
The CLiP Style of Literate Programming

Eric. W. van Ammers and Mark R. Kramer

Computer Science Department
Wageningen Agricultural University

Dreijenplein 2, 6703 HB Wageningen, The Netherlands
voice: +31 (0)8370 83356, fax: +31 (0)8370 84731

e-mail: ammers@rcl.wau.nl

Abstract:
Literate programming is a method to integrate programs with their docu-

mentation. Compilable modules are no separate entities, but they are
extracted from the documentation.

Most literate programming tools use explicit commands in the formatter
input files to guide the extraction process. The CLiP approach presented in
this paper relies on coding style instead. This makes the code extraction
completely independent of the text processing environment. Thus CLiP can
even be used in combination with a modern wordprocessor.

In addition the CLiP mechanism is independent of programming lan-
guages as well, and the CLiP style is easily adapted to any language.

Keywords:
Literate programming, Language independent literate programming, Text

processing independent literate programming, Multi-file/multi-module lit-
erate programming, Documentation, Coding style.

The CLiP Style of Literate Programming (4.074, 26-feb-93) 1

1 Introduction

Maintenance is the dominating cost factor of a software system. Estimations are that mainten-
ance programmers spend up to 50% of their time simply trying to understand what the code does
[Parikh and Zvegintov 1983]. Also it has been observed over and over that conventional
documentation is often inadequate for maintenance purposes. Programmers on a maintenance
job tend to ignore the documentation and rely on the code listings instead. The fact that in a
conventional set-up the documentation and the code are distinct documents, is generally rec-
ognized as a contributing factor since it presents a serious obstacle to keep the code consistent
with its description. The problem made Brooks ponder on the idea of "self-documenting code",
that is an improved documentation method which integrates high quality documentation with
actual code [Brooks 1982].

Literate programming promises a significant step towards more comprehensible programs
[Knuth 1984]. The basic idea is twofold. Firstly the program code and its description are inte-
grated in such a way that compilable units can be extracted automatically, thus implementing
the ideal of self-documenting code in an even more extreme form. Secondly the integrated
document is no longer presented as a plain ASCII-file, but rather as a type-set document where
all sorts of (typo)graphical features can be applied to increase its explanatory power.

Evidently literate programming requires a mechanism to create compilable units
 henceforth called modules from the documentation files. Such a mechanism is called a

module extractor. In most literate programming settings the documentation is produced be
means of a formatter. In that case the literate programmer has in fact to work with four different
languages simultaneously, namely the explanation language (typically English), the program-
ming language (e.g. Pascal), the language to instruct the formatter and the language to command
the module extractor [Reenskaug 1989].

The CLiP approach distinguishes itself from other literate programming environments in that
it applies style (or programming conventions) rather than commands to conduct the module
extraction process. This concept sets the programmer entirely free to use any text processing
system he prefers. In fact CLiP cooperates just as easily with a batch oriented formatter as with
an interactive word-processor. A second important quality of CLiP is that it processes virtually
any programming language. However, in this respect it is not unique.

The rest of this paper consists of five main parts. In section 2 we discuss the literate pro-
gramming paradigm. We then continue with an exposition of the CLiP approach which we
illustrate by an example in the appendices. In section 4 the CLiP technique is compared to other
literate programming tools around. Section 5 summarizes the experiences that have been gained
so far. Finally we reflect on some important developments of literate programming that we
foresee.

2 The literate programming paradigm

Knuth’s original paper describes literate programming as [Knuth 1984]
"Instead of imagining that our main task is to instruct a computer what to do,
let us concentrate rather on explaining to human beings what we want a
computer to do".

We would like to add the phrase "in such a way that it can be interpreted by a computer" and
consider this an almost perfect definition.

Thus a literate program contains the actual code (the lines that end-up in the modules) divided
in suitable chunks. In general each of those chunks will be accompanied with a description (an
explanation in a suitable form). The author integrates the two in a way that in his opinion pro-

The CLiP Style of Literate Programming (4.074, 26-feb-93) 2

vides the best explanation of the program. This integrated text we will call the documentation
of the system. To have a computer interpret the code, the documentation has to be processed to
realise modules. In this section we will explore the ingredients to achieve this objective.

2.1 Explanation to human beings

Programming is a painful process involving many distinct steps. With every step we associate
a design decision which in turn is implemented by a certain amount of ’real’ code. A literate
program documents the relation between code and design decision as an integrated entity. In
this way the ideal of self-documenting code is closely approximated. As an additional advantage
the programmer tends to express the design step in terms of actual names as they show in the
program code. In a conventional environment, where description and program code are distinct
documents, the tendency is rather to express descriptions in more abstract terms and names that
often do not return as identifiers in the program.

Design steps per se are fairly autonomous entities. It is by their mutual relationship that a
certain desired functionality is realised. Therefore the hierarchy of the design steps is a crucial
factor to understand the structure of a software system. This hierarchy usually does not reflect
the chronological order of the design decisions that have been made [Parnas 1986]. Literate
programming invites the programmer to explain the hierarchy in any order he considers
appropriate and in terms of the code that is actually involved. Whether this exposition is top-
down, bottom-up, middle-out or any other suitable way is entirely up to the author.

The freedom to present the design hierarchy in the order desired by the programmer/author is
considered a vital aspect of the literate programming paradigm [Bentley 1986a/b]. Knuth
appreciates this property in that it "... allows a person to express programs in a ’stream of con-
sciousness’ order." [Knuth 1984].

Programming is not a rational design process [Parnas 1986]. Design steps are proposed,
explored, thrown away and replaced by alternatives. For this reason it is customary in a con-
ventional environment to produce the description of a program only after its design has stabil-
ized. With literate programming the work process is much more flexible. Since the code and its
description are one and the same document it is easy to jot down any noteworthy remarks
together with the related code. Whether or not these remarks will mature into actual descriptions,
depends mainly on the way the design stabilizes. But the remarks as such are secured and there
is no chance they will be accidentally forgotten in the final documentation.

