE:

while (¬streq (word1 , incantation [k])) k++;
if (foobar ≡ −k) 〈Proceed foobarically 139 〉;
if (foobar ≡ 0) goto nada sucede ;
report ("What’sÃtheÃmatter,Ãcan’tÃyouÃread?ÃÃNowÃyou’dÃbestÃstartÃover.");

137. 〈Global variables 7 〉 +≡
char ∗incantation [] = {"fee", "fie", "foe", "foo", "fum"};
int foobar ; /∗ current incantation progress ∗/

74 THE OTHER ACTIONS ADVENTURE §138

138. Just after every command you give, we make the foobar counter negative if you’re on track, otherwise
we zero it.
〈Handle special cases of input 82 〉 +≡

if (foobar > 0) foobar = −foobar ;
else foobar = 0;

139. If you get all the way through, we zip the eggs back to the Giant Room, unless they’re already there.
The troll returns if you’ve stolen the eggs back from him.
〈Proceed foobarically 139 〉 ≡
{

foobar = k + 1;
if (foobar 6= 4) default to(RELAX);
foobar = 0;
if (place [EGGS] ≡ giant ∨ (toting (EGGS) ∧ loc ≡ giant))
nada sucede : report (default msg [WAVE]);
if (place [EGGS] ≡ limbo ∧ place [TROLL] ≡ limbo ∧ prop [TROLL] ≡ 0) prop [TROLL] = 1;
k = (loc ≡ giant ? 0 : here (EGGS) ? 1 : 2);
move (EGGS, giant);
report (note [offset [EGGS] + k]);

}
This code is used in section 136.

§140 ADVENTURE MOTIONS 75

140. Motions. A major cycle comes to an end when a motion verb mot has been given and we have
computed the appropriate newloc accordingly.

First, we deal with motions that don’t refer directly to the travel table.
〈Handle special motion words 140 〉 ≡

newloc = loc ; /∗ by default we will stay put ∗/
if (mot ≡ NOWHERE) continue;
if (mot ≡ BACK) 〈Try to go back 143 〉;
if (mot ≡ LOOK) 〈Repeat the long description and continue 141 〉;
if (mot ≡ CAVE) {

if (loc < min in cave)
printf ("IÃcan’tÃseeÃwhereÃtheÃcaveÃis,ÃbutÃhereaboutsÃnoÃstreamÃcanÃrunÃon\n\

theÃsurfaceÃforÃlong.ÃÃIÃwouldÃtryÃtheÃstream.\n");
else printf ("IÃneedÃmoreÃdetailedÃinstructionsÃtoÃdoÃthat.\n");
continue;

}
This code is used in section 75.

141. When looking around, we pretend that it wasn’t dark (though it may now be dark), so you won’t
fall into a pit while staring into the gloom.
〈Repeat the long description and continue 141 〉 ≡
{

if (++look count ≤ 3)
printf ("Sorry,ÃbutÃIÃamÃnotÃallowedÃtoÃgiveÃmoreÃdetail.ÃÃIÃwillÃrepeatÃthe\n\

longÃdescriptionÃofÃyourÃlocation.\n");
was dark = false ;
visits [loc] = 0;
continue;

}
This code is used in section 140.

142. 〈Global variables 7 〉 +≡
int look count ; /∗ how many times you’ve asked us to look ∗/

76 MOTIONS ADVENTURE §143

143. If you ask us to go back, we look for a motion that goes from loc to oldloc , or to oldoldloc if oldloc
has forced motion. Otherwise we can’t take you back.
〈Try to go back 143 〉 ≡
{

l = (forced move (oldloc) ? oldoldloc : oldloc);
oldoldloc = oldloc ;
oldloc = loc ;
if (l ≡ loc) 〈Apologize for inability to backtrack 145 〉;
for (q = start [loc], qq = Λ; q < start [loc + 1]; q++) {

ll = q~dest ;
if (ll ≡ l) goto found ;
if (ll ≤ max loc ∧ forced move (ll) ∧ start [ll]~dest ≡ l) qq = q;

}
if (qq ≡ Λ) {

printf ("YouÃcan’tÃgetÃthereÃfromÃhere.\n"); continue;
}
else q = qq ;

found : mot = q~mot ;
goto go for it ;

}
This code is used in section 140.

144. 〈Additional local registers 22 〉 +≡
register location l, ll ;

145. 〈Apologize for inability to backtrack 145 〉 ≡
{

printf ("Sorry,ÃbutÃIÃnoÃlongerÃseemÃtoÃrememberÃhowÃyouÃgotÃhere.\n");
continue;

}
This code is used in section 143.

146. Now we are ready to interpret the instructions in the travel table. The following code implements
the conventions of section 19.
〈Determine the next location, newloc 146 〉 ≡

for (q = start [loc]; q < start [loc + 1]; q++) {
if (forced move (loc) ∨ q~mot ≡ mot) break;

}
if (q ≡ start [loc + 1]) 〈Report on inapplicable motion and continue 148 〉;
〈 If the condition of instruction q isn’t satisfied, advance q 147 〉;
newloc = q~dest ;
if (newloc ≤ max loc) continue;
if (newloc > max spec) {

printf ("%s\n", remarks [newloc −max spec]);
stay : newloc = loc ; continue;
}
switch (newloc) {
case ppass : 〈Choose newloc via plover-alcove passage 149 〉;
case pdrop : 〈Drop the emerald during plover transportation 150 〉; goto no good ;
case troll : 〈Cross troll bridge if possible 151 〉;
}

This code is used in section 75.

§147 ADVENTURE MOTIONS 77

147. 〈 If the condition of instruction q isn’t satisfied, advance q 147 〉 ≡
while (1) {

j = q~cond ;
if (j > 300) {

if (prop [j % 100] 6= (int)((j − 300)/100)) break;
} else if (j ≤ 100) {

if (j ≡ 0 ∨ pct (j)) break;
} else if (toting (j % 100) ∨ (j ≥ 200 ∧ is at loc(j % 100))) break;

no good :
for (qq = q++;
q~dest ≡ qq~dest ∧ q~cond ≡ qq~cond ;
q++) ;

}
This code is used in section 146.

148. Here we look at verb just in case you asked us to ‘find gully’ or something like that.
〈Report on inapplicable motion and continue 148 〉 ≡
{

if (mot ≡ CRAWL) printf ("WhichÃway?");
else if (mot ≡ XYZZY ∨mot ≡ PLUGH) printf (default msg [WAVE]);
else if (verb ≡ FIND ∨ verb ≡ INVENTORY) printf (default msg [FIND]);
else if (mot ≤ FORWARD)

switch (mot) {
case IN: case OUT:

printf ("IÃdon’tÃknowÃinÃfromÃoutÃhere.ÃÃÃÃUseÃcompassÃpointsÃorÃnameÃsomething\n\
inÃtheÃgeneralÃdirectionÃyouÃwantÃtoÃgo.");

break;
case FORWARD: case L: case R:

printf ("IÃamÃunsureÃhowÃyouÃareÃfacing.ÃÃÃÃUseÃcompassÃpointsÃorÃnearbyÃobjects.");
break;

default: printf ("ThereÃisÃnoÃwayÃtoÃgoÃinÃthatÃdirection.");
} else printf ("IÃdon’tÃknowÃhowÃtoÃapplyÃthatÃwordÃhere.");

printf ("\n"); continue; /∗ newloc = loc ∗/
}

This code is used in section 146.

149. Only the emerald can be toted through the plover-alcove passage — not even the lamp.
〈Choose newloc via plover-alcove passage 149 〉 ≡

if (holding ≡ 0 ∨ (toting (EMERALD) ∧ holding ≡ 1)) {
newloc = alcove + proom − loc ; continue; /∗ move through the passage ∗/

} else {
printf ("SomethingÃyou’reÃcarryingÃwon’tÃfitÃthroughÃtheÃtunnelÃwithÃyou.\n\

You’dÃbestÃtakeÃinventoryÃandÃdropÃsomething.\n");
goto stay ;

}
This code is used in section 146.

78 MOTIONS ADVENTURE §150

150. The pdrop command applies only when you’re carrying the emerald. We make you drop it, thereby
forcing you to use the plover-alcove passage if you want to get it out. We don’t actually tell you that it was
dropped; we just pretend you weren’t carrying it after all.
〈Drop the emerald during plover transportation 150 〉 ≡

drop(EMERALD, loc);
This code is used in section 146.

151. Troll bridge crossing is treated as a special motion so that dwarves won’t wander across and encounter
the bear.

You can get here only if TROLL is in limbo but TROLL2 has taken its place. Moreover, if you’re on the
southwest side, prop [TROLL] will be nonzero. If prop [TROLL] is 1, you’ve crossed since paying, or you’ve stolen
away the payment. Special stuff involves the bear.
〈Cross troll bridge if possible 151 〉 ≡

if (prop [TROLL] ≡ 1) 〈Block the troll bridge and stay put 152 〉;
newloc = neside + swside − loc ; /∗ cross it ∗/
if (prop [TROLL] ≡ 0) prop [TROLL] = 1;
if (¬toting (BEAR)) continue;
printf ("JustÃasÃyouÃreachÃtheÃotherÃside,ÃtheÃbridgeÃbucklesÃbeneathÃthe\n\

weightÃofÃtheÃbear,ÃwhoÃwasÃstillÃfollowingÃyouÃaround.ÃÃYou\n\
scrabbleÃdesperatelyÃforÃsupport,ÃbutÃasÃtheÃbridgeÃcollapsesÃyou\n\
stumbleÃbackÃandÃfallÃintoÃtheÃchasm.\n");

prop [BRIDGE] = 1; prop [TROLL] = 2;
drop(BEAR,newloc); base [BEAR] = BEAR; prop [BEAR] = 3; /∗ the bear is dead ∗/
if (prop [SPICES] < 0 ∧ place [SPICES] ≥ neside) lost treasures ++;
if (prop [CHAIN] < 0 ∧ place [CHAIN] ≥ neside) lost treasures ++;
oldoldloc = newloc ; /∗ if you are revived, you got across ∗/
goto death ;

This code is used in section 146.

152. 〈Block the troll bridge and stay put 152 〉 ≡
{

move (TROLL, swside); move (TROLL_,neside); prop [TROLL] = 0;
destroy (TROLL2); destroy (TROLL2_);
move (BRIDGE, swside); move (BRIDGE_,neside);
printf ("%s\n",note [offset [TROLL] + 1]);
goto stay ;

}
This code is used in section 151.

153. Obstacles might still arise after the choice of newloc has been made. The following program is
executed at the beginning of each major cycle.
〈Check for interference with the proposed move to newloc 153 〉 ≡

if (closing ∧ newloc < min in cave ∧ newloc 6= limbo) {
〈Panic at closing time 180 〉; newloc = loc ;

} else if (newloc 6= loc) 〈Stay in loc if a dwarf is blocking the way to newloc 176 〉;
This code is used in section 75.

§154 ADVENTURE RANDOM NUMBERS 79

154. Random numbers. You won’t realize it until you have played the game for awhile, but adventures
in Colossal Cave are not deterministic. Lots of things can happen differently when you give the same input,
because caves are continually changing, and the dwarves don’t have consistent aim, etc.

