
Software Metrics

SEI Curriculum Module SEI-CM-12-1.1

December 1988

Everald E. Mills
Seattle University

Software Engineering Institute
Carnegie Mellon University

This work was sponsored by the U.S. Department of Defense.
Approved for public release. Distribution unlimited.

The Software Engineering Institute (SEI) is a federally funded research and development center, operated by Carnegie
Mellon University under contract with the United States Department of Defense.

The SEI Education Program is developing a wide range of materials to support software engineering education. A
curriculum module identifies and outlines the content of a specific topic area, and is intended to be used by an instructor
in designing a course. A support materials package includes materials helpful in teaching a course. Other materials
under development include textbooks and educational software tools.

SEI educational materials are being made available to educators throughout the academic, industrial, and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEI, by Carnegie Mellon University, or by the United States government.

SEI curriculum modules may be copied or incorporated into other materials, but not for profit, provided that appropriate
credit is given to the SEI and to the original author of the materials.

Requests for additional information should be addressed to the Director of Education, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.

Comments on SEI materials are solicited, and may be sent to the Director of Education, or to the module author.

Everald E. Mills
Software Engineering Department
Seattle University
Seattle, Washington 98122

 1988 Software Engineering Institute

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD position.
It is published in the interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

Software Metrics

Acknowledgements Contents

I would like to express my appreciation to Norm Gibbs, Capsule Description 1
Director of Education at the Software Engineering Insti- Philosophy 1
tute, and to his staff, for their generous support in my

Objectives 1development of this curriculum module. Special thanks
go to Lionel Deimel and Linda Pesante for their assistance Prerequisite Knowledge 2
with the final form of the document.

Module Content 3
Other individuals who were especially helpful were Outline 3
Karola Fuchs and Sheila Rosenthal with library materials,

Annotated Outline 3and Allison Brunvand with administrative details and
logistics. Teaching Considerations 17

General Comments 17

Textbooks 17

Possible Courses 17

Resources/Support Materials 18

Exercises 18

Bibliography 19

SEI-CM-12-1.1 iii

Software Metrics

Module Revision History

Version 1.1 (December 1988) General revision and updating, especially of bibliography
Version 1.0 (October 1987) Draft for public review

iv SEI-CM-12-1.1

Software Metrics

ware properties to be measured. As a result, theCapsule Description
same metric has been used to measure very different
software properties. Moreover, we have virtually noEffective management of any process requires quan-
theoretical models and a multitude of metrics, only atification, measurement, and modeling. Software
few of which have enjoyed any widespread use ormetrics provide a quantitative basis for the develop-
acceptance.ment and validation of models of the software devel-

opment process. Metrics can be used to improve Faced with this situation, the author has chosen to
software productivity and quality. This module in- indicate the great diversity of metrics that have been
troduces the most commonly used software metrics proposed and to discuss some of the most common
and reviews their use in constructing models of the ones in detail. In the process, the underlying as-
software development process. Although current sumptions, environment of application, and validity
metrics and models are certainly inadequate, a num- of various metrics are examined. The author be-
ber of organizations are achieving promising results lieves that current metrics and models are far from
through their use. Results should improve further as perfect, but that properly applied metrics and models
we gain additional experience with various metrics can provide significant improvements in the soft-
and models. ware development process.

Philosophy Objectives

It has been noted frequently that we are experiencing The following is a list of possible educational objec-
a software crisis, characterized by our inability to tives based upon the material in this module. Objec-
produce correct, reliable software within budget and tives for any particular unit of instruction may be
on time. No doubt, many of our failures are caused drawn from these or related objectives, as may be
by the inherent complexity of the software develop- appropriate to audience and circumstance. (See
ment process, for which there often is no analytical Teaching Considerations for further suggestions.)
description. These problems can be ameliorated,

Cognitive Domainhowever, by improving our software management
1. (Knowledge) The student can define thecapabilities. This requires both the development of

basic terminology and state fundamentalimproved software metrics and improved utilization
facts about software metrics and processof such metrics.
models. (For example, identify the

Unfortunately, the current state of software metrics metrics and models that have been pro-
is confused. Many metrics have been invented. posed and used by significant numbers of
Most of these have been defined and then tested only people.)
in a limited environment, if at all. In some cases,

2. (Comprehension) The student can ex-remarkable successes have been reported in the in-
plain the metrics and models discussed initial application or validation of these metrics. How-
the module and summarize the essentialever, subsequent attempts to test or use the metrics
characteristics of each.in other situations have yielded very different

3. (Application) The student can calculateresults. One part of the problem is that we have
the values of the metrics discussed forfailed to identify a commonly accepted set of soft-

SEI-CM-12-1.1 1

Software Metrics

specific examples of software products know what methods are available for data analysis,
or processes. (For example, compute and be able to select appropriate techniques in spe-
LOC or v(G) for specific programs or ap- cific circumstances. Furthermore, the student needs
ply the COCOMO model to the develop- to understand the concept of statistical significance
ment process for a specified product.) and how to test for it in the analyses usually per-

formed to validate software metrics. Of particular4. (Analysis) The student can identify the
interest are various correlation techniques, regres-essential elements of a given metric or
sion analysis, and statistical tests for significance.model, describe the interrelationships

among its various elements, and discuss The need for familiarity with the typical software de-
the circumstances or environments in velopment cycle and experience with software de-
which its use is appropriate. velopment should be self-evident.

5. (Synthesis) The student can develop a These prerequisites are, in the author’s view, essen-
plan for a metrics program for a software tial for attaining the cognitive objectives listed
development organization, using pre- above. Prerequisites for any particular unit of in-
scribed metrics. struction, of course, depend upon specific teaching

6. (Evaluation) The student can evaluate a objectives. (See Teaching Considerations.)
metrics program by analyzing the
metrics and models in use and making
judgments concerning their application
in a particular environment.

Affective Domain
1. The student will realize the difficulty and

effort involved in establishing precise,
reliable software metrics and models.

2. The student will appreciate the impor-
tance of software metrics in the control
and management of the software devel-
opment process.

3. The student will be more likely to sup-
port implementation and use of appropri-
ate software metrics.

Prerequisite Knowledge

The following are recommended prerequisites for
the study of software metrics:

1. Knowledge of basic statistics and experi-
mental design.

2. Basic understanding of commonly used
software life cycle models, at least to the
level covered in an introductory senior-
or graduate-level software engineering
course.

3. Experience working as a team member
on a software development project.

The reason for the statistical prerequisite may not be
immediately obvious. Exploring and validating soft-
ware metrics requires sound statistical methods and
unbiased experimental designs. The student needs to
understand the fundamentals of experiment design,

2 SEI-CM-12-1.1

Software Metrics

Module Content

e. ESTIMACS—RubinOutline
6. Reliability Models

I. Introduction IV. Implementation of a Metrics Program
1. The “Software Crisis” 1. Planning Process
2. The Need for Software Metrics a. Defining Objectives
3. Definition of Software Metrics b. Initial Estimates of Effort and Cost
4. Classification of Software Metrics 2. Selection of Model and Metrics
5. Measurement Scales for Software Metrics a. Projected Ability to Meet Objectives
6. Current State of Software Metrics b. Estimated Data Requirements and Cost

II. Product Metrics 3. Data Requirements and Database Maintenance
1. Size Metrics a. Specific Data Required

a. Lines of Code b. Data Gathering Procedures
b. Function Points c. Database Maintenance
c. Bang d. Refined Estimates of Efforts and Costs

2. Complexity Metrics 4. Initial Implementation and Use of the Model
a. Cyclomatic Complexity—v(G) a. Clarification of Use
b. Extensions to v(G) b. Responsible Personnel
c. Knots 5. Continuing Use and Refinement
d. Information Flow a. Evaluating Results