A literate program can (and should) be organized as a textbook and a notorious example is
the TEX-program by Knuth [Knuth 1986]. Thus, for the sake of explaining the documented
program, we can make use of all those features that are used for ordinary textbooks too. The
benefits of the so called book format paradigm are described by Oman and Cook, who also
conducted experimental studies to verify those claims [Oman 1990a/1990b]. It turns out that
organizing information as components of a book (i.e. preface, table of contents, indices and
pagination, chapters, sections, paragraphs, sentences, punctuation, type style, character case
etc.) provides a variety of access methods which have a significant impact on program com-
prehension. Also facilities like figures, schemes, drawings, tables, etc. greatly extend the scale
of gadgets that can be thrown in for explanatory proposes.

2.2 Interpretation by a computer

The relationship between design decisions becomes manifest when a design step is expressed
in terms of design steps described elsewhere in the literate program. Of course conventional
references to names are solved by the language environment in question. But in a literate pro-

The CLiP Style of Literate Programming (4.074, 26-feb-93) 3

gramming environment the order of the code fragments has to be indicated as well. This is
accomplished by placeholders that refer to other code fragments in the documentation.
Typically, a pseudostatement is a placeholder for the code fragment of the supplemental design
step. At module-generation-time a literate programming system will automatically expand
every placeholder into the intended code described elsewhere in the documentation. Since the
module generation process is not disturbed by human intervention, the modules necessarily
reflect the code as it appears in the documentation. This property of literate programs has been
dubbed verisimilitude [Van Wyk 1990].

The documentation of a computer program in general extends over many different files. A
program itself is seldom monolithic; virtually always it is composed of several independently
compilable modules. Sometimes it may be convenient to be able to derive several versions of a
program (e.g. a test version containing additional debugging code or different versions for dif-
ferent platforms). For these reasons it is highly desirable that a literate programming environ-
ment does not impose restrictions on the way the modules relate to the documentation. Thus a
literate programming tool should be able to extract an arbitrary set of program modules from an
arbitrary set of documentation files.

3 The CLiP approach to literate programming

In the CLiP approach the preparation of printed documentation is totally decoupled from the
code extraction. The one and only function of the tool CLiP itself is to extract the code from the
documentation; CLiP stands for "Code from Literate Program".

CLiP can be used in combination with any formatting tool and/or word-processor, as long as
plain text files are available as source files for the module extraction. With ’traditional’ for-
matters like troff or (La)TeX the input files of the formatter can be used (see fig. 1a). To use a
modern word-processor, the CLiP source files have to be generated by a suitable ASCII-export
from the word-processor (see fig. 1b).

Figure 1a: CLiP and a word-processor Figure 1b: CLiP and a formatter

~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~

Compiler/Linker

Wordprocessor

Executables
(binary)

Modules
(ASCII)

CLiP

Source files
(?????)

Export files
(ASCII)

~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~

Compiler/Linker

Editor

Executables
(binary)

Modules
(ASCII)

Source files
(ASCII)

CLiP

Fo
rm

at
te

r

The CLiP Style of Literate Programming (4.074, 26-feb-93) 4

The independence of text processing and CLiPping was one of our initial requirements. Other
requirements included a total independence of target (programming) language and the freedom
to describe several modules in one document or a set of related documents. We return to these
ideas in section 3.3. Last but not least we wanted the code contained in the documentation to
look natural. More specifically, it should not contain special commands for the code extractor.

The placeholders introduced in the process of literate programming must look natural, yet
have to be distinguished from ’normal’ code. Placeholders may be used to represent pseu-
do-statements, but also to indicate locations where definitions, declarations, externals etc. have
to be included. In fact the nature of the ’code’ to be inserted does not really matter: even data
files may be organised in this way. Usually, in algorithm development the placeholders (i.e.
pseudocode) are represented in the form of comments inside fragments of code. CLiP adopts
this convention for all other placeholders as well. Thus in the CLiP approach all information
relevant to the code extraction is represented by a naturally looking coding style, viz. comments
that resemble pseudo-statements.

This representation is expounded in the following subsections: first we look at the bare syntax
of CLiP, next some additional conventions are presented. In section 3.3 we investigate some
advanced ways of using CLiP. The appendices A and B contain a small, yet complete, example
of a literate program in CLiP style which is augmented with line numbers. The numbers between
"<" and ">" in the discussion below refer to these lines.

3.1 Basic syntax of CLiP

In the structure of a CLiP-document, as far as module extraction is concerned, we may distin-
guish four syntax levels:

1. division in active parts with a special meaning to CLiP (code fragments) and passive parts
which CLiP ignores (descriptions),

2. structure of the active parts: the segments,
3. internal structure of segments,
4. the concrete syntax.

The first three levels constitute the abstract syntax in which the basic entities are complete lines.
At the fourth level the internal structure of these lines is taken into account.

The purpose of the extraction tool is to process only those lines that ’look like’ code or pro-
gramming language comments (all numbered lines). To keep the parser independent of pro-
gramming languages, only comment lines with a special appearance trigger the process of
CLiPping. We call these lines CLiP-lines <e.g. 1, 7, 8, 16, 17, 20, 26-29, 32>.