A simple linear congruential method is used to provide numbers that are random enough for our purposes.
〈Subroutines 6 〉 +≡

int ran ARGS((int));
int ran (range)

int range ; /∗ for uniform integers between 0 and range − 1 ∗/
{

rx = (1021 ∗ rx) & #fffff; /∗ multiply by 1021, modulo 220 ∗/
return (range ∗ rx) À 20;

}

155. 〈Global variables 7 〉 +≡
int rx ; /∗ the last random value generated ∗/

156. Each run is different.
〈 Initialize the random number generator 156 〉 ≡

rx = (((int) time (Λ)) & #fffff) + 1;
This code is used in section 200.

157. The pct macro returns true a given percentage of the time.
#define pct (r) (ran (100) < r)
〈Give optional plugh hint 157 〉 ≡

if (loc ≡ y2 ∧ pct (25) ∧ ¬closing) printf ("AÃhollowÃvoiceÃsaysÃ\"PLUGH\".\n");
This code is used in section 86.

158. We kick the random number generator often, just to add variety to the chase.
〈Make special adjustments before looking at new input 85 〉 +≡

k = ran (0);

80 DWARF STUFF ADVENTURE §159

159. Dwarf stuff. We’ve said a lot of vague stuff about dwarves; now is the time to be explicit. Five
dwarves roam about the cave. Initially they are dormant but eventually they each walk about at random.
A global variable called dflag governs their level of activity:

0 no dwarf stuff yet (we wait until you reach the Hall of Mists)
1 you’ve reached that hall, but haven’t met the first dwarf
2 you’ve met one; the others start moving, but no knives thrown yet
3 a knife has been thrown, but it misses
4 knives will hit you with probability .095
5 knives will hit you with probability .190
6 knives will hit you with probability .285

and so on. Dwarves get madder and madder as dflag increases; this increases their accuracy.
A pirate stalks the cave too. He acts a lot like a dwarf with respect to random walks, so we call him

dwarf [0], but actually he is quite different. He starts at the location of his treasure chest; you won’t see that
chest until after you’ve spotted him.

The present location of dwarf [i] is dloc [i]; initially no two dwarves are adjacent. The value of dseen [i]
records whether or not dwarf i is following you.
#define nd 5 /∗ this many dwarves ∗/
#define chest loc dead2
#define message loc pony
〈Global variables 7 〉 +≡

int dflag ; /∗ how angry are the dwarves? ∗/
int dkill ; /∗ how many of them have you killed? ∗/
location dloc [nd + 1] = {chest loc , hmk ,wfiss , y2 , like3 , complex }; /∗ dwarf locations ∗/
location odloc [nd + 1]; /∗ prior locations ∗/
boolean dseen [nd + 1]; /∗ have you been spotted? ∗/

160. The following subroutine is often useful.
〈Subroutines 6 〉 +≡

int dwarf ARGS((void));
int dwarf () /∗ is a dwarf present? ∗/
{

register int j;
if (dflag < 2) return 0;
for (j = 1; j ≤ nd ; j++)

if (dloc [j] ≡ loc) return 1;
return 0;

}

§161 ADVENTURE DWARF STUFF 81

161. Just after you’ve moved to a new loc , we move the other guys. But we bypass all dwarf motion if
you are in a place forbidden to the pirate, or if your next motion is forced. In particular, this means that
the pirate can’t steal the return toll, and dwarves can’t meet the bear. It also means that dwarves won’t
follow you into a dead end of the maze, but c’est la vie; they’ll wait for you outside the dead end.
〈Possibly move dwarves and the pirate 161 〉 ≡

if (loc ≤ max pirate loc ∧ loc 6= limbo) {
if (dflag ≡ 0) {

if (loc ≥ min lower loc) dflag = 1;
}
else if (dflag ≡ 1) {

if (loc ≥ min lower loc ∧ pct (5)) 〈Advance dflag to 2 162 〉;
}
else 〈Move dwarves and the pirate 164 〉;

}
This code is used in section 75.

162. When level 2 is reached, we silently kill 0, 1, or 2 of the dwarves. Then if any of the survivors is in
the current location, we move him to nugget ; thus no dwarf is presently tracking you. Another dwarf does,
however, toss an axe and grumpily leave the scene.

(The grumpy dwarf might throw the axe while you’re in the maze of all-different twists, even though other
dwarves never go in there!)
〈Advance dflag to 2 162 〉 ≡
{

dflag = 2;
for (j = 0; j < 2; j++)

if (pct (50)) dloc [1 + ran (nd)] = limbo ;
for (j = 1; j ≤ nd ; j++) {

if (dloc [j] ≡ loc) dloc [j] = nugget ;
odloc [j] = dloc [j];

}
printf ("AÃlittleÃdwarfÃjustÃwalkedÃaroundÃaÃcorner,ÃsawÃyou,ÃthrewÃaÃlittle\n\

axeÃatÃyou,Ãcursed,ÃandÃranÃaway.ÃÃ(TheÃaxeÃmissed.)\n");
drop(AXE, loc);

}
This code is used in section 161.

82 DWARF STUFF ADVENTURE §163

163. It turns out that the only way you can get rid of a dwarf is to attack him with the axe. You’ll hit
him 2/3 of the time; in either case, the axe will be available for reuse.
〈Throw the axe at a dwarf 163 〉 ≡
{

for (j = 1; j ≤ nd ; j++)
if (dloc [j] ≡ loc) break;

if (ran (3) < 2) {
dloc [j] = limbo ; dseen [j] = 0; dkill ++;
if (dkill ≡ 1)

printf ("YouÃkilledÃaÃlittleÃdwarf.ÃÃTheÃbodyÃvanishesÃinÃaÃcloudÃofÃgreasy\n\
blackÃsmoke.\n");

else printf ("YouÃkilledÃaÃlittleÃdwarf.\n");
} else printf ("YouÃattackÃaÃlittleÃdwarf,ÃbutÃheÃdodgesÃoutÃofÃtheÃway.\n");
drop(AXE, loc); stay put ;

}
This code is used in section 122.

164. Now things are in full swing. Dead dwarves don’t do much of anything, but each live dwarf tends to
stay with you if he’s seen you. Otherwise he moves at random, never backing up unless there’s no alternative.
〈Move dwarves and the pirate 164 〉 ≡
{

dtotal = attack = stick = 0; /∗ initialize totals for possible battles ∗/
for (j = 0; j ≤ nd ; j++)

if (dloc [j] 6= limbo) {
register int i;
〈Make a table of all potential exits, ploc [0] through ploc [i− 1] 166 〉;
if (i ≡ 0) i = 1, ploc [0] = odloc [j];
odloc [j] = dloc [j];
dloc [j] = ploc [ran (i)]; /∗ this is the random walk ∗/
dseen [j] = (dloc [j] ≡ loc ∨ odloc [j] ≡ loc ∨ (dseen [j] ∧ loc ≥ min lower loc));
if (dseen [j]) 〈Make dwarf j follow 167 〉;

}
if (dtotal) 〈Make the threatening dwarves attack 170 〉;

}
This code is used in section 161.

165. 〈Global variables 7 〉 +≡
int dtotal ; /∗ this many dwarves are in the room with you ∗/
int attack ; /∗ this many have had time to draw their knives ∗/
int stick ; /∗ this many have hurled their knives accurately ∗/
location ploc [19]; /∗ potential locations for the next random step ∗/

§166 ADVENTURE DWARF STUFF 83

166. Random-moving dwarves think scan1 , scan2 , and scan3 are three different locations, although you
will never have that perception.
〈Make a table of all potential exits, ploc [0] through ploc [i− 1] 166 〉 ≡

for (i = 0, q = start [dloc [j]]; q < start [dloc [j] + 1]; q++) {
newloc = q~dest ;
if (newloc ≥ min lower loc ∧ newloc 6= odloc [j] ∧ newloc 6= dloc [j] ∧

(i ≡ 0 ∨ newloc 6= ploc [i− 1]) ∧ i < 19 ∧ q~cond 6= 100 ∧
newloc ≤ (j ≡ 0 ? max pirate loc : min forced loc − 1)) ploc [i++] = newloc ;

}
This code is used in section 164.

167. A global variable knife loc is used to remember where dwarves have most recently thrown knives at
you. But as soon as you try to refer to the knife, we tell you it’s pointless to do so; knife loc is −1 thereafter.
〈Make dwarf j follow 167 〉 ≡
{

dloc [j] = loc ;
if (j ≡ 0) 〈Make the pirate track you 172 〉
else {

dtotal ++;
if (odloc [j] ≡ dloc [j]) {

attack ++;
if (knife loc ≥ 0) knife loc = loc ;
if (ran (1000) < 95 ∗ (dflag − 2)) stick ++;

}
}

}
This code is used in section 164.

168. 〈Global variables 7 〉 +≡
int knife loc ; /∗ place where knife was mentioned, or −1 ∗/

169. 〈Make special adjustments before looking at new input 85 〉 +≡
if (knife loc > limbo ∧ knife loc 6= loc) knife loc = limbo ;

84 DWARF STUFF ADVENTURE §170

170. We actually know the results of the attack already; this is where we inform you of the outcome,
pretending that the battle is now taking place.
〈Make the threatening dwarves attack 170 〉 ≡
{

if (dtotal ≡ 1) printf ("ThereÃisÃaÃthreateningÃlittleÃdwarf");
else printf ("ThereÃareÃ%dÃthreateningÃlittleÃdwarves", dtotal);
printf ("ÃinÃtheÃroomÃwithÃyou!\n");
if (attack) {

if (dflag ≡ 2) dflag = 3;
if (attack ≡ 1) k = 0, printf ("OneÃsharpÃnastyÃknifeÃisÃthrown");
else k = 2, printf ("Ã%dÃofÃthemÃthrowÃknives", attack);
printf ("ÃatÃyouÃ−−−Ã");
if (stick ≤ 1) printf ("%s!\n", attack msg [k + stick]);
else printf ("%dÃofÃthemÃgetÃyou!\n", stick);
if (stick) {

oldoldloc = loc ; goto death ;
}

}
}

This code is used in section 164.

171. 〈Global variables 7 〉 +≡
char ∗attack msg [] = {"itÃmisses", "itÃgetsÃyou",
"noneÃofÃthemÃhitÃyou", "oneÃofÃthemÃgetsÃyou"};

172. The pirate leaves you alone once you have found the chest. Otherwise he steals one of the treasures
you’re carrying, unless it’s too easy. (The pyramid is too easy, if you’re in the Plover Room or the Dark-
Room.)

You spot the pirate if he robs you, or when you have seen all of the possible treasures (except, of course,
the chest) and the current location has no treasures that still can’t be moved. Before you’ve spotted him,
we may give you a vague indication of his movements.