3. Halstead’s Product Metrics b. Adjusting the Model
a. Program Vocabulary V. Trends in Software Metrics
b. Program Length

c. Program Volume

4. Quality Metrics Annotated Outline
a. Defect Metrics

b. Reliability Metrics I. Introduction
c. Maintainability Metrics 1. The “Software Crisis”

III. Process Metrics, Models, and Empirical It has been estimated that, by 1990, fully one half of
Validation the American work force will rely on computers and

software to do its daily work. As computer hard-1. General Considerations
ware costs continue to decline, the demand for new2. Empirical Models
applications software continues to increase at a rapid

3. Statistical Models rate. The existing inventory of software continues to
grow, and the effort required to maintain it continues4. Theory-Based Models
to increase as well. At the same time, there is a

a. Rayleigh Model significant shortage of qualified software profes-
b. Software Science Model—Halstead sionals. Combining these factors, one might project

that at some point in the not-too-distant future, every5. Composite Models
American worker will have to be involved in soft-

a. COCOMO—Boehm ware development and maintenance. Meanwhile,
the software development scene is often charac-b. SOFTCOST—Tausworthe
terized by:

c. SPQR Model—Jones
• schedule and cost estimates that are gross-

d. COPMO—Thebaut ly inaccurate,

SEI-CM-12-1.1 3

Software Metrics

be used in the management and control of the devel-• software of poor quality, and
opment process, leading, one hopes, to improved• a productivity rate that is increasing more
results.slowly than the demand for software.

This situation has often been referred to as the Good metrics should facilitate the development of
“software crisis” [Arthur85]. models that are capable of predicting process or

product parameters, not just describing them. Thus,
2. The Need for Software Metrics ideal metrics should be :

The software crisis must be addressed and, to the • simple, precisely definable—so that it is
extent possible, resolved. To do so requires more clear how the metric can be evaluated;
accurate schedule and cost estimates, better quality • objective, to the greatest extent possible;
products, and higher productivity. All these can be

• easily obtainable (i.e., at reasonable cost);achieved through more effective software manage-
• valid—the metric should measure what itment, which, in turn, can be facilitated by the im-

is intended to measure; andproved use of software metrics. Current software
management is ineffective because software devel- • robust—relatively insensitive to (intuitive-
opment is extremely complex, and we have few ly) insignificant changes in the process or
well-defined, reliable measures of either the process product.
or the product to guide and evaluate development.

In addition, for maximum utility in analytic studiesThus, accurate and effective estimating, planning,
and statistical analyses, metrics should have dataand control are nearly impossible to achieve [Rubin-
values that belong to appropriate measurement

83]. Improvement of the management process de-
scales [Conte86, Basili84].pends upon improved ability to identify, measure,

and control essential parameters of the development It has been observed that the fundamental qualities
process. This is the goal of software metrics—the required of any technical system are [Ferrari86]:
identification and measurement of the essential • functionality—correctness, reliability, etc.;parameters that affect software development.

• performance—response time, throughput,
Software metrics and models have been proposed speed, etc.; and
and used for some time [Wolverton74, Perlis81]. • economy—cost effectiveness.
Metrics, however, have rarely been used in any reg-

So far as this author can discern, software metrics,ular, methodical fashion. Recent results indicate
as the term is most commonly used today, concernsthat the conscientious implementation and applica-
itself almost exclusively with the first and last of thetion of a software metrics program can help achieve
above characteristics, i.e., functionality and econ-better management results, both in the short run (for
omy. Performance is certainly important, but it isa given project) and in the long run (improving
not generally included in discussions of softwareproductivity on future projects) [Grady87]. Most
metrics, except regarding whether the product meetssoftware metrics cannot meaningfully be discussed
specific performance requirements for that product.in isolation from such metrics programs. Better use
The evaluation of performance is often treated ex-of existing metrics and development of improved
tensively by those engaged in performance evalua-metrics appear to be important factors in the resolu-
tion studies, but these are not generally included intion of the software crisis.
what is referred to as software metrics [Ferrari86].

3. Definition of Software Metrics
It is possible that, in the future, the scope of software

It is important to further define the term software metrics may be expanded to include performance
metrics as used in this module. Essentially, software evaluation, or that both activities may be considered
metrics deals with the measurement of the software part of a larger area that might be called software
product and the process by which it is developed. In measurement. For now, however, this module will
this discussion, the software product should be confine itself to software metrics as defined above.
viewed as an abstract object that evolves from an

4. Classification of Software Metricsinitial statement of need to a finished software sys-
tem, including source and object code and the Software metrics may be broadly classified as either
various forms of documentation produced during de- product metrics or process metrics. Product metrics
velopment. Ordinarily, these measurements of the are measures of the software product at any stage of
software process and product are studied and devel- its development, from requirements to installed sys-
oped for use in modeling the software development tem. Product metrics may measure the complexity
process. These metrics and models are then used to of the software design, the size of the final program
estimate/predict product costs and schedules and to (either source or object code), or the number of
measure productivity and product quality. Informa- pages of documentation produced. Process metrics,
tion gained from the metrics and the model can then on the other hand, are measures of the software de-

4 SEI-CM-12-1.1

Software Metrics

velopment process, such as overall development 5. Measurement Scales for Software Metrics
time, type of methodology used, or the average level

Software metric data should be collected with a spe-of experience of the programming staff.
cific purpose in mind. Ordinarily, the purpose is for
use in some process model, and this may involveIn addition to the distinction between product and
using the data in other calculations or subjectingprocess metrics, software metrics can be classified in
them to statistical analyses. Before data are col-other ways. One may distinguish objective from
lected and used, it is important to consider the typesubjective properties (metrics). Generally speaking,
of information involved. Four basic types of meas-objective metrics should always result in identical
ured data are recognized by statisticians—nominal,values for a given metric, as measured by two or
ordinal, interval, and ratio. (The following discus-more qualified observers. For subjective metrics,
sion of these types of data is adapted fromeven qualified observers may measure different
[Conte86], beginning on page 127.)values for a given metric, since their subjective

judgment is involved in arriving at the measured
The four basic types of data are described by thevalue. For product metrics, the size of the product
following table:measured in lines of code (LOC) is an objective

measure, for which any informed observer, working
Possible Descriptionfrom the same definition of LOC, should obtain the Type of Data Operations of Data

same measured value for a given program. An ex-
ample of a subjective product metric is the classifi- Nominal = , ≠ Categories
cation of the software as “organic,” “semi-de-

Ordinal < , > Rankingstached,” or “embedded,” as required in the COCO-
MO cost estimation model [Boehm81]. Although Interval + , - Differences
most programs might be easy to classify, those on

Ratio / Absolute zerothe borderline between categories might reasonably
be classified in different ways by different knowl-
edgeable observers. For process metrics, develop- Operations in this table for a given data type also
ment time is an example of an objective measure, apply to all data types appearing below it.
and level of programmer experience is likely to be a

Examples of software metrics can be found for eachsubjective measure.
type of data.

Another way in which metrics can be categorized is
As an example of nominal data, one can measure theas primitive metrics or computed metrics [Grady87].
type of program being produced by placing it in to aPrimitive metrics are those that can be directly ob-
category of some kind—database program, operat-served, such as the program size (in LOC), number
ing system, etc. For such data, we cannot performof defects observed in unit testing, or total devel-
arithmetic operations of any type or even rank theopment time for the project. Computed metrics are
possible values in any “natural order.” The only pos-those that cannot be directly observed but are com-
sible operation is to determine whether program A isputed in some manner from other metrics. Ex-
of the same type as program B. Such data are saidamples of computed metrics are those commonly
to have a nominal scale, and the particular exampleused for productivity, such as LOC produced per
given can be an important parameter in a model ofperson-month (LOC/person-month), or for product
the software development process. The data mightquality, such as the number of defects per thousand
be considered either subjective or objective, depend-lines of code (defects/KLOC). Computed metrics
ing upon whether the rules for classification alloware combinations of other metric values and thus are
equally qualified observers to arrive at differentoften more valuable in understanding or evaluating
classifications for a given program.the software process than are simple metrics.