At the first level of syntax we distinguish descriptions (all unnumbered lines) and code
fragments, in the terminology of CLiP called ’stubs’ (e.g. 1-7, 8-32, 37-38, 39-41, 49-75):

Source-file == Description (Stub Description)*

At the second level the internal structure of Stubs is introduced. Each stub starts with a segment
of CLiP-lines stating the name (and optionally some properties) of the stub <typically 49-51,
86-88>. The stub ends with a segment of CLiP-lines containing a special ’end string’ <41, 75,
109>. Any segment of CLiP-lines in between constitutes a Slot-segment <54-57, 61-64, 68-70,
105-107>. Note that ’slot’ is the CLiP terminology for a placeholder. All non-CLiP-lines in a
stub establish the Code-segments <52-53, 58-60, 65-67, 71-74, 89-104, 108>:

Stub == Stub-segment (Code-segment | Slot-segment)* End-segment

The CLiP Style of Literate Programming (4.074, 26-feb-93) 5

Although descriptions do not have an internal structure, we introduce the notion of a Descrip-
tion-segment for completeness sake:

Description == Description-segment

The Stub-segments, Slot-segments and End-segments consist entirely of consecutive CLiP-
lines. Each one starts with a CLiP-line that contains additional characters <49, 54, 61> to dis-
tinguish it from ordinary comments <10, 11, 12, 117, 123> as well as from other CLiP-lines
<50, 51, 55, 56>. Such starting lines, named L1 and L2, basically have the same structure. The
distinction is made according to the contents of the lines. Additional lines of one of these seg-
ments should belong to category L3 <27, 28, 50, 51>. Code-segments and Description-seg-
ments are made up of non-CLiP-lines, called L4 here <18, 19, 52, 53, 137, 138, 139>:

Stub-segment == L1 L3*

Slot-segment == L1 L3*

End-segment == L2 L3*

Code-segment == L4*

Description-segment == L4*

Note that Stub-segments and Slot-segments have the same syntax. They are distinguished by
the fact that the first segment of a stub is always a Stub-segment while all others are Slot-seg-
ments.

The appearance of CLiP-lines is largely free to the user. They start and end with sequences
comm-start and comm-end intended to delimit comment lines of the programming language at
hand ("(*" and "*)" in our example). To distinguish CLiP-lines from other comment lines these
sequences are extended with one ore more special characters, the CLiP-char (in our case "*") .
The number of CLiP-chars constitutes the difference between L1 and L2 on the one hand (several
additional CLiP-chars <49, 54, 75>) and L3 on the other hand (exactly one additional CLiP-char
<50, 51, 55, 56>). In practice we emphasize the distinction by using a longer row of CLiP-chars.

L1 == comm-start (CLiP-char)2+ text (CLiP-char)2+ comm-end
L2 == comm-start (CLiP-char)2+ end-string text (CLiP-char)2+ comm-end
L3 == comm-start CLiP-char text CLiP-char comm-end
L4 == {anything else including ordinary comments}

The text of a complete stub segment or slot segment effectuates the name of the stub or slot.
These names are used by CLiP to match stubs to their corresponding slots. In addition a stub or
slot may contain a number of options following the name. Each option is introduced by a special
option-marker <16, 17, 106>.

The actual representations of the various syntactic categories are run-time parameters of
CLiP. For Pascal we use

comm-start == "(*"
comm-end == "*)"
CLiP-char == "*"
end-string == "End of"
option-marker == "#"

3.2 Conventions

The syntax presented above is a good starting point for an intuitive presentation of literate
programs. Yet, it gives the opportunity to augment the notation with a specialized project style.
Our experience indicates that some additional conventions are even necessary to reach our aim
of ’explaining the code to humans’ and ’almost incidentally explaining it to the computer as
well’.

The CLiP Style of Literate Programming (4.074, 26-feb-93) 6

In this section we restrict ourselves to the conventions used in the example of the appendices.
The conventions partly deal with rules for organising the documentation and its appearance in
the type-set form, which aspects are independent of CLiP. Partly they elaborate the use of the
CLiP syntax.

In the type-set documentation all code should appear in a non-proportional font, to aid navi-
gation in module listings during debugging. In this way all code appears in the modules exactly
as it shows up in the documentation. Furthermore all identifiers that are mentioned in the
descriptions should be in the same font as the code fragments (maybe in another size).

Sections of the documentation should reflect single design steps with all corresponding code
included. In particular, variables introduced in the code of a section should be explained in the
description of that section, and the actual declarations should be included in the same section as
well. To reduce the visual overhead, a stub can contain a special option "quick", which instructs
CLiP that the stub is ended by an empty line or a CLiP-line (this complication is not dealt with
in section 3.1. Examples are <33-34, 35-36, 37-38, 42-43, 44-46>).

There are essentially two kinds of slots: pseudostatements and other slots. Pseudostatements
are important for the explanation of an algorithms, so pseudostatements should catch the eye
<26-29, 54-57, 61-64>. Most other slots serve as ’syntactic’ placeholders to indicate the posi-
tions of (e.g.) declarations. Therefore they are kept to one single line with a short slot name <16,
17, 20>.

We write pseudo-statements as framed comments with a short identification in the top line.
This identification is not strictly needed, but it aids in the process of finding relations between
slots and stubs. The remainder of a slot describes the operation of the pseudostatement in terms
of the variables involved. Thus the corresponding stub may be understood independently,
essentially avoiding Thimbleby’s ’dynamic binding problem’ [Thimbleby 1986].

3.3 Advanced features

The CLiP tool is able to combine multiple source files. This allows structuring the explanation
of a program into separate levels of detail. Each level of understanding abstracts from the details
of a lower level. Therefore, in the CLiP approach it is customary to split the documentation of
one module into separate documents according to this hierarchy.

Conversely, it is also possible to document several modules in one (set of) source file(s). This
feature is typically used to include data files in the documentation: e.g. test data, tables and help
files. In the case of Modula-2 programs this mechanism proves very useful too for generating
specification and implementation modules from the same sources file. Thus the procedure and
function headings need to be specified only once.

The operation of CLiP may be tuned by means of options in slot or stub segments. The default
mechanism is designed such that options are not normally needed. The remainder of this section
discusses the most important options in the context of their most frequent application.