We use the value of place [MESSAGE] to determine whether the pirate has been seen; the condition of
place [CHEST] is not a reliable indicator, since the chest might be in limbo if you’ve thrown it to the troll.
#define pirate not spotted (place [MESSAGE] ≡ limbo)
#define too easy (i) (i ≡ PYRAMID ∧ (loc ≡ proom ∨ loc ≡ droom))
〈Make the pirate track you 172 〉 ≡
{

if (loc 6= max pirate loc ∧ prop [CHEST] < 0) {
for (i = min treasure , k = 0; i ≤ max obj ; i++)

if (¬too easy (i)) {
if (toting (i)) 〈Take booty and hide it in the chest 173 〉;
if (place [i] ≡ loc) k = 1; /∗ a treasure with base [i] 6= NOTHING ∗/

}
if (tally ≡ lost treasures + 1 ∧ k ≡ 0 ∧ pirate not spotted ∧ prop [LAMP] ∧ here (LAMP))
〈Let the pirate be spotted 175 〉;

if (odloc [0] 6= dloc [0] ∧ pct (20))
printf ("ThereÃareÃfaintÃrustlingÃnoisesÃfromÃtheÃdarknessÃbehindÃyou.\n");

}
}

This code is used in section 167.

§173 ADVENTURE DWARF STUFF 85

173. The pirate isn’t secretive about the fact that his chest is somewhere in a maze. However, he doesn’t
say which maze he means. Nor does he explain why he is interested in treasures only when you are carrying
them; evidently he just likes to see you squirm.
〈Take booty and hide it in the chest 173 〉 ≡
{

printf ("OutÃfromÃtheÃshadowsÃbehindÃyouÃpouncesÃaÃbeardedÃpirate!ÃÃ\"Har,Ãhar,\"\n\
heÃchortles,Ã\"I’llÃjustÃtakeÃallÃthisÃbootyÃandÃhideÃitÃawayÃwithÃme\n\
chestÃdeepÃinÃtheÃmaze!\"ÃÃHeÃsnatchesÃyourÃtreasureÃandÃvanishesÃinto\n\
theÃgloom.\n");

〈Snatch all treasures that are snatchable here 174 〉;
if (pirate not spotted) {
move chest : move (CHEST, chest loc); move (MESSAGE,message loc);
}
dloc [0] = odloc [0] = chest loc ; dseen [0] = false ;

}
This code is used in section 172.

174. 〈Snatch all treasures that are snatchable here 174 〉 ≡
for (i = min treasure ; i ≤ max obj ; i++)

if (¬too easy (i)) {
if (base [i] ≡ NOTHING ∧ place [i] ≡ loc) carry (i);
if (toting (i)) drop(i, chest loc);

}
This code is used in section 173.

175. The window rooms are slightly lighted, but we don’t spot the pirate there unless our lamp is on.
Regardless of where we are, we do spot him even if the lighted lamp is on the ground.
〈Let the pirate be spotted 175 〉 ≡
{

printf ("ThereÃareÃfaintÃrustlingÃnoisesÃfromÃtheÃdarknessÃbehindÃyou.ÃÃAsÃyou\n\
turnÃtowardÃthem,ÃtheÃbeamÃofÃyourÃlampÃfallsÃacrossÃaÃbeardedÃpirate.\n\
HeÃisÃcarryingÃaÃlargeÃchest.ÃÃ\"ShiverÃmeÃtimbers!\"ÃheÃcries,Ã\"I’ve\n\
beenÃspotted!ÃÃI’dÃbestÃhieÃmeselfÃoffÃtoÃtheÃmazeÃtoÃhideÃmeÃchest!\"\n\
WithÃthat,ÃheÃvanishesÃintoÃtheÃgloom.\n");

goto move chest ;
}

This code is used in section 172.

176. One more loose end related to dwarfs needs to be addressed here.
〈Stay in loc if a dwarf is blocking the way to newloc 176 〉 ≡

if (newloc ≤ max pirate loc) {
for (j = 1; j ≤ nd ; j++)

if (odloc [j] ≡ newloc ∧ dseen [j]) {
printf ("AÃlittleÃdwarfÃwithÃaÃbigÃknifeÃblocksÃyourÃway.\n");
newloc = loc ; break;

}
}

This code is used in section 153.

86 CLOSING THE CAVE ADVENTURE §177

177. Closing the cave. You get to wander around until you’ve located all fifteen treasures, although
you need not have taken them yet. After that, you enter a new level of complexity: A global variable called
clock1 starts ticking downwards, every time you take a turn inside the cave. When it hits zero, we start
closing the cave; then we sit back and wait for you to try to get out, letting clock2 do the ticking. The initial
value of clock1 is large enough for you to get outside.
#define closing (clock1 < 0)
〈Global variables 7 〉 +≡

int clock1 = 15, clock2 = 30; /∗ clocks that govern closing time ∗/
boolean panic , closed ; /∗ various stages of closedness ∗/

178. Location Y2 is virtually outside the cave, so clock1 doesn’t tick there. If you stay outside the cave
with all your treasures, and with the lamp switched off, the game might go on forever; but you wouldn’t be
having any fun.

There’s an interesting hack by which you can keep tally positive until you’ve taken all the treasures out
of the cave. Namely, if your first moves are

in, take lamp, plugh, on, drop lamp, s, take silver,
back, take lamp, plugh, out, drop silver, in,

the silver bars will be at road ; but prop [SILVER] will still be −1 and tally will still be 15. You can bring the
other 14 treasures to the house at your leisure; then the tally will drop to zero when you step outside and
actually see the silver for the first time.
〈Check the clocks and the lamp 178 〉 ≡

if (tally ≡ 0 ∧ loc ≥ min lower loc ∧ loc 6= y2) clock1 −−;
if (clock1 ≡ 0) 〈Warn that the cave is closing 179 〉
else {

if (clock1 < 0) clock2 −−;
if (clock2 ≡ 0) 〈Close the cave 181 〉
else 〈Check the lamp 184 〉;

}
This code is used in section 76.

179. At the time of first warning, we lock the grate, destroy the crystal bridge, kill all the dwarves (and
the pirate), remove the troll and the bear (unless dead), and set closing to true. It’s too much trouble to
move the dragon, so we leave it. From now on until clock2 runs out, you cannot unlock the grate, move to
any location outside the cave, or create the bridge. Nor can you be resurrected if you die.
〈Warn that the cave is closing 179 〉 ≡
{

printf ("AÃsepulchralÃvoice,ÃreverberatingÃthroughÃtheÃcave,Ãsays,Ã\"Cave\n\
closingÃsoon.ÃÃAllÃadventurersÃexitÃimmediatelyÃthroughÃmainÃoffice.\"\n");

clock1 = −1;
prop [GRATE] = 0;
prop [CRYSTAL] = 0;
for (j = 0; j ≤ nd ; j++) dseen [j] = 0, dloc [j] = limbo ;
destroy (TROLL); destroy (TROLL_);
move (TROLL2, swside); move (TROLL2_,neside);
move (BRIDGE, swside); move (BRIDGE_,neside);
if (prop [BEAR] 6= 3) destroy (BEAR);
prop [CHAIN] = 0; base [CHAIN] = NOTHING;
prop [AXE] = 0; base [AXE] = NOTHING;

}
This code is used in section 178.

§180 ADVENTURE CLOSING THE CAVE 87

180. If you try to get out while the cave is closing, we assume that you panic; we give you a few additional
turns to get frantic before we close.
〈Panic at closing time 180 〉 ≡
{

if (¬panic) clock2 = 15, panic = true ;
printf ("AÃmysteriousÃrecordedÃvoiceÃgroansÃintoÃlifeÃandÃannounces:\n\

ÃÃÃ\"ThisÃexitÃisÃclosed.ÃÃPleaseÃleaveÃviaÃmainÃoffice.\"\n");
}

This code is used in sections 131 and 153.

88 CLOSING THE CAVE ADVENTURE §181

181. Finally, after clock2 hits zero, we transport you to the final puzzle, which takes place in the previously
inaccessible storage room. We have to set everything up anew, in order to use the existing machinery instead
of writing a special program. We are careful not to include keys in the room, since we don’t want to allow
you to unlock the grate that separates you from your treasures. There is no water; otherwise we would need
special code for watering the beanstalks.

The storage room has two locations, neend and swend . At the northeast end, we place empty bottles,
a nursery of plants, a bed of oysters, a pile of lamps, rods with stars, sleeping dwarves, and you. At the
southwest end we place a grate, a snake pit, a covey of caged birds, more rods, and pillows. A mirror
stretches across one wall. But we destroy all objects you might be carrying, lest you have some that could
cause trouble, such as the keys. We describe the flash of light and trundle back.

From the fact that you’ve seen all the treasures, we can infer that the snake is already gone, since the
jewels are accessible only from the Hall of the Mountain King. We also know that you’ve been in the Giant
Room (to get eggs); you’ve discovered that the clam is an oyster (because of the pearl); the dwarves have
been activated, since you’ve found the chest. Therefore the long descriptions of neend and swend will make
sense to you when you see them.

Dear reader, all the clues to this final puzzle are presented in the program itself, so you should have no
trouble finding the solution.
〈Close the cave 181 〉 ≡
{

printf ("TheÃsepulchralÃvoiceÃintones,Ã\"TheÃcaveÃisÃnowÃclosed.\"ÃÃAsÃtheÃechoes\n\
fade,ÃthereÃisÃaÃblindingÃflashÃofÃlightÃ(andÃaÃsmallÃpuffÃofÃorange\n\
smoke).Ã.Ã.Ã.ÃÃÃÃThenÃyourÃeyesÃrefocus;ÃyouÃlookÃaroundÃandÃfind...\n");

move (BOTTLE,neend); prop [BOTTLE] = −2;
move (PLANT,neend); prop [PLANT] = −1;
move (OYSTER,neend); prop [OYSTER] = −1;
move (LAMP,neend); prop [LAMP] = −1;
move (ROD,neend); prop [ROD] = −1;
move (DWARF,neend); prop [DWARF] = −1;
move (MIRROR,neend); prop [MIRROR] = −1;
loc = oldloc = neend ;
move (GRATE, swend); /∗ prop [GRATE] still zero ∗/
move (SNAKE, swend); prop [SNAKE] = −2;
move (BIRD, swend); prop [BIRD] = −2;
move (CAGE, swend); prop [CAGE] = −1;
move (ROD2, swend); prop [ROD2] = −1;
move (PILLOW, swend); prop [PILLOW] = −1;
move (MIRROR_, swend);
for (j = 1; j ≤ max obj ; j++)

if (toting (j)) destroy (j);
closed = true ;
bonus = 10;
stay put ;

}
This code is used in section 178.

§182 ADVENTURE CLOSING THE CAVE 89

182. After the cave is closed, we look for objects being toted with prop < 0; their property value is changed
to −1 − prop . This means they won’t be described until they’ve been picked up and put down, separate
from their respective piles.
〈Make special adjustments before looking at new input 85 〉 +≡

if (closed) {
if (prop [OYSTER] < 0 ∧ toting (OYSTER)) printf ("%s\n",note [offset [OYSTER] + 1]);
for (j = 1; j ≤ max obj ; j++)

if (toting (j) ∧ prop [j] < 0) prop [j] = −1− prop [j];
}

90 DEATH AND RESURRECTION ADVENTURE §183

183. Death and resurrection. Only the most persistent adventurers get to see the closing of the cave,
because their lamp gives out first. For example, if you have lost the ability to find any treasures, tally will
never go to zero.
〈Zap the lamp if the remaining treasures are too elusive 183 〉 ≡

if (tally ≡ lost treasures ∧ tally > 0 ∧ limit > 35) limit = 35;
This code is used in section 88.