Ordinal data, by contrast, allow us to rank theAlthough software metrics can be neatly categorized
various data values, although differences or ratiosas primitive objective product metrics, primitive
between values are not meaningful. For example,subjective product metrics, etc., this module does
programmer experience level may be measured asnot strictly follow that organization. Rather, the dis-
low, medium, or high. (In order for this to be ancussion reflects areas where most of the published
objective metric, one must assume that the criteriawork has been concentrated; no exhaustive coverage
for placement in the various categories are well-of all possible types of software metrics is attempted
defined, so that different observers always assign thehere. As is evident below, a great deal of work has
same value to any given programmer.)been done in some areas, such as objective product

metrics, and much less in other areas, such as sub- Data from an interval scale can not only be ranked,
jective product metrics. but also can exhibit meaningful differences between

values. McCabe’s complexity measure [McCabe76]

SEI-CM-12-1.1 5

Software Metrics

might be interpreted as having an interval scale. number of metrics, only a few of which have en-
Differences appear to be meaningful; but there is no joyed any widespread use or acceptance. Even in
absolute zero, and ratios of values are not neces- the case of widely studied metrics, such as LOC,
sarily meaningful. For example, a program with Halstead’s metrics, and McCabe’s cyclomatic com-
complexity value of 6 is 4 units more complex than plexity, it is not universally agreed what they meas-
a program with complexity of 2, but it is probably ure. In various reported studies, attempts have been
not meaningful to say that the first program is three made to correlate these metrics with a number of
times as complex as the second. software properties, including size, complexity,

reliability (error rates), and maintainability
Some data values are associated with a ratio scale, [Curtis79a, Curtis79b, Kafura85, Li87, Potier82,
which possesses an absolute zero and allows mean- Woodfield81]. Thus, it is little wonder that software
ingful ratios to be calculated. An example is pro- practitioners are wary of any claims on behalf of
gram size, in lines of code (LOC). A program of software metrics.
2,000 lines can reasonably be interpreted as being
twice as large as a program of 1,000 lines, and pro- Many apparently important software metrics, such
grams can obviously have zero length according to as type of product or level of programming exper-
this measure. tise, must be considered subjective metrics at this

time, although they may be defined more objectively
It is important to be aware of what measurement in the future. These metrics are difficult to construct
scale is associated with a given metric. Many pro- because of the potentially large number of factors
posed metrics have values from an interval, ordinal, involved and the problems associated with assessing
or even nominal scale. If the metric values are to be or quantifying individual factors. As a result, little
used in mathematical equations designed to repre- definitive work has been done to reduce the uncer-
sent a model of the software process, metrics associ- tainty associated with these metrics.
ated with a ratio scale may be preferred, since ratio
scale data allow most mathematical operations to be As for the proposed process models, few of these
meaningfully applied. However, it seems clear that have a significant theoretical basis. Most are based
the values of many parameters essential to the soft- upon a combination of intuition, expert judgment,
ware development process cannot be associated with and statistical analysis of empirical data. Overall,
a ratio scale, given our present state of knowledge. the work has failed to produce any single process
This is seen, for example, in the categories of model that can be applied with a reasonable degree
COCOMO. of success to a variety of environments. Generally,

significant recalibration is required for each new en-
6. Current State of Software Metrics vironment in order to produce useful results. Fur-

thermore, the various models often use widely dif-The current state of software metrics is not very sat-
ferent sets of basic parameters. Thus, even a rela-isfying. In the past, many metrics and a number of
tively small set of universally useful metrics has notprocess models have been proposed [Mohanty81,
yet emerged.Kafura85, Kemerer87, Rubin87]. Unfortunately,

most of the metrics defined have lacked one or both As a result of the above considerations, it is very
of two important characteristics : difficult to interpret and compare quoted metric

• a sound conceptual, theoretical basis results, especially if they involve different environ-
ments, languages, applications, or development• statistically significant experimental vali-
methodologies. Even with an apparently simpledation
metric, such as LOC, differences in underlyingMost metrics have been defined by an individual and
definitions and counting techniques may make it im-then tested and used only in a very limited environ-
possible to compare quoted results [Jones86]. If dif-ment. In some cases, significant successes have
ferent programming languages are involved, metricsbeen reported in the validation or application of
involving LOC values can, if not carefully inter-these metrics. However, subsequent attempts to test
preted, lead to incorrect conclusions and therebyor use the metrics in other environments have
conceal the real significance of the data. For ex-yielded very different results. These differences are
ample, the (computed) productivity metric LOC pernot surprising in view of the lack of clear definitions
unit-time (LOC/month, for example) and cost perand testable hypotheses. Nevertheless, discrep-
LOC ($/LOC) are often used. However, if they areancies and disagreements in reported results have
not interpreted carefully, these metrics can suggestleft many observers with the sense that the field of
that assembly language programmers are more pro-software metrics is, at best, insufficiently mature to
ductive than high-level language programmersbe of any practical use.
(higher LOC/month and lower $/LOC), even though
the total programming cost is usually lower whenThe metrics field has no clearly defined, commonly
using a high-level language. Similarly, defects peraccepted set of essential software properties it at-
LOC and cost per defect values have often beentempts to measure; however, it does have a large

6 SEI-CM-12-1.1

Software Metrics

used as quality or productivity indicators. As in the in the development process—at least as early as the
above case, when programming languages at differ- design phase, and possibly earlier. Some of Hal-
ent levels are involved, these metrics may obscure stead’s metrics are also used to measure software
overall productivity and quality improvements by size, but these are discussed later.
systematically yielding lower defect per LOC and

a. Lines of Codecost per defect values for lower-level languages,
even though total defects and costs are actually Lines of code (or LOC) is possibly the most
higher. widely used metric for program size. It would

seem to be easily and precisely definable; how-Despite these problems, it appears that the judicious,
ever, there are a number of different definitionsmethodical application of software metrics and
for the number of lines of code in a particularmodels in limited environments can aid significantly
program. These differences involve treatment ofin improving software quality and productivity
blank lines and comment lines, non-executable[Basili87, Grady87]. In many cases, relatively simple
statements, multiple statements per line, and mul-metrics such as LOC and McCabe’s complexity
tiple lines per statement, as well as the question ofmetric, v(G), have been found to be reasonably good
how to count reused lines of code. The mostpredictors of other characteristics, such as defect
common definition of LOC seems to count anycounts, total effort, and maintainability [Grady87,
line that is not a blank or comment line, regard-Li87, Rombach87]. Thus, although useful metrics
less of the number of statements per line [Boehm-and models cannot yet be pulled off the shelf and
81, Jones86].used indiscriminately, careful application of some of

the metrics and models already available can yield LOC has been theorized to be useful as a predic-
useful results if tuned to a particular environment. tor of program complexity, total development ef-
These results will improve further as we gain addi- fort, and programmer performance (debugging,
tional experience with current models and achieve productivity). Numerous studies have attempted
better understanding of the underlying metrics and to validate these relationships. Examples are
their application to the software process. those of [Woodfield81] comparing LOC, Mc-

Cabe’s v(G), and Halstead’s E as indicators ofII. Product Metrics
programming effort and [Curtis79a] and [Curtis-

Most of the initial work in product metrics dealt with 79b] comparing LOC with other metrics, as in-
the characteristics of source code. As we have gained dicators of programmer performance.
experience with metrics and models, it has become in-