Declaration slots: options "multiple" and "leader"
The default mechanism of CLiP relates each placeholder to exactly one code fragment. This

is a useful choice for placeholders representing pseudocode, but not for ’syntactic’ placeholders,
such as a fixed location where variable declarations have to be included. It is very illogical to
declare all variables at once, where the actual code is split into manageable parts. Therefore the
option "multiple" is used to indicate a slot where more than one stub can be included <16, 17,
20>.

The CLiP Style of Literate Programming (4.074, 26-feb-93) 7

Another peculiarity of declarations is that some languages (notably Pascal) require that each
type of declaration is introduced by its own keyword. This leads to problems when the keyword
is either included in the first corresponding stub (which might be replaced during maintenance)
or in front of the slot (if no stub is specified, the program is syntactically incorrect). To deal with
these problems, CLiP allows the "leader" option in a stub <33, 35>. A leader stub is included
only if at least one regular stub is present in the documentation; otherwise the leader stub is
ignored.

Data files: option "comment off"
Comments are normally extracted with the code. This is important to guide the navigation in

the extracted code, especially in the process of debugging (see also section 5). But comments
are not desired in data files. With the option "Comment off" we direct CLiP to extract only the
code segments <1, 143>.

It is also possible to suppress comments locally by specifying "Comment off" in a slot. This
is very useful in a list of variable declarations: all declarations are included without the
(superfluous) comment stating the slot-name.

Testing and debugging code: option "optional"
In the process of debugging one often needs to include code for the purpose of tracing or

dumping tables. According to the literate programming credo we do not want to edit the gen-
erated modules, or even the source files, for this purpose. So we include slots that normally will
be left blank, indicated by the option "optional" <105-106>. This option instructs the CLiP tool
not to complain if the slot is not satisfied. Those slots serve as placeholders for debugging code
that is kept in separate documents (e.g. appendix B). Whether or not the debugging code is
included depends solely on the set of source files that is supplied for a run of CLiP.

Partial implementations: option "default"
It is very useful to test each level of a program without all details filled in. When the literate

program is structured as explained in the first paragraph of this section, a level of abstraction
corresponds to a set of source files. In order to test such a level, the source files should contain
some default actions to be taken instead of those missing details, e.g. writing a message "func-
tion ... not yet implemented". This code is included in a stub with the option "default" <42-43>,
which is only extracted when no regular stub is supplied for the corresponding slot.

A related situation occurs in lines 42-43 of the example where we have a so called partially
defined data type TEXT_LINE. First a temporary declaration is given, adequate to the current
abstraction level. Later on, in section A.4, it is refined to its final form.

Other applications of the "default" option
The "default" option is very useful too during the development of multiple versions of a

program. In its simplest form it is almost identical to the previous example. Operations that are
not allowed in some versions are separated into different source files; a default stub contains
code to generate a message like "operation ... not allowed in this version".

Default stubs may also be used for porting and tuning. In this case the default stub gives a
general solution, but not necessarily an efficient one. Well tuned (but machine specific) code
may be included by use of an additional source file. As a premium the main document is not
clobbered with all the tricks that are sometimes needed to gain the desired efficiency.

The CLiP Style of Literate Programming (4.074, 26-feb-93) 8

4 Comparison with other literate programming tools

The most widely known system for literate programming is without doubt Knuth’s WEB [Knuth
1984, Bentley and Knuth 1986a, 1986b, Sewell 1989]. WEB consists of two programs, WEAVE
and TANGLE, that generate a TeX-file and a Pascal-module respectively. By now WEB has
been adapted to a number of other programming languages. CWEB [Levy 1987] for c, MWEB
[Sewell 1987] for Modula-2, FWEB [Avenarius and Oppermann 1990] for Fortran and various
other WEBs. With Ramsey’s Spider [Ramsey 1989] it is even possible to generate an XWEB
for your favourite language X. Apart from the target programming language, all these WEBs
share the properties of WEB; therefore we refer to them collectively as the WEB family.

In table 1 we compare CLiP with those other tools of which we know sufficient details: The
WEB family, Thimbleby’s Cweb [Thimbleby 1986], c-no-web [Fox 1990], HSD [Tung 1989],
LIPED [Bishop 1992], and a nameless Smalltalk environment [Reenskaug 1989]. We ignore
VAMP, the predecessor of CLiP [Ammers 1992].
[note to the referee: possibly we missed some important other tools; we plan to expand this table
in the final version].

Most tools are coupled to one specific programming language (row 1). As mentioned in the
first paragraph, each member of the WEB family is tailored to one particular language. LIPED
is independent of programming language in the sense that it is controlled by a language
description. CLiP’s mechanism is totally independent of the target language, so e.g. job control
procedures and data files (row 2) can be extracted as well. The only other system addressing
data files is the Smalltalk environment.

The majority of the literate programming tools is coupled to one or a few batch formatters
(row 3). The Smalltalk environment and LIPED have their own text processing interfaces.
LIPED may be interfaced to an arbitrary text formatter by means of a trick: it uses printer con-
figuration files which can be used to generate formatter input (e.g. LaTeX-files). CLiP is the
only tool suitable for use with a word-processor (see fig. 1b) because all information for the code
extractor is visible in the documentation. Alternatively its source files may be edited by any text
editor (row 4). The Smalltalk environment, LIPED and HSD have integrated special purpose
editors which add functions for navigating in the literate programs as on line documentation
(row 5).

CLiP is quite unique in extracting multiple modules from multiple source files (rows 6 and
7). Perhaps LIPED shares this feature, but this is not entirely clear from the literature. The
Smalltalk environment interfaces to the Smalltalk library for storing and retrieving all pieces of
information.

Suppression of details (row 8) in very easy in CLiP by its ability to process multiple source
files. By the same mechanism CLiP is able to handle debugging code (row 9) and to integrate
multiple versions (row 10) of the same program (see section 3.3). Debugging code is handled
in the WEB family and in cweb by macro’s that expand either to comment delimiters (effectively
’commenting out’ the debugging code) or to whitespace at the users choice. WEB uses ’change
files’ for various purposes, one of them versioning (for more details see e.g. Sewell [Sewell
1989] or Appelt and Horn [1986]). We use the term ’versioning’ (row 10) because neither CLiP
nor WEB do perform real ’version management’. LIPED includes version information in the
names of code fragments. The Smalltalk environment relies on the underlying system for these
purposes.