184. On every turn, we check to see if you are in trouble lampwise.
〈Check the lamp 184 〉 ≡
{

if (prop [LAMP] ≡ 1) limit −−;
if (limit ≤ 30 ∧ here (BATTERIES) ∧ prop [BATTERIES] ≡ 0 ∧ here (LAMP)) 〈Replace the batteries 186 〉
else if (limit ≡ 0) 〈Extinguish the lamp 187 〉
else if (limit < 0 ∧ loc < min in cave) {

printf ("There’sÃnotÃmuchÃpointÃinÃwanderingÃaroundÃoutÃhere,ÃandÃyouÃcan’t\n\
exploreÃtheÃcaveÃwithoutÃaÃlamp.ÃÃSoÃlet’sÃjustÃcallÃitÃaÃday.\n");

goto give up ;
} else if (limit ≤ 30 ∧ ¬warned ∧ here (LAMP)) {

printf ("YourÃlampÃisÃgettingÃdim");
if (prop [BATTERIES] ≡ 1) printf (",ÃandÃyou’reÃoutÃofÃspareÃbatteries.ÃÃYou’d\n\

bestÃstartÃwrappingÃthisÃup.\n");
else if (place [BATTERIES] ≡ limbo) printf (".ÃÃYou’dÃbestÃstartÃwrappingÃthisÃup,Ãunless\n\

youÃcanÃfindÃsomeÃfreshÃbatteries.ÃÃIÃseemÃtoÃrecallÃthatÃthere’s\n\
aÃvendingÃmachineÃinÃtheÃmaze.ÃÃBringÃsomeÃcoinsÃwithÃyou.\n");

else printf (".ÃÃYou’dÃbestÃgoÃbackÃforÃthoseÃbatteries.\n");
warned = true ;

}
}

This code is used in section 178.

185. 〈Global variables 7 〉 +≡
boolean warned ; /∗ have you been warned about the low power supply? ∗/

186. The batteries hold a pretty hefty charge.
〈Replace the batteries 186 〉 ≡
{

printf ("YourÃlampÃisÃgettingÃdim.ÃÃI’mÃtakingÃtheÃlibertyÃofÃreplacing\n\
theÃbatteries.\n");

prop [BATTERIES] = 1;
if (toting (BATTERIES)) drop(BATTERIES, loc);
limit = 2500;

}
This code is used in section 184.

187. 〈Extinguish the lamp 187 〉 ≡
{

limit = −1; prop [LAMP] = 0;
if (here (LAMP)) printf ("YourÃlampÃhasÃrunÃoutÃofÃpower.");

}
This code is used in section 184.

§188 ADVENTURE DEATH AND RESURRECTION 91

188. The easiest way to get killed is to fall into a pit in pitch darkness.
〈Deal with death and resurrection 188 〉 ≡
pitch dark : printf ("YouÃfellÃintoÃaÃpitÃandÃbrokeÃeveryÃboneÃinÃyourÃbody!\n");

oldoldloc = loc ;
See also sections 189, 191, and 192.

This code is used in section 2.

189. “You’re dead, Jim.”
When you die, newloc is undefined (often limbo) and oldloc is what killed you. So we look at oldoldloc ,

the last place you were safe.
We generously allow you to die up to three times; death count is the number of deaths you have had so far.

#define max deaths 3
〈Deal with death and resurrection 188 〉 +≡
death : death count ++;

if (closing) {
printf ("ItÃlooksÃasÃthoughÃyou’reÃdead.ÃÃWell,ÃseeingÃasÃhowÃit’sÃsoÃclose\n\

toÃclosingÃtimeÃanyway,Ãlet’sÃjustÃcallÃitÃaÃday.\n");
goto quit ;

}
if (¬yes (death wishes [2∗death count−2], death wishes [2∗death count−1], ok)∨death count ≡ max deaths)

goto quit ;

190. 〈Global variables 7 〉 +≡
int death count ; /∗ how often have you kicked the bucket? ∗/
char ∗death wishes [2 ∗max deaths] = {
"OhÃdear,ÃyouÃseemÃtoÃhaveÃgottenÃyourselfÃkilled.ÃÃIÃmightÃbeÃableÃto\n\

helpÃyouÃout,ÃbutÃI’veÃneverÃreallyÃdoneÃthisÃbefore.ÃÃDoÃyouÃwantÃme\n\
toÃtryÃtoÃreincarnateÃyou?",

"AllÃright.ÃÃButÃdon’tÃblameÃmeÃifÃsomethingÃgoesÃwr......\n\
ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ−−−ÃPOOF!!Ã−−−\n\
YouÃareÃengulfedÃinÃaÃcloudÃofÃorangeÃsmoke.ÃÃCoughingÃandÃgasping,\n\
youÃemergeÃfromÃtheÃsmokeÃandÃfind....",

"YouÃclumsyÃoaf,Ãyou’veÃdoneÃitÃagain!ÃÃIÃdon’tÃknowÃhowÃlongÃIÃcan\n\
keepÃthisÃup.ÃÃDoÃyouÃwantÃmeÃtoÃtryÃreincarnatingÃyouÃagain?",

"Okay,ÃnowÃwhereÃdidÃIÃputÃmyÃresurrectionÃkit?....ÃÃ>POOF!<\n\
EverythingÃdisappearsÃinÃaÃdenseÃcloudÃofÃorangeÃsmoke.",

"NowÃyou’veÃreallyÃdoneÃit!ÃÃI’mÃoutÃofÃorangeÃsmoke!ÃÃYouÃdon’tÃexpect\n\
meÃtoÃdoÃaÃdecentÃreincarnationÃwithoutÃanyÃorangeÃsmoke,ÃdoÃyou?",

"Okay,ÃifÃyou’reÃsoÃsmart,ÃdoÃitÃyourself!ÃÃI’mÃleaving!"};

92 DEATH AND RESURRECTION ADVENTURE §191

191. At this point you are reborn. All objects you were carrying are dropped at oldoldloc (presumably your
last place prior to being killed), with their properties unchanged. The loop runs backwards, so that the bird
is dropped before the cage. The lamp is a special case, because we wouldn’t want to leave it underground;
we turn it off and leave it outside the building—only if you were carrying it, of course. You yourself are left
inside the building. (Heaven help you if you try to xyzzy back into the cave without the lamp.) We zap
oldloc so that you can’t just go back.
〈Deal with death and resurrection 188 〉 +≡

for (j = max obj ; j > 0; j−−)
if (toting (j)) drop(j, j ≡ LAMP ? road : oldoldloc);

if (toting (LAMP)) prop [LAMP] = 0;
place [WATER] = limbo ; place [OIL] = limbo ;
loc = oldloc = house ;
goto commence ;

192. Oh dear, you’ve disturbed the dwarves.
〈Deal with death and resurrection 188 〉 +≡
dwarves upset :

printf ("TheÃresultingÃruckusÃhasÃawakenedÃtheÃdwarves.ÃÃThereÃareÃnowÃseveral\n\
threateningÃlittleÃdwarvesÃinÃtheÃroomÃwithÃyou!ÃÃMostÃofÃthemÃthrow\n\
knivesÃatÃyou!ÃÃAllÃofÃthemÃgetÃyou!\n");

§193 ADVENTURE SCORING 93

193. Scoring. Here is the scoring algorithm we use:

Objective Points Total possible
Getting well into cave 25 25
Each treasure < chest 12 60
Treasure chest itself 14 14
Each treasure > chest 16 144
Each unused death 10 30
Not quitting 4 4
Reaching Witt’s End 1 1
Getting to closing 25 25
Various additional bonuses 45
Round out the total 2 2

Total: 350

Points can also be deducted for using hints. One consequence of these rules is that you get 32 points just
for quitting on your first turn. And there’s a way to get 57 points in just three turns.

Full points for treasures are awarded only if they aren’t broken and you have deposited them in the
building. But we give you 2 points just for seeing a treasure.
#define max score 350
〈Global variables 7 〉 +≡

int bonus ; /∗ extra points awarded for exceptional adventuring skills ∗/

194. The hints are table driven, using several arrays:
• hint count [j] is the number of recent turns whose location is relevant to hint j;
• hint thresh [j] is the number of such turns before we consider offering that hint;
• hint cost [j] is the number of points you pay for it;
• hint prompt [j] is the way we offer it;
• hint [j] is the hint;
• hinted [j] is true after we’ve given it.

Hint 0 is for instructions at the beginning; it costs you 5 points, but you get extra power in the lamp. The
other hints also usually extend the lamp’s power. Hint 1 is for reading the oyster. And hints 2 through 7
are for the cave hint , bird hint , snake hint , twist hint , dark hint , and witt hint , respectively.

Here’s the subroutine that handles all eight kinds of hints.
〈Subroutines 6 〉 +≡

void offer ARGS((int));
void offer (j)

int j;
{

if (j > 1) {
if (¬yes (hint prompt [j], "ÃIÃamÃpreparedÃtoÃgiveÃyouÃaÃhint,", ok)) return;
printf ("ÃbutÃitÃwillÃcostÃyouÃ%dÃpoints.ÃÃ", hint cost [j]);
hinted [j] = yes ("DoÃyouÃwantÃtheÃhint?", hint [j], ok);

} else hinted [j] = yes (hint prompt [j], hint [j], ok);
if (hinted [j] ∧ limit > 30) limit += 30 ∗ hint cost [j];

}

94 SCORING ADVENTURE §195

195. 〈Check if a hint applies, and give it if requested 195 〉 ≡
for (j = 2, k = cave hint ; j ≤ 7; j++, k += k)

if (¬hinted [j]) {
if ((flags [loc] & k) ≡ 0) hint count [j] = 0;
else if (++hint count [j] ≥ hint thresh [j]) {

switch (j) {
case 2: if (prop [GRATE] ≡ 0 ∧ ¬here (KEYS)) break; else goto bypass ;
case 3: if (here (BIRD) ∧ oldobj ≡ BIRD ∧ toting (ROD)) break;

else continue;
case 4: if (here (SNAKE) ∧ ¬here (BIRD)) break; else goto bypass ;
case 5: if (first [loc] ≡ 0 ∧ first [oldloc] ≡ 0 ∧ first [oldoldloc] ≡ 0 ∧ holding > 1) break;

else goto bypass ;
case 6: if (prop [EMERALD] 6= −1 ∧ prop [PYRAMID] ≡ −1) break;

else goto bypass ;
case 7: break;
}
offer (j);

bypass : hint count [j] = 0;
}

}
This code is used in section 76.