In a recent study, Levitin concludes that LOC is acreasingly apparent that metric information available
poorer measure of size than Halstead’s programearlier in the development cycle can be of greater value
length, N, discussed below [Levitin86].in controlling the process and results. Thus, for ex-

ample, a number of papers have dealt with the size or b. Function Points
complexity of the software design [Troy81, Henry84,
Yau85]. More recently, Card and Agresti have devised Albrecht has proposed a measure of software size
a metric for architectural design complexity and com- that can be determined early in the development
pared it with subjective judgments and objective error process. The approach is to to compute the total
rates [Card88]. function points (FP) value for the project, based

upon the number of external user inputs, in-
A number of product metrics are discussed below. quiries, outputs, and master files. The value of
These examples were chosen because of their wide use FP is the total of these individual values, with the
or because they represent a particularly interesting following weights applied: inputs: 4, outputs: 5,
point of view. No attempt has been made in this mod- inquiries: 4, and master files: 10. Each FP con-
ule to provide examples of metrics applicable to each tributor can also be adjusted within a range of
work product of the software development cycle. ± 35% for specific project complexity [Albrecht-
Rather, the examples discussed reflect the areas where 83]. Function points are intended to be a measure
most work on product metrics has been done. Ref- of program size and, thus, effort required for de-
erences have been provided for readers who are inter- velopment. Examples of studies that validate this
ested in pursuing specialized metrics. metric are those of Albrecht [Albrecht83] (com-

paring LOC and FP as predictors of development1. Size Metrics
effort) and Behrens [Behrens83] (attempting to

A number of metrics attempt to quantify software correlate FP values with productivity and devel-
“size.” The metric that is most widely used, LOC, opment effort in a production environment). A
suffers from the obvious deficiency that its value more recent study has been reported by Knafl and
cannot be measured until after the coding process Sacks [Knafl86].
has been completed. Function points and system
Bang have the advantage of being measurable earlier

SEI-CM-12-1.1 7

Software Metrics

computed without reference to the program flowc. Bang
graph by using only the number of decision points

DeMarco defines system Bang as a function in the program text [McCabe76]. McCabe’s
metric, indicative of the size of the system. In cyclomatic complexity metric has been related to
effect, it measures the total functionality of the programming effort, debugging performance, and
software system delivered to the user. Bang can maintenance effort. The studies by Curtis and
be calculated from certain algorithm and data Woodfield referenced earlier also report results
primitives available from a set of formal specifi- for this metric [Curtis79b, Woodfield81, Harrison-
cations for the software. The model provides dif- 82].
ferent formulas and criteria for distinguishing be-
tween complex algorithmic versus heavily data- b. Extensions to v(G)
oriented systems. Since Bang measures the func-

Myers noted that McCabe’s cyclomatic com-tionality delivered to the user, DeMarco suggests
plexity measure, v(G), provides a measure of pro-that a reasonable project goal is to maximize
gram complexity but fails to differentiate the“Bang per Buck”—Bang divided by the total
complexity of some rather simple cases involvingproject cost [DeMarco82].
single conditions (as opposed to multiple con-
ditions) in conditional statements. As an im-2. Complexity Metrics
provement to the original formula, Myers sug-

Numerous metrics have been proposed for measur- gests extending v(G) to v ′(G) = [l:u], where l and
ing program complexity—probably more than for u are lower and upper bounds, respectively, for
any other program characteristic. The examples dis- the complexity. This formula gives more satis-
cussed below are some of the better known com- factory results for the cases noted by Myers
plexity metrics. A recent study by Li and Cheung [Myers77].
compares 31 different complexity metrics, including
most of those discussed below [Li87]. Another re- Stetter proposed that the program flow graph be
cent study by Rodriguez and Tsai compares LOC, expanded to include data declarations and data
v(G), Kafura’s information flow metric, and Hal- references, thus allowing the graph to depict the
stead’s volume, V, as measures of program size, program complexity more completely. If H is the
complexity, and quality [Rodriguez86]. Attempts to new program flow graph, it will generally contain
devise new measures of software complexity con- multiple entry and exit nodes. A function f (H)
tinue, as evidenced by recent articles [Card88, Har- can be computed as a measure of the flow
rison87]. complexity of program H. The deficiencies noted

by Myers are also eliminated by f (H) [Stetter84].
As noted for size metrics, measures of complexity
that can be computed early in the software devel- c. Knots
opment cycle will be of greater value in managing

The concept of program knots is related to draw-the software process. Theoretically, McCabe’s
ing the program control flow graph with a nodemeasure [McCabe76] is based on the final form of
for every statement or block of sequential state-the computer code. However, if the detailed design
ments. A knot is then defined as a necessaryis specified in a program design language (PDL), it
crossing of directional lines in the graph. Theshould be possible to compute v(G) from that de-
same phenomenon can also be observed bytailed design. This is also true for the information
simply drawing transfer-of-control lines fromflow metric of Kafura and Henry [Kafura81]. It
statement to statement in a program listing. Theshould be noted here that Halstead’s metrics
number of knots in a program has been proposed[Halstead77] are often studied as possible measures
as a measure of program complexity [Wood-of software complexity.
ward79].

a. Cyclomatic Complexity—v(G) d. Information Flow
Given any computer program, we can draw its

The information flow within a program structurecontrol flow graph, G, wherein each node cor-
may also be used as a metric for program com-responds to a block of sequential code and each
plexity. Kafura and Henry have proposed such aarc corresponds to a branch or decision point in
measure. Basically, their method counts the num-the program. The cyclomatic complexity of such
ber of local information flows entering (fan-in)a graph can be computed by a simple formula
and exiting (fan-out) each procedure. The pro-from graph theory, as v(G) = e −n + 2, where e is
cedure’s complexity is then defined as:the number of edges, and n is the number of

2nodes in the graph. McCabe proposed that v(G) c = [procedure length] ⋅ [fan−in ⋅ fan−out]
can be used as a measure of program complexity [Kafura81]. This information flow metric is com-
and, hence, as a guide to program development pared with Halstead’s E metric and McCabe’s
and testing. For structured programs, v(G) can be

8 SEI-CM-12-1.1

Software Metrics

cyclomatic complexity in [Henry81]. Complexity Halstead theorized that an estimated value for N,
metrics such as v(G) and Kafura’s information designated N ′, can be calculated from the values
flow metric have been shown by Rombach to be of n and n by using the following formula:1 2
useful measures of program maintainability [Rom- N ′ = n log n + n log n .1 2 1 2 2 2bach87].

Thus, N is a primitive metric, directly observable
3. Halstead’s Product Metrics from the finished program, while N ′ is a com-

puted metric, which can be calculated from the
Most of the product metrics proposed have applied actual or estimated values of n and n before the1 2to only one particular aspect of the software product.

final code is actually produced. A number ofIn contrast, Halstead’s software science proposed a
studies lend empirical support to the validity ofunified set of metrics that apply to several aspects of
the equation for the computed program length,programs, as well as to the overall software produc-
N ′. Examples are reported by Elshoff and cantion effort. Thus, it is the first set of software
also be found in Halstead’s book. Other studiesmetrics unified by a common theoretical basis. In
have attempted to relate N and N ′ to other soft-this section, we discuss the program vocabulary (n),
ware properties, such as complexity [Potier82] andlength (N), and volume (V) metrics. These metrics
defect rates [Elshoff76, Halstead77, Levitin86,apply specifically to the final software product.
Li87, Shen85].Halstead also specified formulas for computing the

total effort (E) and development time (T) for the c. Program Volume
software product. These metrics are discussed in

Another measure of program size is the programSection III.
volume, V, which was defined by Halstead as:

a. Program Vocabulary
V = N⋅log n .2

Halstead theorized that computer programs can be
Since N is a pure number, the units of V can bevisualized as a sequence of tokens, each token
interpreted as bits, so that V is a measure of thebeing classified as either an operator or operand.
storage volume required to represent the program.He then defined the vocabulary, n, of the program
Empirical studies by Halstead and others haveas:
shown that the values of LOC, N, and V appear to

n = n + n , be linearly related and equally valid as relative1 2
measures of program size [Christensen81, Elshoff-where n = the number of unique operators in1 78, Li87].the program and

n = the number of unique operands in 4. Quality Metrics2
the program.