The CLiP Style of Literate Programming (4.074, 26-feb-93) 9

CLiP ...WEB cweb c-no-web HSD LIPED Smalltalk-env

1 Programming language any see text c c c several Smalltalk
2 Data files etc. yes no no no no no yes

3 Text processing env. any TeX troff (La)TeX LaTeX see text special
4 Editing editor / any any any built-in built-in built-in

wordproc editor editor editor editor editor editor
5 On line documentation no no no no yes yes yes

6 Nr. of source files many 1 1 1 1 1? (library)
7 Nr. of modules many 1 1 1 1 1? (library)
8 Suppressing details yes no no no no no no
9 Debugging code yes yes yes no no no yes

10 Versioning yes yes no no no yes yes

11 Documentation structure free limited free fixed fixed free free
12 Code formatting no yes no no yes yes yes
13 Automatic index no yes yes? no no (yes) (yes)

Table 1: Properties of various literate programming tools

The last part of the table relates to the ’book format paradigm’. All tools allow automatic
generation of a table of contents, use of type faces, semi-automatic indexing etc. Indexing of
program identifiers is fully automatic (row 11) in the WEB family. The Smalltalk environment
and LIPED use an internal representation that allows automated interfacing to the semi-auto-
matic mechanism of a text formatter. With CLiP indexing fully depends on the text processing
tools used; no automatic means are available to generate cross reference lists in the type-set
documentation. Neither does the CLiP approach support formatting of the code (row 12) in the
documentation, but this is felt as an advantage rather than a disadvantage (see section 5).

In most systems, including CLiP, the literate programmer is totally free to choose a suitable
structure of documentation (row 13). In WEB, however, only two levels of sections are allowed.
HSD generates the documentation as a preorder traversal of the tree of code fragments. Because
the source files of c-no-web are the c modules with embedded formatting commands, the order
of the code is (necessarily) retained in the printed documentation.

5 Experiences

Many authors have reported their experiences with literate programming in general [Knuth
1984, Thimbleby 1986, Van Wyk 1987, Reenskaug 1989, Oman 1990b, Ramsey 1991, Ammers
1992, Smith 1992, Levy 1993]. Here we report on our experiences with the CLiP approach in
particular.

The CLiP system has been operational for about two years on VAX/VMS. Since a year it is
also available for MS-DOS systems. CLiP (and its predecessor VAMP) has been used for a
variety of middle size programs (10k - 30k lines of code). The textprocessing environments
range from the formatters Runoff and Latex to the word-processors Lotus Manuscript and Word
Perfect. The programming languages have mainly been Fortran, Pascal, Turbo Pascal Vision
and Modula-2.

We have found that the CLiP style of programming is sufficiently intuitive to be very easy to
learn and use. This is at least partly due to the fact that the CLiP programmer deals with only
two languages and a couple of style concepts rather than with four independent languages (see
section 1). In this respect CLiP is undoubtedly superior over other literate programming
approaches.

The CLiP Style of Literate Programming (4.074, 26-feb-93) 10

The fact that the author/programmer is free to use his own preferred text processing envi-
ronment is very convenient and makes it rather easy to accept the CLiP system. CLiP imposes
virtually no limits on the way a text processing system is being used. In particular CLiP supports
the use of any sort of illustrations for explanatory purposes, which is generally recognized as a
important advantage [Thimbleby 1986, Reenskaug 1989, Ramsey 1991]. We found it a great
help being able to explain data structures not only by words, but also in terms of diagrams.

We consider CLiP’s independence of a programming language a definite advantage. Together
with its ability to extract several modules from a set of files it provides a much appreciated
flexibility. We not only extract the program modules, but also various additional files the system
may need for proper use and maintenance. The appendices display an example.

A general problem with literate programming tools is called the preprocessor problem. The
compiler and debugger will give their reports with respect to the line numbers of the extracted
modules rather than the original documentation. For this reason the modules have to be exam-
ined next to the documentation and the references are indirect. This is a nuisance, especially if
the layout of the modules has little correspondence to the code lines of the documentation. In
our view Knuth is definitely wrong in asserting that the intermediate modules can (and in fact
should) be ignored, the reason why his WEB system produces deliberately unreadable modules
[Knuth 1984]. CLiP does not format the code fragments, neither in the documentation nor in the
extracted modules. Therefore the code fragments look very much alike in both situations.
Although this does not eliminate the preprocessor problem of course, it makes it much easier to
deal with [Ramsey 1991].

The most prominent disadvantage of CLiP is its inability to produce an index of program
identifiers fully automatically. This problem is inherent to CLiPs language independence. With
CLiP one has to create an X-ref list the same way as one would create the index of a book. Thus
the text processing system completely determines the degree of support for this activity.

If CLiP is used with a word-processor, one has to export ASCII-files from the word-processor
files before CLiP can proceed. This implies a small amount of overhead which we consider
neglectable.

6 Future developments

The quest for techniques to write comprehensible programs started in the early seventies with
structured programming [Dijkstra 1972, Wirth 1971/1974]. Literate programming is a signifi-
cant step forwards, formulated by Lins as "Literate programming = structured programming +
structured documentation" [Lins 1989]. What more can we expect in the future?

A fairly obvious idea is to replace the book format by hypertext structures. Experiments
indicate that the way in which information is disclosed by means of different access paths is of
eminent importance for its comprehensibility [Oman 1990a/1990b]. Since a hypertext is a
generalization of the conventional book format there can be no doubt that it provides a superior
paradigm in this respect. In addition a hypertext easily accommodates a multimedia approach
to code explanation. It would for instance be possible to explain the behaviour of a given data
structure by an animation in moving images rather than by a description in plain English.