§196 ADVENTURE SCORING 95

196. #define n hints 8
〈Global variables 7 〉 +≡

int hint count [n hints]; /∗ how long you have needed this hint ∗/
int hint thresh [n hints] = {0, 0, 4, 5, 8, 75, 25, 20}; /∗ how long we will wait ∗/
int hint cost [n hints] = {5, 10, 2, 2, 2, 4, 5, 3}; /∗ how much we will charge ∗/
char ∗hint prompt [n hints] = {
"WelcomeÃtoÃAdventure!!ÃÃWouldÃyouÃlikeÃinstructions?",
"Hmmm,ÃthisÃlooksÃlikeÃaÃclue,ÃwhichÃmeansÃit’llÃcostÃyouÃ10ÃpointsÃto\n\

readÃit.ÃÃShouldÃIÃgoÃaheadÃandÃreadÃitÃanyway?",
"AreÃyouÃtryingÃtoÃgetÃintoÃtheÃcave?",
"AreÃyouÃtryingÃtoÃcatchÃtheÃbird?",
"AreÃyouÃtryingÃtoÃdealÃsomehowÃwithÃtheÃsnake?",
"DoÃyouÃneedÃhelpÃgettingÃoutÃofÃtheÃmaze?",
"AreÃyouÃtryingÃtoÃexploreÃbeyondÃtheÃPloverÃRoom?",
"DoÃyouÃneedÃhelpÃgettingÃoutÃofÃhere?"};
char ∗hint [n hints] = {
"SomewhereÃnearbyÃisÃColossalÃCave,ÃwhereÃothersÃhaveÃfoundÃfortunesÃin\n\

treasureÃandÃgold,ÃthoughÃitÃisÃrumoredÃthatÃsomeÃwhoÃenterÃareÃnever\n\
seenÃagain.ÃÃMagicÃisÃsaidÃtoÃworkÃinÃtheÃcave.ÃÃIÃwillÃbeÃyourÃeyes\n\
andÃhands.ÃÃDirectÃmeÃwithÃcommandsÃofÃoneÃorÃtwoÃwords.ÃÃIÃshould\n\
warnÃyouÃthatÃIÃlookÃatÃonlyÃtheÃfirstÃfiveÃlettersÃofÃeachÃword,Ãso\n\
you’llÃhaveÃtoÃenterÃ\"NORTHEAST\"ÃasÃ\"NE\"ÃtoÃdistinguishÃitÃfrom\n\
\"NORTH\".ÃÃShouldÃyouÃgetÃstuck,ÃtypeÃ\"HELP\"ÃforÃsomeÃgeneralÃhints.\n\
ForÃinformationÃonÃhowÃtoÃendÃyourÃadventure,Ãetc.,ÃtypeÃ\"INFO\".\n\
ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ−ÃÃ−ÃÃ−\n\
TheÃfirstÃadventureÃprogramÃwasÃdevelopedÃbyÃWillieÃCrowther.\n\
MostÃofÃtheÃfeaturesÃofÃtheÃcurrentÃprogramÃwereÃaddedÃbyÃDonÃWoods;\n\
allÃofÃitsÃbugsÃwereÃaddedÃbyÃDonÃKnuth.",

"ItÃsays,Ã\"ThereÃisÃsomethingÃstrangeÃaboutÃthisÃplace,ÃsuchÃthatÃone\n\
ofÃtheÃwordsÃI’veÃalwaysÃknownÃnowÃhasÃaÃnewÃeffect.\"",

"TheÃgrateÃisÃveryÃsolidÃandÃhasÃaÃhardenedÃsteelÃlock.ÃÃYouÃcannot\n\
enterÃwithoutÃaÃkey,ÃandÃthereÃareÃnoÃkeysÃinÃsight.ÃÃIÃwouldÃrecommend\n\
lookingÃelsewhereÃforÃtheÃkeys.",

"SomethingÃseemsÃtoÃbeÃfrighteningÃtheÃbirdÃjustÃnowÃandÃyouÃcannot\n\
catchÃitÃnoÃmatterÃwhatÃyouÃtry.ÃÃPerhapsÃyouÃmightÃtryÃlater.",

"YouÃcan’tÃkillÃtheÃsnake,ÃorÃdriveÃitÃaway,ÃorÃavoidÃit,ÃorÃanything\n\
likeÃthat.ÃÃThereÃisÃaÃwayÃtoÃgetÃby,ÃbutÃyouÃdon’tÃhaveÃtheÃnecessary\n\
resourcesÃrightÃnow.",

"YouÃcanÃmakeÃtheÃpassagesÃlookÃlessÃalikeÃbyÃdroppingÃthings.",
"ThereÃisÃaÃwayÃtoÃexploreÃthatÃregionÃwithoutÃhavingÃtoÃworryÃabout\n\

fallingÃintoÃaÃpit.ÃÃNoneÃofÃtheÃobjectsÃavailableÃisÃimmediately\n\
usefulÃforÃdiscoveringÃtheÃsecret.",

"Don’tÃgoÃwest."};
boolean hinted [n hints]; /∗ have you seen the hint? ∗/

96 SCORING ADVENTURE §197

197. Here’s a subroutine that computes the current score.
〈Subroutines 6 〉 +≡

int score ARGS((void));
int score ()
{

register int j, s = 2;
register object k;
if (dflag) s += 25; /∗ you’ve gotten well inside ∗/
for (k = min treasure ; k ≤ max obj ; k++) {

if (prop [k] ≥ 0) {
s += 2;
if (place [k] ≡ house ∧ prop [k] ≡ 0) s += (k < CHEST ? 10 : k ≡ CHEST ? 12 : 14);

}
}
s += 10 ∗ (max deaths − death count);
if (¬gave up) s += 4;
if (place [MAG] ≡ witt) s++; /∗ proof of your visit ∗/
if (closing) s += 25;
s += bonus ;
for (j = 0; j < n hints ; j++)

if (hinted [j]) s −= hint cost [j];
return s;

}

198. #define highest class 8
〈Print the score and say adieu 198 〉 ≡

k = score ();
printf ("YouÃscoredÃ%dÃpointsÃoutÃofÃaÃpossibleÃ%d,ÃusingÃ%dÃturn%s.\n", k,max score , turns ,

turns ≡ 1 ? "" : "s");
for (j = 0; class score [j] ≤ k; j++) ;
printf ("%s\nToÃachieveÃtheÃnextÃhigherÃrating", class message [j]);
if (j < highest class)

printf (",ÃyouÃneedÃ%dÃmoreÃpoint%s.\n", class score [j]− k, class score [j] ≡ k + 1 ? "" : "s");
else printf ("ÃwouldÃbeÃaÃneatÃtrick!\nCongratulations!!\n");

This code is used in section 2.

199. 〈Global variables 7 〉 +≡
int class score [] = {35, 100, 130, 200, 250, 300, 330, 349, 9999};
char ∗class message [] = {
"YouÃareÃobviouslyÃaÃrankÃamateur.ÃÃBetterÃluckÃnextÃtime.",
"YourÃscoreÃqualifiesÃyouÃasÃaÃnoviceÃclassÃadventurer.",
"YouÃhaveÃachievedÃtheÃratingÃ\"ExperiencedÃAdventurer\".",
"YouÃmayÃnowÃconsiderÃyourselfÃaÃ\"SeasonedÃAdventurer\".",
"YouÃhaveÃreachedÃ\"JuniorÃMaster\"Ãstatus.",
"YourÃscoreÃputsÃyouÃinÃMasterÃAdventurerÃClassÃC.",
"YourÃscoreÃputsÃyouÃinÃMasterÃAdventurerÃClassÃB.",
"YourÃscoreÃputsÃyouÃinÃMasterÃAdventurerÃClassÃA.",
"AllÃofÃAdventuredomÃgivesÃtributeÃtoÃyou,ÃAdventureÃGrandmaster!"};

§200 ADVENTURE LAUNCHING THE PROGRAM 97

200. Launching the program. The program is now complete; all we must do is put a few of the pieces
together.

Most of the initialization takes place while you are reading the opening message.
〈 Initialize all tables 200 〉 ≡
〈 Initialize the random number generator 156 〉;
offer (0); /∗ Give the welcome message and possible instructions ∗/
limit = (hinted [0] ? 1000 : 330); /∗ set lifetime of lamp ∗/
〈Build the vocabulary 10 〉;
〈Build the travel table 23 〉;
〈Build the object tables 69 〉;
oldoldloc = oldloc = loc = newloc = road ;

This code is used in section 2.

98 INDEX ADVENTURE §201

201. Index. A large cloud of green smoke appears in front of you. It clears away to reveal a tall wizard,
clothed in grey. He fixes you with a steely glare and declares, “This adventure has lasted too long.” With
that he makes a single pass over you with his hands, and everything around you fades away into a grey
nothingness.

__STDC__: 3.
abovep : 18, 45, 48.
abover : 18, 52, 53.
ABSTAIN: 13, 76, 82, 128.
ACROSS: 9, 10, 34, 46, 55, 57.
action: 13, 77.
action type : 5, 14, 78.
alcove : 18, 50, 51, 149.
all alike : 21, 36.
ante : 18, 42, 44, 45, 70.
arch : 18, 43.
ARGS: 3, 6, 8, 64, 65, 66, 71, 72, 154, 160, 194, 197.
ART: 11, 12, 70.
attack : 164, 165, 167, 170.
attack msg : 170, 171.
awk : 18, 31, 91.
AWKWARD: 9, 10.
AXE: 11, 12, 70, 122, 123, 129, 162, 163, 179.
BACK: 9, 10, 140.
barr : 18, 57, 70, 132.
BARREN: 9, 10, 57.
base : 63, 66, 67, 88, 94, 101, 112, 121, 123, 128,

129, 132, 133, 151, 172, 174, 179.
BATTERIES: 11, 12, 70, 118, 184, 186.
BEAR: 11, 12, 70, 86, 94, 98, 112, 117, 122, 123,

125, 126, 129, 133, 151, 179.
BED: 9, 10, 28.
bedquilt : 18, 42, 44, 45, 48, 52.
BEDQUILT: 9, 10, 42, 48.
BIRD: 11, 12, 70, 98, 112, 114, 117, 120, 125,

126, 127, 129, 181, 195.
bird : 18, 31, 37, 70, 91.
bird hint : 20, 31, 194.
BLAST: 13, 14, 79, 99.
block : 18, 47.
bonus : 99, 181, 193, 197.
boolean: 2, 66, 71, 84, 96, 159, 177, 185, 196.
BOTTLE: 11, 12, 70, 90, 100, 104, 106, 107, 110,

112, 113, 115, 181.
bottle empty : 104, 110, 112, 115.
boulders : 18, 54.
branch : 78, 97.
BREAK: 13, 14, 101.
BRIDGE: 11, 12, 55, 69, 119, 124, 151, 152, 179.
BRIDGE_: 11, 69, 119, 124, 152, 179.
bridge rmk : 21, 34, 55, 57.
BRIEF: 13, 14, 87, 95.
brink : 18, 36, 37, 56.