One can generate long lists of quality characteristics
Thus, n is the total number of unique tokens from for software—correctness, efficiency, portability,
which the program has been constructed [Hal- maintainability, reliability, etc. Early examples of
stead77]. work on quality metrics are discussed by Boehm,

McCall, and others [Boehm76, McCall77]. Unfor-
b. Program Length tunately, the characteristics often overlap and con-

flict with one another; for example, increased por-Having identified the basic tokens used to con-
tability (desirable) may result in lowered efficiencystruct the program, Halstead then defined the pro-
(undesirable). Thus, useful definitions of generalgram length, N, as the count of the total number
quality metrics are difficult to devise, and most com-of operators and operands in the program.
puter scientists have abandoned efforts to find anySpecifically:
single metric for overall software quality.

N = N + N ,1 2
Although a good deal of work has been done in this

where N = the total number of operators in the1 area, it exhibits less commonality of direction or de-
program and finition than other areas of metric research, such as

N = the total number of operands in the2 software size or complexity. Three areas that have
program. received considerable attention are: program correct-

ness, as measured by defect counts; software reli-Thus, N is clearly a measure of the program’s
ability, as computed from defect data; and softwaresize, and one that is derivable directly from the
maintainability, as measured by various otherprogram itself. In practice, however, the distinc-
metrics, including complexity metrics. Examplestion between operators and operands may be non-
from these areas are discussed briefly below.trivial, thus complicating the counting process

[Halstead77]. Software quality is a characteristic that, theoretically
at least, can be measured at every phase of the soft-

SEI-CM-12-1.1 9

Software Metrics

ware development cycle. Cerino discusses the accurately, complexity metrics could then be
measurement of quality at some of these phases in profitably used to reduce the cost of software
[Cerino86]. maintenance [Harrison 82]. More recently, Rom-

bach has published the results of a carefully de-
a. Defect Metrics signed experiment that indicates that software

complexity metrics can be used effectively to ex-The number of defects in the software product
plain or predict the maintainability of software inshould be readily derivable from the product it-
a distributed computer system [Rombach87]. Aself; thus, it qualifies as a product metric. How-
similar study, based on three different versions ofever, since there is no effective procedure for
a medium-sized software system that evolvedcounting the defects in the program, the following
over a period of three years, relates seven differ-alternative measures have been proposed :
ent complexity metrics to the recorded experience

• number of design changes with maintenance activities [Kafura87]. The com-
• number of errors detected by code in- plexity metrics studied included both measures of

spections the internal complexity of software modules and
measures of the complexity of interrelationships• number of errors detected in program
between software modules. The study indicatestests
that such metrics can be quite useful in measuring• number of code changes required maintainability and in directing design or rede-

These alternative measures are dependent upon sign activities to improve software maintainabil-
both the program and the outcome or result of ity.
some phase of the development cycle.

III. Process Metrics, Models, and Empirical
The number of defects observed in a software Validation
product provides, in itself, a metric of software

1. General Considerationsquality. Studies have attempted to establish
relationships between this and other metrics that Software metrics may be defined without specific
might be available earlier in the development cy- reference to a well-defined model, as, for example,
cle and that might, therefore, be useful as predic- the metric LOC for program size. However, more
tors of program quality [Curtis79b, Potier82, often metrics are defined or used in conjunction with
Shen85, Rodriguez86]. a particular model of the software development

process. In this curriculum module, the intent is tob. Reliability Metrics
focus on those metrics that can best be used in
models to predict, plan, and control software devel-It would be useful to know the probability of soft-
opment, thereby improving our ability to manage theware failure, or the rate at which software errors
process.will occur. Again, although this information is

inherent in the software product, it can only be
Models of various types are simply abstractions ofestimated from data collected on software defects
the product or process we are interested in describ-as a function of time. If certain assumptions are
ing. Effective models allow us to ignore uninterest-made, these data can then be used to model and
ing details and concentrate on essential aspects ofcompute software reliability metrics. These
the artifact described by the model. Preferencemetrics attempt to measure and predict the proba-
should be given to the simplest model that providesbility of failure during a particular time interval,
adequate descriptive capability and some measure ofor the mean time to failure (MTTF). Since these
intuitive acceptability. A good model should pos-metrics are usually discussed in the context of de-
sess predictive capabilities, rather than being merelyveloping a reliability model of the software
descriptive or explanatory.product’s behavior, more detailed discussion of

this model is deferred to the section on process In general, models may be analytic-constructive or
models. Significant references in this area are empirical-descriptive in nature. There have been
[Ruston79], [Musa75], and [Musa87]. few analytic models of the software process, the

most notable exception being Halstead’s softwarec. Maintainability Metrics
science, which has received mixed reactions. Most

A number of efforts have been made to define proposed software models have resulted from a
metrics that can be used to measure or predict the combination of intuition about the basic form of
maintainability of the software product [Yau80, relationships and the use of empirical data to deter-
Yau85]. For example, an early study by Curtis, et mine the specific quantities involved (the coef-
al., investigated the ability of Halstead’s effort ficients of independent variables in hypothesized
metric, E, and v(G) to predict the psychological equations, for example).
complexity of software maintenance tasks [Curtis-

Ultimately, the validity of software metrics and79a]. Assuming such predictions could be made

10 SEI-CM-12-1.1

Software Metrics

models must be established by demonstrated agree- 3. Statistical Models
ment with empirical or experimental data. This re-

C. E. Walston and C. P. Felix of IBM used dataquires careful attention to taking measurements and
from 60 previous software projects completed by theanalyzing data. In general, the work of analyzing
Federal Systems Division to develop a simple modeland validating software metrics and models requires
of software development effort. The metric LOCboth sound statistical methods and sound experimen-
was assumed to be the principal determiner of devel-tal designs. Precise definitions of the metrics in-
opment effort. A relationship of the formvolved and the procedures for collecting the data are

bessential for meaningful results. Small-scale experi- E = aL
ments should be designed carefully, using well-

was assumed, where L is the number of lines ofestablished principles of experimental design. Un-
code, in thousands, and E is the total effort required,fortunately, validation of process models involving
in person-months. Regression analysis was used tolarger projects must utilize whatever data can be col-
find appropriate values of parameters a and b. Thelected. Carefully controlled large experiments are
resulting equation wasvirtually impossible to conduct. Guidance in the

0.91area of data collection for software engineering ex- E = 5.2 L .
periments is provided by Basili and Weiss [Basili84].

Nominal programming productivity, in LOC per
person-month, can then be calculated as L/E. InA knowledge of basic statistical theory is essential
order to account for deviations from the derivedfor conducting meaningful experiments and analyz-
form for E, Walston and Felix also tried to develop aing the resulting data. In attempting to validate the
productivity index, I, which would increase orrelationships of a given model, one must use appro-
decrease the productivity, depending upon the naturepriate statistical procedures and be careful to inter-
of the project. The computation of I was to be basedpret the results objectively. Most studies of software
upon evaluations of 29 project variables (culledmetrics have used some form of statistical correla-
from an original list of 68 possible determiners of I)tion, often without proper regard for the theoretical
[Walston77].basis or limitations of the methods used. In practice,

software engineers lacking significant background in 4. Theory-Based Modelsstatistical methods should consider enlisting the aid
of a statistical consultant if serious metric evaluation Few of the proposed models have substantial theo-
work is undertaken. retical bases. Two examples that do are presented

below.
Representative examples of software models are
presented below. For papers that compare the a. Rayleigh Model
various models, see [Kemerer87] and [Rubin87].