It is possible to formalize the design steps that we make to (de)compose a system in terms of
a particular model. For instance Back and Morris have formalized the stepwise refinement
technique as proposed by Dijkstra and Wirth in the early seventies [Wirth 1971/1974, Dijkstra
1972, Back 1980, Morris 1987]. Let us consider the programming process as a sequence of
design steps each of which is implemented by a certain amount of code. In the context of a model
it is possible to validate the code of every step with respect to the corresponding design decision
and to support the validation process by means of a tool.

The CLiP Style of Literate Programming (4.074, 26-feb-93) 11

The metaphor of a literate program as a textbook can be carried through even further to that
of a mathematical textbook. A mathematical textbook does not explain a theory in terms of
theorems that are proven by formal techniques. Instead it derives its proofs by ’informal rigour’,
that is the proofs are written in natural language but in a very precise and unambiguous
formulation. Using the same technique a literate program can, at least in principle, be modelled
as an informal correctness argument for the implemented system. This seems an attractive
thought especially in a context where (de)composition steps can be validated by automatic tools.
In our department we are exploring this path.

7 Conclusions

Our experiences with literate programming in general and with CLiP in particular are very
positive. CLiP is easy to use and its flexibility is very much appreciated. We fully confirm the
observation of others that the improvement in quality of the final product by far outweighs the
initial overhead that inevitably goes with producing a program in literate form [Knuth 1984,
Levy 1993]. The advantages are even more prominent when it comes to the maintenance of a
program.

All of the present literate programming tools have originated from people in need of a module
extractor for at best a limited variety of environments. This is considered a serious drawback to
make literate programming a generally accepted technique [Van Wyk 1990]. CLiP is unique in
that it has been designed to be a truly general literate programming tool. Consequently the
system misses a few features, but this is not experienced as a serious limitation.

8 References

Ammers E.W. van and M.R. Kramer, VAMP: A Tool for Programming Independent of Pro-
gramming Language and Formatter, Proceedings of the 6th Annual Computer Confer-
ence CompEuro’92, The Hague, 371-376.

Avenarius A. and S. Oppermann (1990), FWEB: A Literate Programming System for Fortran8x,
ACM Sigplan Notices 25, 1, 52-58.

Back R.J. (1980), Correctness Preserving Program Refinements: Proof, Theory and Applica-
tions, MC Tract 131, Mathematical Centre Tracts, Amsterdam.

Bentley J. and D.E. Knuth (1986a), Programming Pearls: Literate Programming, Communica-
tions of the ACM 29, 5, 364-369.

Bentley J., D.E. Knuth and D. McIlroy (1986b), Programming Pearls: A Literate Program,
Communications of the ACM 29, 6, 471-483.

Bishop J.M. and K.M. Gregson (1992), Literate Programming and the LIPED Environment,
Structured Programming 13, 1, 23-34.

Brooks F.P. (1982), The Mythical Man-Month: Essays on software Engineering, Addison
Wesley, Reading, Massachusets.

Dijkstra E.W. (1972), Notes on Structured Programming, pages 1-82 in Structured Program-
ming (O.-J. Dahl, E.W. Dijkstra and C.A.R. Hoare), Academic Press, London.

Fox J. (1990), Webless Literate Programming, TUGboat 11, 4, 511-513.

Knuth D.E. (1984), Literate Programming, The Computer Journal, 27, 2, 97-111.

Knuth D.E. (1986), TeX: The Program, Addison Wesley.

Levy S. (1987), WEB Adapted to C: Another Approach, TUGboat 8, 1, 12-13.

The CLiP Style of Literate Programming (4.074, 26-feb-93) 12

Lins C. (1989), A First Look at Literate Programming, Structured Programming 10, 1, 60-62.

Morris J.M. (1987), A Theoretical Basis for Stepwise Refinement and the Programming
Calculus, Science of Computer Programming 9, 287-306.

Oman P.W. and C.R. Cook (1990a), The Book Paradigm for Improved Maintenance, IEEE
Software 7, 1, 39-45.

Oman P.W. and C.R. Cook (1990b), Typographic Style is More than Cosmic, Communications
of the ACM 33, 5, 506-520.

Parikh G. and N. Zvegintov (eds.) (1983). Tutorial on Software Maintenance, IEEE/ Computer
Society Press, Silver Spring, Md.

Parnas D.L. and C. Clemants (1986), A Rational Design Process: How and Why to Fake It,
Software Engineering 12, 2, 251-257.

Ramsey N. (1989), Weaving a Language Independent WEB, Communications of the ACM 32,
9, 1051-1055.

Ramsey N. and C. Marceau (1991), Literate Programming on a Team Project, Software Practice
and Experience 21, 7, 677-683.

Reenskaug T. and A.L. Skaar (1989), An Environment for Literate Smalltalk Programming,
OOPSLA’89 Proceedings, 337-345.

Sewell E.W. (1987), How to MANGLE your Software: The WEB System for Modula-2,
TUGboat 8, 2, 118-122.

Sewell E.W. (1989), Weaving a Program: Literate Programming in WEB, Van Nostrand
Reinhold.

Smith L.M.C. and M.H. Samadzadeh (1992), Measuring Complexity and Stability of WEB
Programs, Structured Programming 13, 1, 35-50.

Soloway E, J. Pinto, S. Letovsky, D Littman and R. Lampert (1988), Designing documentation
to Compensate for Delocalized Plans, Communications of the ACM 31, 11, 1259-1267.

Thimbleby H. (1986), Experiences of ′Literate Programming′ using Cweb (a variant of Knuth’s
WEB), The Computer Journal 29, 3, 201-211.

Tung S.-H. (1989), A Structured Method for Literate Programming, Structured Programming
10, 2, 113-120.