BROKEN: 9, 10, 41.
Brucker, Roger W.: 45.
buf size : 71, 72, 73.
buffer : 71, 72, 73.
bypass : 195.
CAGE: 11, 12, 70, 112, 114, 117, 130, 181.
CALM: 13, 14, 129.
cant : 18, 32, 61.
cant see it : 79, 90, 135.
CANYON: 9, 10, 31, 45.
carry : 65, 112, 174.
CAVE: 9, 10, 140.
cave hint : 20, 29, 194, 195.
CAVERN: 9, 10, 47, 50, 51.
CHAIN: 11, 12, 63, 70, 88, 93, 112, 130, 131,

132, 133, 151, 179.
chamber : 18, 57, 70.
change to : 79, 113, 122, 129.
check : 18, 46, 61.
cheese : 18, 45, 46, 50, 54.
CHEST: 11, 12, 70, 172, 173, 197.
chest loc : 159, 173, 174.
CLAM: 11, 12, 43, 70, 93, 98, 125, 126, 130, 134.
clam oyster : 134.
class message : 198, 199.
class score : 198, 199.
clean : 18, 42.
climb : 18, 46, 61.
CLIMB: 9, 10, 35, 37, 42, 46, 47, 48, 52.
clock1 : 177, 178, 179.
clock2 : 177, 178, 179, 180, 181.
CLOSE: 13, 14, 93, 130, 134.
closed : 88, 93, 99, 100, 101, 120, 125, 127, 129,

135, 177, 181, 182.
closing : 99, 131, 153, 157, 177, 179, 189, 193, 197.
COBBLES: 9, 10, 30, 31.
cobbles : 18, 30, 31, 70, 91.
COINS: 11, 12, 70, 117, 118.
Colossal Cave: 45, 196.
command type : 77, 78.
commence : 75, 102, 191.
complex : 18, 42, 43, 44, 45, 159.
cond : 19, 21, 147, 166.
corr : 18, 57.
crack : 18, 31, 59.
CRACK: 9, 10, 31.
crawl : 18, 48.
CRAWL: 9, 10, 30, 31, 35, 38, 42, 48, 50, 54, 57, 148.

§201 ADVENTURE INDEX 99

cross : 18, 38, 40, 56.
CROSS: 9, 10, 34, 55, 57.
Crowther, William R.: 1, 45.
cry : 125.
CRYSTAL: 11, 12, 34, 69, 99, 179.
CRYSTAL_: 11, 69.
current type : 6, 7, 10, 12, 14, 16.
cycle : 76, 78, 79.
D: 9.
DARK: 9, 10, 31, 51.
dark : 84, 85, 86, 93, 102, 135.
dark hint : 20, 51, 194.
dead end : 21, 39, 56.
dead0 : 18, 40, 56.
dead1 : 18, 36, 56.
dead10 : 18, 36, 56.
dead11 : 18, 36, 56.
dead2 : 18, 36, 56, 159.
dead3 : 18, 36, 56.
dead4 : 18, 36, 56.
dead5 : 18, 36, 56.
dead6 : 18, 36, 56.
dead7 : 18, 36, 56.
dead8 : 18, 37, 56.
dead9 : 18, 36, 56.
death : 86, 151, 170, 189.
death count : 189, 190, 197.
death wishes : 189, 190.
DEBRIS: 9, 10, 30, 31.
debris : 18, 25, 30, 31, 70, 91.
default msg : 14, 15, 57, 79, 111, 129, 139, 148.
default to : 79, 83, 99, 100, 106, 112, 117, 130, 139.
DEPRESSION: 9, 10, 23, 26, 28, 31, 91.
dest : 19, 21, 143, 146, 147, 166.
destroy : 65, 98, 118, 119, 120, 124, 127, 128,

129, 134, 152, 179, 181.
dflag : 90, 129, 159, 160, 161, 162, 167, 170, 197.
DIAMONDS: 11, 12, 70.
didit : 18, 61.
diff0 : 18, 38, 39.
diff1 : 18, 39.
diff10 : 18, 39.
diff2 : 18, 39.
diff3 : 18, 39.
diff4 : 18, 39.
diff5 : 18, 39.
diff6 : 18, 39.
diff7 : 18, 39.
diff8 : 18, 39.
diff9 : 18, 39.
dirty : 18, 41, 42.

ditto : 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
47, 48, 50, 51, 52, 53, 54, 55, 56, 57.

dkill : 159, 163.
dloc : 159, 160, 162, 163, 164, 166, 167, 172,

173, 179.
DOME: 9, 10, 32.
DOOR: 11, 12, 47, 70, 93, 107, 109, 130.
DOWNSTREAM: 9, 10, 23, 25, 26, 28, 42.
DRAGON: 11, 12, 52, 53, 69, 98, 120, 122, 125,

126, 128, 129.
DRAGON_: 11, 69, 128.
DRINK: 13, 14, 79, 106.
droom : 18, 51, 70, 172.
drop : 64, 65, 67, 101, 117, 118, 119, 122, 123, 124,

132, 134, 150, 151, 162, 163, 174, 186, 191.
DROP: 13, 14, 99, 111, 117, 122.
dseen : 159, 163, 164, 173, 176, 179.
dtotal : 164, 165, 167, 170.
duck : 18, 35, 61.
dusty : 18, 42, 45.
dwarf : 90, 92, 100, 122, 126, 159, 160.
DWARF: 11, 12, 70, 90, 98, 100, 101, 125, 126,

129, 181.
dwarves upset : 101, 120, 125, 192.
E: 9.
EAT: 13, 14, 57, 92, 98, 106, 129.
efiss : 18, 32, 34, 69, 99.
EGGS: 11, 12, 70, 139.
elong : 18, 35, 38, 40.
EMERALD: 11, 12, 41, 51, 70, 149, 150, 195.
Emerson, Ralph Waldo: 26.
emist : 18, 31, 32, 33, 34, 40, 41, 61, 69, 88.
ENTER: 9, 10, 23, 25, 29, 47, 57.
ENTRANCE: 9, 10, 31, 91.
epit : 18, 46.
exit : 2, 62.
e2pit : 18, 45, 46, 69.
falls : 18, 47, 70.
false : 2, 66, 71, 141, 173.
fbarr : 18, 57.
FEED: 13, 14, 122, 129.
FEEFIE: 13, 14, 97, 136.
fflush : 71, 72.
fgets : 2, 71, 72.
FILL: 13, 14, 79, 110, 113.
FIND: 13, 14, 79, 90, 100, 148.
first : 63, 64, 65, 88, 92, 195.
flags : 20, 21, 74, 84, 110, 195.
FLOOR: 9, 10, 42.
foobar : 136, 137, 138, 139.
FOOD: 11, 12, 70, 92, 98, 122, 129.

100 INDEX ADVENTURE §201

FORCE: 59, 60, 61.
forced move : 59, 86, 143, 146.
forest : 18, 23, 24, 26, 27, 28, 29.
fork : 18, 57.
FORK: 9, 10, 57.
FORWARD: 9, 10, 24, 27, 32, 34, 40, 53, 148.
found : 143.
gave up : 95, 96, 197.
get object : 79, 92, 93, 106, 107, 110, 126.
GEYSER: 11, 12, 70.
giant : 18, 47, 70, 139.
GIANT: 9, 10, 47.
give up : 95, 184.
GO: 13, 14, 79, 83.
go for it : 75, 143.
GOLD: 11, 12, 31, 32, 70, 88.
GRATE: 11, 12, 29, 30, 31, 63, 69, 90, 91, 93,

130, 131, 179, 181, 195.
GRATE_: 11, 63, 69, 93.
grate rmk : 21, 29, 30, 58.
GULLY: 9, 10, 23, 29.
h: 6, 8.
HALL: 9, 10, 32, 33, 34, 40, 41, 43.
hash entry: 5, 7.
hash prime : 6, 7, 8.
hash table : 6, 7, 8, 76, 78, 79, 97, 105.
here : 74, 84, 90, 92, 93, 99, 102, 106, 110, 113, 117,

120, 122, 126, 129, 130, 139, 172, 184, 187, 195.
highest class : 198.
hill : 18, 23, 24.
HILL: 9, 10.
hint : 194, 196.
hint cost : 194, 196, 197.
hint count : 194, 195, 196.
hint prompt : 194, 196.
hint thresh : 194, 195, 196.
hinted : 135, 194, 195, 196, 197, 200.
hmk : 18, 32, 40, 41, 53, 61, 70, 120, 127, 159.
holding : 63, 64, 65, 112, 149, 195.
holds : 21, 31, 32, 41, 43, 51.
HOLE: 9, 10, 38, 41, 42, 46.
house : 18, 23, 25, 31, 41, 61, 70, 178, 191, 197.
HOUSE: 9, 10, 23, 24, 26, 28, 29.
i: 164.
immense : 18, 47, 70.
IN: 9, 10, 23, 29, 30, 31, 57, 148.
incantation : 136, 137.
inhand : 18, 63, 65, 104, 110, 112.
inside : 18, 29, 30, 31, 69.
instruction: 19, 20, 22.
interval : 86, 87, 95.
intransitive : 76, 78, 79.

INVENTORY: 13, 14, 79, 90, 94, 100, 148.
is at loc : 66, 90, 100, 117, 120, 122, 126, 147.
is treasure : 11, 67, 122.
isspace : 2, 72.
j: 2, 160, 194, 197.
JEWELS: 11, 12, 70.
jumble : 18, 32, 41.
JUMP: 9, 10, 34, 41, 47, 48, 49, 55, 57.
k: 2, 6, 197.
KEYS: 11, 12, 29, 63, 70, 130, 195.
KILL: 13, 14, 79, 122, 125.
KNIFE: 11, 12, 70, 90.
knife loc : 90, 167, 168, 169.
Knuth, Donald Ervin: 1.
L: 9.
l: 64, 65, 144.
LAMP: 11, 12, 70, 84, 99, 102, 172, 181, 184,

187, 191.
Levy, Steven: 23, 55.
lighted : 20, 23, 24, 25, 26, 27, 28, 29, 30, 31,

57, 58, 84.
like1 : 18, 35, 36.
like10 : 18, 36, 37, 56.
like11 : 18, 36, 56.
like12 : 18, 36, 37, 56.
like13 : 18, 36, 37, 56.
like14 : 18, 36.
like2 : 18, 36.
like3 : 18, 36, 56, 159.
like4 : 18, 36, 48, 56.
like5 : 18, 36.
like6 : 18, 36, 48.
like7 : 18, 36.
like8 : 18, 36, 56.
like9 : 18, 36, 48, 56.
limbo : 18, 60, 63, 65, 69, 70, 86, 106, 107, 115,

124, 139, 153, 161, 162, 163, 164, 169, 172,
179, 184, 189, 191.

lime : 18, 57.
limit : 102, 103, 183, 184, 186, 187, 194, 200.
link : 63, 64, 65, 88, 92.
liquid : 20, 23, 25, 26, 28, 42, 46, 47, 52, 74.
list : 3.
listen : 72, 76, 128.
ll : 143, 144.
loc : 59, 66, 74, 75, 84, 86, 88, 90, 91, 92, 93, 99,

100, 101, 105, 107, 110, 117, 118, 121, 122,
123, 128, 132, 134, 139, 140, 141, 143, 146,
148, 149, 150, 151, 153, 157, 160, 161, 162,
163, 164, 167, 169, 170, 172, 174, 176, 178,
181, 184, 186, 188, 191, 195, 200.

location: 18, 19, 21, 63, 64, 65, 74, 144, 159, 165.