L. H. Putnam developed a model of the software
Teaching Consideration: In any given unit of instruction development process based upon the assumption
based on this module, at least one or two examples of each that the personnel utilization during program de-
type of model should be covered in some detail. velopment is described by a Rayleigh-type curve

such as the following:
2. Empirical Models 2 2−t / 2TKte

y = ,One of the earliest models used to project the cost of 2Tlarge-scale software projects was described by Wol- where y = the number of persons on the project
verton of TRW in 1974. The method relates a pro- at any time, t;
posed project to similar projects for which historical K = the area under the Rayleigh curve,
cost data are available. It is assumed that the cost of equal to the total life cycle effort in
the new project can be projected using this historical person-years; and
data. The method assumes that a waterfall-style life T = development time (time of peak
cycle model is used. A 25 × 7 structural forecast staffing requirement).
matrix is used to allocate resources to various phases
of the life cycle. In order to determine actual soft- Putnam assumed that either the overall staffing
ware costs, each software module is first classified curve or the staffing curves for individual phases
as belonging to one of six basic types—control, I/O, of the development cycle can be modeled by an
etc. Then, a level of difficulty is assigned by equation of this form. He then developed the fol-
categorizing the module as new or old and as easy, lowing relationship between the size of the soft-
medium, or hard. This gives a total of six levels of ware product and the development time [Put-
module difficulty. Finally, the size of the module is nam78, Putnam80]:
estimated, and the system cost is determined from

1/ 3 4/ 3S = CK T ,historical cost data for software with similar size,
type, and difficulty ratings [Wolverton74]. where S = the number of source LOC delivered;

SEI-CM-12-1.1 11

Software Metrics

K = the life-cycle effort in person-years; b. SOFTCOST—Tausworthe
and

Tausworthe, of the Jet Propulsion Laboratory, at-C = a state-of-technology constant.
tempted to develop a software cost estimation
model using the best features of other relatively

b. Software Science Model—Halstead successful models available at the time. His
model incorporates the quality factors fromThe software science equations can be used as a
Walson-Felix and the Rayleigh model of Putnam,simple theoretical model of the software devel-
among other features. It requires a total of 68opment process. The effort required to develop
input parameters, whose values are deduced fromthe software is given by the equation E = V/L,
the user’s response to some 47 questions aboutwhich can be approximated by:
the project. Latest reports suggest that this model

n n [n log n + n log n] log n has not been tested or calibrated adequately to be1 2 1 2 1 2 2 2 2
E = . of general interest [Tausworthe81, Conte86].2n2

The units of E are elementary mental discrim-
c. SPQR Model—Jonesinations. The corresponding programming time

(in seconds) is simply derived from E by dividing T. Capers Jones has developed a software cost
by the Stroud number, S: estimation model called the Software Produc-

tivity, Quality, and Reliability (SPQR) model.T = E / S .
The basic approach is similar to that of Boehm’s

The value of S is usually taken as 18 for these COCOMO model. It is based on 20 reasonably
calculations. If only the value of length, N, is well-defined and 25 not-so-well-defined factors
known, then the following approximation can be that influence software costs and productivity.
used for computing T: SPQR is a commercial product, but it is not as

thoroughly documented as some other models.2N log n2 The computer model requires user responses toT = ,
4S more than 100 questions about the project in or-

where n can be obtained from the relationship der to formulate the input parameters needed to
N = n log (n / 2) [Halstead77, Woodfield81]. compute development costs and schedules. Jones2

claims that it is possible for a model such as
5. Composite Models SPQR to provide cost estimations that will come

within 15% of actual values 90% of the time, orAs experience has been gained with previous
PRED(0.15) = 0.90 [Jones86].models, a number of more recent models have util-

ized some combination of intuition, statistical anal- d. COPMO—Thebautyses, and expert judgment. These have been labeled
“composite models” by Conte, et al. Several models Thebaut proposed a software development model
are listed below [Conte86]. that attempts to account specifically for the addi-

tional effort required when teams of programmers
a. COCOMO—Boehm are involved on large projects. Thus, the model is

not appropriate for small projects. The generalThis is probably the best known and most
form of the equation for the effort, E, is assumedthoroughly documented of all software cost es-
to be:timating models. It provides three levels of

dmodels: basic, intermediate, and detailed. Boehm E = a + bS + cP ,
identifies three modes of product development—

where a, b, c, and d are constants to be deter-organic, semidetached, and embedded—that aid
mined from empirical data via re-in determining the difficulty of the project. The
gression analysis;developmental effort equations are all of the

S is the program size, in thousands ofform:
LOC; andbE = a S m , P is the average personnel level over the
life of the project.where a and b are constants determined for each

mode and model level; Unfortunately, this model requires not one but
S is the value of source LOC; and two input parameters whose actual values are not
m is a composite multiplier, determined known until the project has been completed. Fur-

from 15 cost-driver attributes. thermore, the constants b and c are dependent
upon the complexity class of the software, whichBoehm suggests that the detailed model will pro-
is not easily determined. This model presents anvide cost estimates that are within 20% of actual
interesting form, but it needs further developmentvalues 70% of the time, or PRED(0.20) = 0.70

[Boehm81, Boehm84].

12 SEI-CM-12-1.1

Software Metrics

and calibration to be of widespread interest. In the total effort are within 15% of actual values
view of its stage of development, no estimates of [Rubin83]. The ESTIMACS model is compared
its predictive ability are in order [Conte86, with the GECOMO, JS-2, PCOC, SLIM, and
Thebaut84]. SPQR/10 models in [Rubin83] and [Rubin87].

6. Reliability Modelse. ESTIMACS—Rubin

A number of dynamic models of software defectsRubin has developed a proprietary software es-
have been developed. These models attempt to de-timating model that utilizes gross business speci-
scribe the occurrence of defects as a function offications for its calculations. The model provides
time, allowing one to define the reliability, R, andestimates of total development effort, staff re-
mean time to failure, MTTF. One example is thequirements, cost, risk involved, and portfolio ef-
model described by Musa, which, like most others offects. At present, the model addresses only the
this type, makes four basic assumptions:development portion of the software life cycle,

ignoring the maintenance or post-deployment • Test inputs are random samples from the
phase. The ESTIMACS model addresses three input environment.
important aspects of software management—es- • All software failures are observed.timation, planning, and control.

• Failure intervals are independent of each
The ESTIMACS system includes the following other.
modules: • Times between failures are exponentially

• System development effort estimator. distributed.
This module requires responses to 25 Based upon these assumptions, the following rela-
questions regarding the system to be de- tionships can be derived:
veloped, development environment, etc.

−bctd(t) = D (1 −e) ,It uses a database of previous project
data to calculate an estimate of the de- where D is the total number of defects;
velopment effort. b, c are constants that must be determined

• Staffing and cost estimator. Inputs re- from historical data for similar soft-
quired are: the effort estimation from ware;
above, data on employee productivity, d(t) is the number (cumulative total) of
and salary for each skill level. Again, a defects discovered at time t:

bctdatabase of project information is used eMTTF(t) = .to compute the estimate of project dura- cD
tion, cost, and staffing required.