Van Wyk C.J. (1990), Literate Programming: An Assessment, Communications of the ACM 33,
3, 361-365.

Wirth N. (1971), Program Development by Stepwise Refinement, Communications of the ACM
14, 4, 221-227.

Wirth N. (1974), On the Composition of Well-Structured Programs, ACM Computing Surveys
6, 4, 247-259.

The CLiP Style of Literate Programming (4.074, 26-feb-93) 13

Appendix A: Palindrome filter

In this appendix we illustrate the CLiP style of literate programming by a program to filter
palindromic lines from an input file. Three files are involved: the program module (PALIN-
DROME.PAS), a test file (TESTDATA.TXT) and a command file (PALINDROME.COM) to run the
palindrome filter.

Subsections A.1 through A.7 display the documentation literally, but we have numbered
the code lines in the margin for easy reference from the main text.

A.1. Specification

A palindrome is a sentence with the property that the letters from left to right, read the same as
from right to left. In the comparison uppercase and lowercase letters are considered to be
equivalent and all other characters are simply ignored. Hence an empty sentence is a palindrome.
Other examples are:

1 (************* #file "TESTDATA.TXT" #comment off *************)
2 Ada
3 1234567
4 Able was I, ere I saw Elba.
5 A man, a plan, a canal, Panama.
6 Norma is as selfless as I Am, Ron.
7 (***************** End of TESTDATA.PAS ************************)

The program PALINDROME reads an input file, filters the lines that are palindromic and writes
them to an output file.

A.2. Communication with the outside world

The program conforms to the general template of a Pascal program. We introduce the files
IN_FILE and OUT_FILE to define its communication with the outside world. The actual files
have to be specified at run-time. Thus we have

8 (***************** #file "PALINDROME.PAS" *********************)
9 (**)

10 (* Program: Palindrome filter program. *)
11 (* Purpose: To filter the palindromic lines from a given input *)
12 (* file to a specified output file. *)
13 (**)
14 PROGRAM PALINDROME (INPUT, OUTPUT, IN_FILE, OUT_FILE);
15
16 (******* Palindrome constants #multiple #comment off *******)
17 (******* Palindrome types #multiple #comment off *******)
18 VAR
19 IN_FILE, OUT_FILE: TEXT;
20 (******* Palindrome variables #multiple #comment off *******)
21
22 BEGIN
23 RESET (IN_FILE);
24 REWRITE (OUT_FILE);
25
26 (***************** Palindrome (body) **********************)
27 (** Copy the lines of the IN_FILE that are palindromic to **)
28 (** the OUT_FILE. **)
29 (**)
30
31 END (*PALINDROME*).
32 (******************* End of PALINDROME.PAS ********************)

The CLiP Style of Literate Programming (3.076, 26-feb-93) 1

To prepare the module for future declarations of constants and types we have

33 (******* Palindrome constants #leader #quick *******)
34 CONST
35 (******* Palindrome types #leader #quick *******)
36 TYPE

A.3. Processing of the files

The program processes IN_FILE line by line. The idea is to buffer an exact copy of the current
line in IN_LINE, while at the same time its letters are buffered in LETTERS. So LETTERS will
be empty if the line holds no letters at all, in which case the line is considered to be palindromic
by definition.

We choose the buffers IN_LINE and LETTERS to be of the same type, TEXT_LINE, which
we will not specify in detail right now. For this purpose we introduce a type ABSTRACT.

37 (******* Palindrome types #quick *******)
38 ABSTRACT = (DEFINED, UNDEFINED);

TEXT_LINE will temporarily be declared ABSTRACT and its details will be defined later. Thus
the declaration of TEXT_LINE

39 (******* Palindrome types *******)
40 (******* Declaration of TEXT_LINE *******)
41 (***************** End of Palindrome types ********************)

is temporarily satisfied with the type ABSTRACT.

42 (******* Declaration of TEXT_LINE #quick #default *******)
43 TEXT_LINE = ABSTRACT;

The declaration for the variables IN_LINE and LETTERS becomes

44 (******* Palindrome variables #quick *******)
45 IN_LINE,
46 LETTERS: TEXT_LINE;

We have to test LETTERS in order to decide whether or not IN_LINE contains a palindrome.
The result of this test is flagged by IS_PALINDROME, for which we introduce the declaration

47 (******* Palindrome variables #quick *******)
48 IS_PALINDROME: BOOLEAN;

Now the body of the Palindrome filter may be expanded as

49 (***************** Palindrome (body) **********************)
50 (** Copy the lines of the IN_FILE that are palindromic to **)
51 (** the OUT_FILE. **)
52 WHILE NOT EOF (IN_FILE) DO
53 BEGIN
54 (***************** Palindrome (1) *********************)
55 (** Read a line from IN_FILE into IN_LINE. The letters **)
56 (** of this line are copied to LETTERS. **)
57 (**)
58
59 READLN (IN_FILE);
60
61 (***************** Palindrome (2) *********************)
62 (** Test palindromicity of LETTERS. Set IS_PALINDROME **)
63 (** to reflect the result of the test. **)
64 (**)
65

The CLiP Style of Literate Programming (3.076, 26-feb-93) 2

66 IF IS_PALINDROME THEN
67 BEGIN
68 (***************** Palindrome (3) *****************)
69 (** Write IN_LINE to OUT_FILE. **)
70 (**)
71
72 WRITELN (OUT_FILE);
73 END (*IF*);
74 END (*WHILE*);
75 (************* End of Palindrome (body) *******************)

A.4. Choosing the structure of IN_LINE and LETTERS

Before we can proceed we need to establish a structure for the objects IN_LINE and LETTERS.
Thus we define TEXT_LINE as a structure with two components. The first component is an
array, CHARS, which contains the characters to be buffered. The second component, LENGTH,
indicates which part of the array is actually occupied. The maximum number of characters that
can be buffered by the structure is determined by the length, MAX_L, of the array. MAX_L serves
as an implementation parameter.