§201 ADVENTURE INDEX 101

long desc : 20, 21, 23, 53, 61, 86.
LOOK: 9, 10, 140.
look count : 95, 141, 142.
lookup : 8, 78, 97, 105.
loop rmk : 21, 44, 45.
lose : 18, 34, 55, 60.
lost treasures : 88, 89, 120, 127, 129, 151, 172, 183.
low : 18, 45, 47, 48, 50, 55.
LOW: 9, 10, 31.
m: 6.
MAG: 11, 12, 70, 93, 135, 197.
main : 2.
make inst : 21, 23, 24, 25, 26, 27, 28, 29, 30, 31,

32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61.

make loc : 21, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61.

Makholm, Henning: 91.
max deaths : 189, 190, 197.
max loc : 18, 19, 20, 63, 143, 146.
max obj : 11, 63, 66, 94, 128, 172, 174, 181,

182, 191, 197.
max pirate loc : 56, 161, 166, 172, 176.
max score : 95, 193, 198.
max spec : 18, 19, 21, 146.
McCarthy, John: 1.
meaning : 5, 6, 76, 78, 79, 97, 105.
mess wd : 16.
MESSAGE: 11, 12, 70, 93, 135, 172, 173.
message : 16, 17, 79, 99.
message loc : 159, 173.
message type : 5, 16, 76, 78.
min forced loc : 18, 59, 166.
min in cave : 18, 140, 153, 184.
min lower loc : 18, 91, 161, 164, 166, 178.
min treasure : 11, 172, 174, 197.
MIRROR: 11, 12, 69, 70, 101, 181.
mirror : 18, 49, 52, 70.
MIRROR_: 11, 69, 181.
misty : 18, 50, 51.
MOSS: 11, 12, 70.
mot : 19, 21, 76, 77, 78, 140, 143, 146, 148.
motion: 9, 19, 77.
motion type : 5, 10, 78.
move : 65, 119, 123, 124, 128, 139, 152, 173,

179, 181.
move chest : 173, 175.
N: 9.
n: 71.

n hints : 196, 197.
nada sucede : 136, 139.
name : 63, 67, 94.
narrow : 18, 47, 61.
nd : 159, 160, 162, 163, 164, 176, 179.
NE: 9, 10, 39, 44, 45, 51, 55, 57, 58.
neck : 18, 31, 41, 47, 49, 60.
neend : 18, 58, 99, 181.
neside : 18, 57, 69, 119, 124, 151, 152, 179.
new mess : 16.
new note : 67, 69, 70.
new obj : 67, 69, 70.
new word : 6, 10, 12, 14, 16.
newloc : 74, 75, 86, 140, 146, 148, 149, 151, 153,

166, 176, 189, 200.
no good : 146, 147.
no liquid here : 74, 110, 111.
no type : 5.
not : 21, 29, 30, 31, 34, 40, 46, 47, 52, 53, 55, 61.
note : 63, 67, 88, 99, 108, 118, 121, 128, 139,

152, 182.
note ptr : 63, 67.
NOTHING: 11, 63, 66, 76, 94, 97, 106, 107, 110, 122,

125, 128, 129, 133, 172, 174, 179.
NOWHERE: 9, 10, 31, 78, 140.
ns : 18, 40, 41, 42, 70.
nugget : 18, 32, 33, 70, 162.
NW: 9, 10, 36, 39, 44, 45, 51.
obj : 76, 77, 78, 90, 92, 93, 97, 98, 99, 100, 101,

106, 107, 108, 109, 110, 112, 113, 115, 117, 122,
124, 125, 126, 128, 129, 130, 131, 134, 135.

object: 11, 63, 64, 65, 66, 68, 77, 88, 197.
Object-oriented programming: 11.
object in bottle : 90, 100, 113, 115.
object type : 5, 12, 78.
odloc : 159, 162, 164, 166, 167, 172, 173, 176.
OFF: 13, 14, 79, 102.
offer : 135, 194, 195, 200.
OFFICE: 9, 10.
offset : 63, 67, 88, 99, 108, 118, 121, 128, 139,

152, 182.
oil : 20, 46, 74, 110.
OIL: 11, 12, 70, 90, 100, 107, 109, 110, 112,

115, 191.
oil here : 74, 90, 100.
ok : 14, 95, 189, 194.
oldloc : 74, 75, 143, 181, 189, 191, 195, 200.
oldobj : 76, 77, 195.
oldoldloc : 74, 75, 143, 151, 170, 188, 189, 191,

195, 200.
oldverb : 76, 77, 79, 126.
ON: 13, 14, 79, 102.

102 INDEX ADVENTURE §201

OPEN: 13, 14, 93, 130, 131, 132.
oriental : 18, 45, 48, 50, 70.
ORIENTAL: 9, 10, 45, 48, 50.
OUT: 9, 10, 25, 30, 31, 33, 39, 40, 41, 42, 43, 45,

46, 47, 48, 51, 52, 53, 56, 57, 148.
OUTDOORS: 9, 10, 25.
outside : 18, 23, 26, 28, 29, 30, 31, 69.
OVER: 9, 10, 34, 55, 57.
OYSTER: 11, 12, 43, 70, 93, 98, 125, 126, 130,

134, 135, 181, 182.
p: 2, 6, 8, 72.
panic : 177, 180.
parse : 76.
PASSAGE: 9, 10, 31, 32, 35, 42, 47, 48, 51, 57.
pct : 86, 147, 157, 161, 162, 172.
pdrop : 18, 41, 51, 62, 146, 150.
PEARL: 11, 12, 70, 134.
PILLOW: 11, 12, 70, 121, 181.
PIRATE: 11, 12, 70.
pirate not spotted : 172, 173.
PIT: 9, 10, 30, 31, 32, 42, 46.
pitch dark : 86, 188.
pitch dark msg : 86, 87, 102.
place : 63, 64, 65, 66, 74, 93, 100, 104, 105, 106,

107, 110, 112, 115, 120, 121, 123, 127, 128,
139, 151, 172, 174, 184, 191, 197.

PLANT: 11, 12, 46, 61, 63, 70, 90, 107, 108, 112, 181.
PLANT2: 11, 69, 90, 108.
PLANT2_: 11, 69.
ploc : 164, 165, 166.
PLOVER: 9, 10, 41, 51, 97.
PLUGH: 9, 10, 25, 41, 97, 148.
pony : 18, 39, 70, 159.
PONY: 11, 12, 70, 117.
POUR: 13, 14, 79, 107.
ppass : 18, 51, 62, 146.
pre parse : 76, 128.
printf : 2, 62, 71, 72, 78, 79, 80, 86, 88, 94, 95,

97, 99, 101, 102, 108, 110, 111, 119, 120, 121,
122, 128, 134, 140, 141, 143, 145, 146, 148,
149, 151, 152, 157, 162, 163, 170, 172, 173,
175, 176, 179, 180, 181, 182, 184, 186, 187,
188, 189, 192, 194, 198.

proom : 18, 41, 51, 70, 149, 172.
prop : 19, 21, 63, 67, 84, 88, 90, 99, 101, 102, 104,

106, 107, 108, 109, 110, 112, 114, 115, 117, 118,
119, 120, 121, 122, 123, 125, 126, 127, 128, 129,
130, 131, 132, 133, 139, 147, 151, 152, 172, 178,
179, 181, 182, 184, 186, 187, 191, 195, 197.

prototypes for functions: 3.
PYRAMID: 11, 12, 70, 172, 195.
q: 22, 71, 72.

qq : 22, 143, 147.
quit : 2, 75, 95, 99, 189.
QUIT: 13, 14, 95.
R: 9.
r: 65.
ragged : 18, 43.
ran : 154, 157, 158, 162, 163, 164, 167.
range : 154.
READ: 13, 14, 93, 135.
RELAX: 13, 14, 79, 112, 117, 130, 139.
rem count : 20, 21, 62.
rem size : 20, 62.
remark : 21, 28, 29, 34, 43, 44, 46, 47, 53, 55, 57.
remarks : 19, 20, 21, 146.
report : 79, 83, 90, 93, 94, 95, 98, 99, 100, 101,

102, 106, 107, 108, 109, 110, 111, 112, 113,
114, 118, 120, 123, 124, 125, 127, 129, 130,
131, 132, 133, 134, 135, 136, 139.

report default : 79, 98, 99, 100, 101, 102, 106, 107,
110, 112, 117, 122, 125, 129, 130, 135.

res : 18, 52.
RESERVOIR: 9, 10, 52.
road : 18, 23, 24, 25, 26, 27, 28, 29, 91, 178,

191, 200.
ROAD: 9, 10, 23, 24, 27.
ROCK: 9, 10, 28.
ROD: 11, 12, 70, 90, 99, 114, 117, 122, 181, 195.
ROD2: 11, 70, 90, 99, 117, 122, 181.
ROOM: 9, 10, 42.
RUB: 13, 14, 99.
RUG: 11, 12, 63, 69, 88, 128.
RUG_: 11, 69, 128.
rx : 154, 155, 156.
S: 9.
s: 65, 197.
sac : 18, 43, 134.
SAY: 13, 14, 78, 82, 97.
sayit : 21, 28, 29, 34, 43, 44, 46, 47, 53, 55, 57.
scan1 : 18, 52, 53, 69, 128, 166.
scan2 : 18, 52, 53, 128, 166.
scan3 : 18, 53, 69, 128, 166.
score : 95, 197, 198.
SCORE: 13, 14, 95.
scorr : 18, 48, 55.
SE: 9, 10, 39, 44, 48, 50, 56, 57.
SECRET: 9, 10, 40.
secret : 18, 40, 53, 54.
sees : 21, 40, 55, 57.
sewer : 18, 25, 61.
SHADOW: 11, 12, 69.
SHADOW_: 11, 69.
shell : 18, 42, 43, 70.