As in many other software models, the determina-• Hardware configuration estimator.
tion of b, c and D is a nontrivial task, and yet aInputs required are: information on the
vitally important one for the success of the modeloperating environment for the software
[Ruston79, Musa75, Musa80, Musa87].product, total expected transaction vol-

ume, generic application type, etc. Out- IV. Implementation of a Metrics Program
put is an estimate of the required hard-

There is growing evidence, both from university re-ware configuration.
search and from industry experience, that the conscien-• Risk estimator. This module calculates
tious application of software metrics can significantlyrisk using answers to some 60 questions
improve our understanding and management of theon project size, structure, and technol-
software development process. For example, a numberogy. Some of the answers are computed
of software estimating models have been developed toautomatically from other information al-
aid in the estimation, planning, and control of softwareready available.
projects. Generally, these models have been developed

• Portfolio analyzer. This module pro- by calibrating the estimating formulas to some existing
vides information on the effect of this database of previous software project information. For
project on the total operations of the de- new projects that are not significantly different from
velopment organization. It provides the those in the database, reasonably accurate predictions
user with some understanding of the to- (say, ±20%) are often possible [Boehm81, Jones86].
tal resource demands of the projects. However, numerous studies have shown that these

models cannot provide good estimates for projects thatThe ESTIMACS system has been in use for only
may involve different environments, languages, ora short time. In the future, Rubin plans to extend
methodologies [Kemerer87, Rubin87]. Thus, great carethe model to include the maintenance phase of the
must be taken in selecting a model and recalibrating it,software life cycle. He claims that estimates of
if necessary, for the new application environment.

SEI-CM-12-1.1 13

Software Metrics

The selective application of software metrics to spe- a. Defining Objectives
cific phases of the software development cycle can also

What are the objectives of the proposed program?be productive. For example, certain complexity met-
What is it supposed to achieve, and how?rics have been shown to be useful in guiding software

design or redesign (maintenance) activities [Kafura87, A specific approach which can be used to plan the
Rombach87, Yau85]. software metrics program is the Goal/Question/

Metric (GQM) paradigm developed by Basili, etEncouraging reports on the use of metrics are coming
al. [Basili84, Basili87]. This paradigm consists offrom industry also. A recent example is that of Grady
identifying the goals to be achieved by theand Caswell on the experience of Hewlett-Packard
metrics program and associating a set of related[Grady87]. They describe HP’s experience implement-
questions with each goal. The answers to theseing a corporate-wide software metrics program de-
questions should make it possible to identify thesigned to improve project management, productivity,
quantitative measures that are necessary to pro-and product quality. The program described appears to
vide the answers and, thus, to reach the goals.be helping to achieve these goals, both in the short run

(on individual projects) and in the long run (with im- b. Initial Estimates of Effort and Cost
proved productivity on future projects). This program

Metrics programs are not free; they may requiremay serve as a model for other organizations interested
major commitments of resources. For this reason,in improving their software development results. The
it is especially important to sell the idea of such aHP experience in establishing an organizational soft-
program to top management. Estimates of pro-ware metrics program provides a number of useful in-
gram costs should be made early in the planningsights, including the following:
process, even though they may be very crude, to• In addition to planning carefully for the tech-
help the organization avoid major surprises laternical operation of the metrics program, the
on. These effort/cost estimates will need contin-idea of such a program must be “sold” to all
uous refinement as the project proceeds.individuals involved, from top management,

who must find the resources to support it, to (i) Initial Implementation
entry level programmers, who may feel

What are the costs associated with the initialthreatened by it.
start-up of the program?• Although some short-range benefits may be

realized on current projects, the organization (ii) Continuing Costs
should expect to collect data for at least three

Organizations must expect to incur continuingyears before the data are adequate for meas-
costs to operate the metrics program. Theseuring long-term trends.
include, for example, the costs of collecting

Outlined below is a general procedure for implement- and analyzing data and of maintaining the
ing an organizational software metrics program. The metrics database.
details of implementing such a program will, of course,

2. Selection of Model and Metricsvary significantly with the size and nature of the organ-
ization. However, all of the steps outlined are neces-

A specific model and set of metrics is selected,sary, in one form or another, to achieve a successful
based upon the objectives defined and cost con-implementation of a metrics program.
siderations identified. Given a choice of several
models that seem capable of meeting the objectivesThe implementation plan that follows is presented as a
and cost requirements, the simplest model that is notsequence of distinct steps. In practice, the application
intuitively objectionable should be chosen. Theof this plan will probably involve some iteration be-
GQM paradigm provides a practical procedure fortween steps, just as occurs with the application of spe-
the selection of software metrics [Basili84, Basili87].cific software development life cycle models. Al-
Important considerations in this selection process arethough it is not stated explicitly, those responsible for
the following items.establishing the metrics program must be concerned at

each step with communicating the potential benefits of
a. Projected Ability to Meet Objectivesthe program to all members of the organization and

selling the organization on the merits of such a pro- Metrics and models available should be compared
gram. Unless the organization as a whole understands with respect to their apparent ability to meet the
and enthusiastically supports the idea, the program will objectives (goals) identified.
probably not achieve the desired results.

b. Estimated Data Requirements and Cost
1. Planning Process

Models identified as capable of meeting the ob-
The implementation of a metrics program requires jectives of the organization should be compared
careful planning. in terms of data requirements and associated cost

14 SEI-CM-12-1.1

Software Metrics

of implementation. As indicated above, par- b. Responsible Personnel
simonious models are to be preferred, if adequate.

Specific obligations of personnel who gather,
3. Data Requirements and Database Maintenance maintain, or analyze the data should be made very

clear. It is impossible to collect some types of
Once a specific model has been chosen, the data data after the project has been completed.
requirements and cost estimates must be spelled out
in detail and refined. At this point, care must be 5. Continuing Use and Refinement
taken to collect enough, but not too much data. Of-

For the metrics program to be successful, it must beten, the initial reaction is to to collect masses of data
continuously applied and the results reviewed peri-without regard to how it will be used, “just in case it
odically. The following steps are involved:might be useful.” The result is usually extinction by

drowning in data. For this part of the task, the work a. Evaluating Results
of Basili and Weiss on collecting data for software

Results should be carefully summarized and com-engineering projects may be especially helpful
pared with what actually happened. This is often[Basili84]. Steps include the following considera-
not done because “there wasn’t enough time.”tions:

b. Adjusting the Modela. Specific Data Required

Most models in use require a calibration process,Data must be gathered throughout the software
adapting the values of multiplicative constants,life cycle. The specific information required at
etc., to the empirical data for the environment ofeach phase must be identified.
application. Based upon the results achieved,

b. Data Gathering Procedures these calibration constants should be reviewed
and adjusted, if appropriate, especially over aOnce the necessary data have been identified, the
long period of use, during which the environmentspecific methods and procedures for gathering the
itself may change significantly.data must be described, and responsible personnel

identified. V. Trends in Software Metrics
c. Database Maintenance Current trends in the software metrics area are encour-

aging. Metrics are being applied more widely, withThe database of metric data becomes an important
good results in many cases. The limitations of existingcorporate resource. Funds, procedures, and re-
models have been recognized, and people are becom-sponsibilities for its maintenance must be spelled
ing more realistic in their expectations of what theseout.
models can provide. There is a growing awareness that

d. Refined Estimates of Efforts and Costs metrics programs pay off, but not without some invest-
ment of both time and resources. As the benefits of

The information generated in the preceding steps software metrics programs become more evident, the
should now make it possible to compute fairly establishment of such a program will become essential
accurate estimates of the effort and costs involved for software development organizations to remain com-
in implementing and continuing the software petitive in this area.
metrics program.