76 (******* Palindrome constants #quick *******)
77 MAX_L = 132;
78
79 (******* Declaration of TEXT_LINE #quick *******)
80 TEXT_LINE = RECORD
81 CHARS: ARRAY[1..MAX_L] OF CHAR;
82 LENGTH: 0..MAX_L;
83 END (*RECORD*);

A.5. Reading a line

For efficiency reasons we fill IN_LINE and LETTERS simultaneously. Therefore we buffer
every character that is read from IN_FILE in the variable IN_CHAR.

84 (******* Palindrome variables #quick *******)
85 IN_CHAR: CHAR;

Only when IN_CHAR turns out to be a letter it is copied to LETTERS. Since this process is crucial
for the overall operation, we make provisions for some debugging code here.

86 (***************** Palindrome (1) *********************)
87 (** Read a line from IN_FILE into IN_LINE. The letters **)
88 (** of this line are copied to LETTERS. **)
89 IN_LINE.LENGTH := 0;
90 LETTERS.LENGTH := 0;
91 WITH IN_LINE DO
92 WHILE NOT EOLN (IN_FILE) DO
93 BEGIN
94 READ (IN_FILE, IN_CHAR);
95 LENGTH := LENGTH + 1;
96 CHARS[LENGTH] := IN_CHAR;
97 IF IN_CHAR IN [’A’..’Z’, ’a’..’z’] THEN
98 WITH LETTERS DO
99 BEGIN

100 LENGTH := LENGTH + 1;
101 CHARS[LENGTH] := IN_CHAR;
102 END (*WITH/IF*);
103 END (*WHILE/WITH*);
104
105 (********************* Palindrome (test) **************)
106 (** Check contents of IN_LINE and LETTERS. #optional **)
107 (**)
108
109 (***************** End of Palindrome (1) **************)

The CLiP Style of Literate Programming (3.076, 26-feb-93) 3

A.6. Testing for palindromicity

We test the palindromicity of LETTERS in two steps. First we transform the contents of
LETTERS to uppercase and then we compare the characters of LETTERS pairwise. The com-
parison is done starting with the most outside characters and progressing inward. The string is
assumed a palindrome until the opposite is proven through a pair of different characters. With
the local counter

110 (******* Palindrome variables #quick *******)
111 I: INTEGER;

we keep track of the comparing process. Now Palindrome (2) can be expanded as

112 (***************** Palindrome (2) *********************)
113 (** Test palindromicity of LETTERS. Set IS_PALINDROME **)
114 (** to reflect the result of the test. **)
115 WITH LETTERS DO
116 BEGIN
117 (* Transform lowercase to uppercase. *)
118 FOR I := 1 TO LENGTH DO
119 IF CHARS[I] IN [’a’..’z’]
120 THEN CHARS[I] :=
121 CHR(ORD(CHARS[I]) - ORD(’a’) + ORD(’A’));
122
123 (* Perform the palindromicity test. *)
124 IS_PALINDROME := TRUE;
125 I := 1;
126 WHILE IS_PALINDROME AND (I <= LENGTH DIV 2) DO
127 IF CHARS[I] = CHARS[LENGTH-I+1] THEN
128 I := I + 1
129 ELSE
130 IS_PALINDROME := FALSE;
131 END (*WITH*);
132 (***************** End of Palindrome (2) **************)

A.7. Writing the palindrome

The only remaining action is to write the contents of IN_LINE. Again we need a local counter

133 (******* Palindrome variables #quick *******)
134 J: INTEGER;

The writing proceeds straight forward.

135 (***************** Palindrome (3) *****************)
136 (** Write IN_LINE to OUT_FILE. **)
137 WITH IN_LINE DO
138 BEGIN
139 FOR J := 1 TO LENGTH DO
140 WRITE (OUT_FILE, CHARS[J]);
141 END (*WITH*);
142 (************* End of Palindrome (3) **************)

A.8. Running the Palindrome filter

To run the program in a VAX/VMS environment the following command procedure is con-
venient.

143 (********* #file "PALINDROME.COM" #comment off ***************)
144 $!***!
145 $! Run PALINDROME. Input file and output file are parameters. *!
146 $! Par1: Specification of input file. *!
147 $! Par2: Specification of output file. *!
148 $!***!

The CLiP Style of Literate Programming (3.076, 26-feb-93) 4

149 $DEFINE IN_FILE ’P1
150 $DEFINE OUT_FILE ’P2
151 RUN PALIND
152 (***************** End of PALINDROME.COM **********************)

The CLiP Style of Literate Programming (3.076, 26-feb-93) 5

Appendix B: Testcode

This appendix is a separate file. It contains the test code that can be inserted to debug the pal-
indrome filter program. If the PALINDROME.PAS module is extracted from appendices A and
B together, then the resulting module includes this test code.

B.1. Print the contents of IN_LINE and LETTERS

Correct reading of the input is crucial. For debugging purposes we may want to inspect the
contents of IN_LINE and LETTERS. We need a local counter

(******* Palindrome variables #quick *******)
 T : INTEGER;

We want the debugging information te be clearly flagged as such.

(***************** Palindrome (test) ******************)
(** Check contents of IN_LINE and LETTERS. **)
WRITELN;
WRITELN (’============ DEBUGGING INFORMATION ===============’);
WRITELN (’Contents of buffer IN_LINE: ’);
WITH IN_LINE DO
FOR T := 1 TO LENGTH DO WRITE (OUTPUT, CHARS[T]);
WRITELN (’Contents of buffer LETTERS: ’);
WITH LETTERS DO
FOR T := 1 TO LENGTH DO WRITE (OUTPUT, CHARS[T]);
WRITELN (’========== END OF DEBUGGING INFORMATION ==========’);
WRITELN;
(************* End of Palindrome (test) ***************)

The CLiP Style of Literate Programming (3.038, 26-feb-93) 1