§201 ADVENTURE INDEX 103

SHELL: 9, 10, 42, 43.
shift : 76, 83.
short desc : 20, 21, 27, 49, 86.
SILVER: 11, 12, 70, 178.
sjunc : 18, 45, 48, 49.
slab : 18, 45, 46, 52.
SLAB: 9, 10, 45, 46, 52.
slit : 18, 26, 28, 29, 91.
SLIT: 9, 10, 28, 42.
slit rmk : 21, 28, 42.
smash : 101, 111.
SNAKE: 11, 12, 40, 63, 70, 98, 120, 125, 126,

127, 129, 181, 195.
snake hint : 20, 40, 194.
snaked : 18, 40, 61.
soft : 18, 45, 70, 117.
south : 18, 40, 70.
speakit : 76, 78, 79.
SPICES: 11, 12, 70, 151.
spit : 18, 30, 31, 32, 59, 69, 91.
STAIRS: 9, 10, 32, 40.
STALACTITE: 11, 12, 70.
start : 20, 21, 62, 143, 146, 166.
stay : 146, 149, 152.
stay put : 78, 108, 122, 128, 163, 181.
stdin : 71, 72.
stdout : 71, 72.
steep : 18, 47.
STEPS: 9, 10, 31, 32.
stick : 164, 165, 167, 170.
strcpy : 2, 76, 97, 105.
STREAM: 9, 10, 23, 25, 28, 42.
streq : 8, 80, 83, 105, 128, 136.
strncmp : 2, 8.
SURFACE: 9, 10, 31.
SW: 9, 10, 39, 40, 44, 48, 55, 57, 58.
swend : 18, 58, 181.
swside : 18, 55, 69, 119, 124, 151, 152, 179.
t: 8, 64, 65, 66, 68.
TABLET: 11, 12, 70, 93, 135.
TAKE: 13, 14, 92, 100, 112.
tall : 18, 45, 54.
tally : 88, 89, 172, 178, 183.
text : 5, 6, 8.
THROW: 117.
thru : 18, 34, 61.
tight : 18, 54.
time : 2, 156.
tite : 18, 48, 70.
Tolkien, John Ronald Reuel: 57.
tolower : 2, 71, 72.
too easy : 172, 174.

TOSS: 13, 14, 99, 122, 126.
toting : 63, 64, 74, 86, 88, 90, 93, 94, 99, 100,

101, 104, 107, 110, 111, 112, 113, 114, 117,
122, 132, 134, 135, 139, 147, 149, 151, 172,
174, 181, 182, 186, 191, 195.

transitive : 76, 78, 79, 82, 92, 93.
travel size : 20, 62.
travels : 20, 23, 62.
TREADS: 11, 69, 88.
TREADS_: 11, 69.
TRIDENT: 11, 12, 70, 134.
troll : 18, 55, 57, 62, 146.
TROLL: 11, 12, 55, 57, 69, 98, 117, 119, 122, 124,

125, 126, 129, 139, 151, 152, 179.
TROLL_: 11, 69, 119, 124, 152, 179.
TROLL2: 11, 69, 119, 124, 151, 152, 179.
TROLL2_: 11, 69, 119, 124, 152, 179.
true : 2, 66, 71, 95, 180, 181, 184.
try motion : 78, 91.
try move : 75, 76, 78, 86.
tt : 66, 88.
turns : 76, 77, 198.
twist hint : 20, 36, 56, 194.
U: 9.
upnout : 18, 61.
UPSTREAM: 9, 10, 26, 28, 29, 42.
VALLEY: 9, 10, 27.
valley : 18, 23, 26, 27, 28, 91.
VASE: 11, 12, 70, 101, 110, 111, 117, 121.
verb : 76, 77, 78, 79, 82, 128, 131, 132, 134, 148.
view : 18, 57, 70.
VIEW: 9, 10, 57.
visits : 20, 86, 88, 141.
W: 9.
w: 6, 8.
WAKE: 13, 14, 101.
WALL: 9, 10, 41.
warm : 18, 57.
warned : 184, 185.
was dark : 84, 85, 86, 102, 141.
WATER: 11, 12, 70, 90, 100, 104, 106, 107, 108,

109, 110, 112, 115, 191.
water here : 74, 83, 90, 100, 106.
Watson, Richard Allan: 45.
WAVE: 13, 14, 99, 139, 148.
west : 18, 40, 70.
west count : 80, 81.
wet : 18, 42.
wfiss : 18, 34, 35, 61, 69, 70, 99, 159.
wide : 18, 53, 54.
windoe : 18, 41, 49, 69.
window : 18, 48, 49, 69.

104 INDEX ADVENTURE §201

witt : 18, 44, 197.
witt hint : 20, 44, 194.
wlong : 18, 38, 39, 40.
wmist : 18, 34, 35, 36, 38, 61.
woods : 18, 27.
WOODS: 9, 10, 23, 24, 26, 27, 28, 29.
Woods, Donald Roy: 1, 10, 49, 55.
word type : 5, 6, 8, 78.
wordtype: 5, 7, 77.
word1 : 72, 73, 76, 78, 79, 80, 83, 97, 105, 128, 136.
word2 : 72, 73, 76, 78, 79, 82, 83, 97, 105.
wpit : 18, 46, 47, 61, 70.
w2pit : 18, 46, 52, 61, 69.
XYZZY: 9, 10, 25, 31, 97, 148.
y: 71.
yes : 71, 95, 189, 194.
y2 : 18, 25, 41, 51, 157, 159, 178.
Y2: 9, 10, 32, 41.

ADVENTURE NAMES OF THE SECTIONS 105

〈Additional local registers 22, 68, 144 〉 Used in section 2.

〈Advance dflag to 2 162 〉 Used in section 161.

〈Apologize for inability to backtrack 145 〉 Used in section 143.

〈Block the troll bridge and stay put 152 〉 Used in section 151.

〈Build the object tables 69, 70 〉 Used in section 200.

〈Build the travel table 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,

50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62 〉 Used in section 200.

〈Build the vocabulary 10, 12, 14, 16 〉 Used in section 200.

〈Chase the troll away 119 〉 Used in section 117.

〈Check for interference with the proposed move to newloc 153 〉 Used in section 75.

〈Check if a hint applies, and give it if requested 195 〉 Used in section 76.

〈Check special cases for dropping a liquid 115 〉 Used in section 117.

〈Check special cases for dropping the bird 120 〉 Used in section 117.

〈Check special cases for dropping the vase 121 〉 Used in section 117.

〈Check special cases for taking a bird 114 〉 Used in section 112.

〈Check special cases for taking a liquid 113 〉 Used in section 112.

〈Check the clocks and the lamp 178 〉 Used in section 76.

〈Check the lamp 184 〉 Used in section 178.

〈Choose newloc via plover-alcove passage 149 〉 Used in section 146.

〈Close the cave 181 〉 Used in section 178.

〈Cross troll bridge if possible 151 〉 Used in section 146.

〈Deal with death and resurrection 188, 189, 191, 192 〉 Used in section 2.

〈Describe the objects at this location 88 〉 Used in section 86.

〈Determine the next location, newloc 146 〉 Used in section 75.

〈Dispatch the poor bird 127 〉 Used in section 125.

〈Drop the emerald during plover transportation 150 〉 Used in section 146.

〈Extinguish the lamp 187 〉 Used in section 184.

〈Fun stuff for dragon 128 〉 Used in section 125.

〈Get user input; goto try move if motion is requested 76 〉 Used in section 75.

〈Give advice about going WEST 80 〉 Used in section 76.

〈Give optional plugh hint 157 〉 Used in section 86.

〈Global variables 7, 15, 17, 20, 21, 63, 73, 74, 77, 81, 84, 87, 89, 96, 103, 137, 142, 155, 159, 165, 168, 171, 177, 185, 190,

193, 196, 199 〉 Used in section 2.

〈Handle additional special cases of input 83, 105 〉 Used in section 76.

〈Handle cases of intransitive verbs and continue 92, 93, 94, 95, 136 〉 Used in section 79.

〈Handle cases of transitive verbs and continue 97, 98, 99, 100, 101, 102, 106, 107, 110, 112, 117, 122, 125, 129, 130,

135 〉 Used in section 79.

〈Handle special cases of input 82, 138 〉 Used in section 76.

〈Handle special motion words 140 〉 Used in section 75.

〈 If the condition of instruction q isn’t satisfied, advance q 147 〉 Used in section 146.

〈 If GRATE is actually a motion word, move to it 91 〉 Used in section 90.

〈 Initialize all tables 200 〉 Used in section 2.

〈 Initialize the random number generator 156 〉 Used in section 200.

〈Let the pirate be spotted 175 〉 Used in section 172.

〈Look at word1 and exit to the right place if it completes a command 78 〉 Used in section 76.

〈Macros for subroutine prototypes 3 〉 Used in section 2.

〈Make a table of all potential exits, ploc [0] through ploc [i− 1] 166 〉 Used in section 164.

〈Make dwarf j follow 167 〉 Used in section 164.

〈Make special adjustments before looking at new input 85, 158, 169, 182 〉 Used in section 76.

〈Make sure obj is meaningful at the current location 90 〉 Used in section 78.

〈Make the pirate track you 172 〉 Used in section 167.

〈Make the threatening dwarves attack 170 〉 Used in section 164.

106 NAMES OF THE SECTIONS ADVENTURE

〈Move dwarves and the pirate 164 〉 Used in section 161.

〈Open chain 133 〉 Used in section 132.

〈Open/close chain 132 〉 Used in section 131.

〈Open/close clam/oyster 134 〉 Used in section 130.

〈Open/close grate/chain 131 〉 Used in section 130.

〈Panic at closing time 180 〉 Used in sections 131 and 153.

〈Perform an action in the current place 79 〉 Used in section 75.

〈Possibly move dwarves and the pirate 161 〉 Used in section 75.

〈Pour water or oil on the door 109 〉 Used in section 107.

〈Print the score and say adieu 198 〉 Used in section 2.

〈Proceed foobarically 139 〉 Used in section 136.

〈Put coins in the vending machine 118 〉 Used in section 117.

〈Repeat the long description and continue 141 〉 Used in section 140.

〈Replace the batteries 186 〉 Used in section 184.

〈Report on inapplicable motion and continue 148 〉 Used in section 146.

〈Report the current state 86 〉 Used in section 75.

〈See if there’s a unique object to attack 126 〉 Used in section 125.

〈Simulate an adventure, going to quit when finished 75 〉 Used in section 2.

〈Snarf a treasure for the troll 124 〉 Used in section 122.

〈Snatch all treasures that are snatchable here 174 〉 Used in section 173.

〈Stay in loc if a dwarf is blocking the way to newloc 176 〉 Used in section 153.

〈Subroutines 6, 8, 64, 65, 66, 71, 72, 154, 160, 194, 197 〉 Used in section 2.

〈Take booty and hide it in the chest 173 〉 Used in section 172.

〈Throw the axe at a dwarf 163 〉 Used in section 122.

〈Throw the axe at the bear 123 〉 Used in section 122.

〈Try to fill the vase 111 〉 Used in section 110.

〈Try to go back 143 〉 Used in section 140.

〈Try to water the plant 108 〉 Used in section 107.

〈Type definitions 5, 9, 11, 13, 18, 19 〉 Used in section 2.

〈Warn that the cave is closing 179 〉 Used in section 178.

〈Zap the lamp if the remaining treasures are too elusive 183 〉 Used in section 88.

ADVENTURE

Section Page
Introduction . 1 1
The vocabulary . 4 3
Cave data . 18 14
Cave connections . 21 16
Data structures for objects . 63 43
Object data . 69 46
Low-level input . 71 51
The main control loop . 74 53
Simple verbs . 92 60
Liquid assets . 104 64
The other actions . 116 67
Motions . 140 75
Random numbers . 154 79
Dwarf stuff . 159 80
Closing the cave . 177 86
Death and resurrection . 183 90
Scoring . 193 93
Launching the program . 200 97
Index . 201 98