As our experience with metrics grows, better data will
4. Initial Implementation and Use of the Model become available for further research. This, in turn,

will make it possible to develop better metrics andAssuming that the above steps have been carried out
models. Although it is generally still too costly to runsuccessfully and that the estimated costs are accept-
carefully controlled experiments on large-scale soft-able, the program can now be initiated. The follow-
ware projects, better experimental data are becominging items should be re-emphasized at this time:
available, and for larger projects than in the past. Such

a. Clarification of Use data should provide better insight into the problems of
large software efforts. Results already available have

The intended use of the metrics program should improved our understanding of the metrics currently in
have been made clear early on. However, it is use and have provided insight into how to select better
appropriate to restate this clearly when the pro- metrics.
gram is initiated. Are the metrics to be used only
for project management purposes? What about Finally, although there are still a large number of
their use as tools for evaluating personnel? metrics in use or under active investigation, a smaller

set of metrics is emerging as having more practical
utility in the measurement of the software development
process. An economical set of metrics capturing the
essential characteristics of software may yet emerge
from this smaller, more useful set.

SEI-CM-12-1.1 15

Software Metrics

Software engineering is still a very young discipline.
There are encouraging signs that we are beginning to
understand some of the basic parameters that are most
influential in the processes of software production.

16 SEI-CM-12-1.1

Software Metrics

Teaching Considerations

from a few hours to a few days. Also, a unit onGeneral Comments
software metrics might be incorporated into a
broader software engineering course. The objectivesIn the past, the software metrics area has been
and prerequisites listed earlier could apply to a 2- orcharacterized by a multitude of candidate metrics,
3-hour credit course. Clearly, these objectives aresurrounded by sometimes exaggerated and often
not likely to be achieved in an intensive, shorterconflicting claims. As a result, many people, espe-
course. Below are described two possible coursescially practicing software professionals, have formed
based on the material contained in this curriculumstrong opinions about the validity or practicality of
module.software metrics. Anyone intending to teach a

course in this area should be aware of this controver- Graduate-Level University Course, 2 to 3 Quar-
sial atmosphere. Depending upon the students in- ter Hours
volved, the instructor will have to take special care

A graduate-level university course on softwareto present the material as objectively as possible,
metrics could be based on this module. A lecture-pointing out shortcomings where appropriate, but
based 2–quarter-hour course or a similar course aug-still trying to emphasize the positive potential of the
mented with a significant project and carrying 3field.
hours credit could cover the material presented here.
It is appropriate to ask students to read some of the
significant research papers on software metrics in
such a course.Textbooks
Coverage. For the 2–quarter-hour course, class time
(20 to 25 hours) might be allocated as follows:Although there is a fairly extensive literature on soft-

I. Introduction (1-2 hours)ware metrics, textbooks are only now beginning to
appear. The only one available as of fall 1988 that II. Product Metrics (8-10 hours)
even begins to cover all of the topics in this module III. Process Metrics, Models, and Empiricaladequately is that by Conte, Dunsmore, and Shen Validation (8-10 hours)
[Conte86]. One may expect that the appearance of

IV. Implementation of a Metrics Program (2this text and the continuing interest and research on
hours)metrics will result in a number of new texts in this

area in the next few years. Thus, anyone teaching a V. Trends in Software Metrics (1 hour)
course in metrics should first consult with publishers

Objectives. For a 2–quarter-hour course, the firstfor their most recent offerings.
five cognitive domain objectives should be achiev-

If the instructor would like to place more emphasis able. For a 3–quarter-hour course, all six objectives
on the implementation of software metrics programs, should be targeted. Whether or not these objectives
the recent book by Grady and Caswell, relating the can actually be achieved is largely a function of stu-
experience of the Hewlett-Packard, might be consid- dent background.
ered as a supplementary text [Grady87].

Prerequisites. For a 2– or 3–quarter-hour course,
students should have all of the background listed un-
der Prerequisite Knowledge. Students less well pre-
pared will have difficulty in achieving all course ob-

Possible Courses jectives. Although not specifically noted under Pre-
requisite Knowledge, it is assumed that students

The material presented in this module may be used have a solid mathematics background, at least
in various ways to meet the needs of different through differential and integral calculus.
audiences. Depending upon the total time to be

Intensive 4-Hour to 6-Hour Tutorialdevoted to the course and upon student backgrounds,
software metrics might be taught in a graduate For non-university audiences, an intensive course of
course of 2 or 3 quarter- (or semester-) hours or in 4 to 6 hours could be based on this material. It
short, intensive tutorials (possibly non-credit) lasting might be a non-credit offering aimed at some spe-

cific audience, such as software project managers.
SEI-CM-12-1.1 17

Software Metrics

Coverage. The coverage should concentrate on Exercises
topics most appropriate for the particular audience.
For example, project managers can be assumed to be For a credit course, it is assumed that students will
more interested in the implementation of a metrics be assigned homework problems related to the
program than in the details of complexity metrics. metrics and models discussed in class. These ex-

ercises should include the use of automated tools toObjectives. For a course of this type, appropriate
compute metrics for some representative examplesobjectives might be only objectives 1 and 2 in the
of software, if such tools are available. However, itcognitive domain. If students have good technical
is essential that students do some manual calcula-backgrounds, objective 3 might also be appropriate.
tions of metrics such as LOC, v(G), and Halstead’s

Prerequisites. The background required can be metrics. By doing so, they will acquire a much bet-
reduced from that required of a student in a normal ter understanding of certain fundamental problems,
university course. For example, the statistics back- for example, the difficulty in defining LOC or the
ground might well be waived. Of course, the objec- counting rules for Halstead’s metrics.
tives that can be achieved depend heavily upon the

Depending upon their backgrounds and the timebackground of the students.
available, students might also be asked to do a proj-
ect that implements or modifies a metrics compu-
tation or process model. Students might also be
asked to work as a team to design a complete metricsResources/Support Materials program for implementation in some particular soft-
ware development environment.

Instructors should seek software tools for studying
and computing software metrics. What is available
will depend upon local circumstances. Many univer-
sities have software available for computing the
simpler metrics, such as LOC, v(G), and the
Halstead metrics. However, these facilities may be
difficult to use or not available in the most desirable
computing environment. Thus, instructors will have
to search out the best tools for their particular situa-
tions.

In addition, it is highly desirable that some comput-
erized software metrics model be available for stu-
dent experimentation. It may be possible to acquire
commercially available cost-estimating tools for use
in a class environment for little or no cost.

There are other resources that may also be used in
presenting and discussing this material. For ex-
ample, personnel from local industry who are most
knowledgeable in the use and application of soft-
ware metrics in their organization can be asked to
provide assistance in preparing lectures or even to
deliver guest lectures. Depending upon their cir-
cumstances and background, students may be asked
to report on or make recommendations regarding the
use of software metrics in their work environments.

18 SEI-CM-12-1.1

Software Metrics

Bibliography

This paper presents a comparison of SLOC andAlbrecht83
function points as predictors of software develop-Albrecht, A. J. and J. E. Gaffney, Jr. “Software
ment effort, using Halstead’s software science asFunction, Source Lines of Code, and Development
theoretical support for the use of function points.Effort Prediction: A Software Science Validation.”
One useful feature of this paper is an appendixIEEE Trans. Software Eng. SE-9, 6 (Nov. 1983), (more than three pages) that provides a detailed ex-

639-648. planation of how to apply the function point meth-
odology.Abstract: One of the most important problems

faced by software developers and users is the
prediction of the size of a programming system and Arthur85
its development effort. As an alternative to “size,” Arthur, L. J. Measuring Programmer Productivity
one might deal with a measure of the “function” and Software Quality. New York: John Wiley,
that the software is to perform. Albrecht [1] has 1985.developed a methodology to estimate the amount of
the “function” the software is to perform, in terms Table of Contents
of the data it is to use (absorb) and to generate
(produce). The “function” is quantified as “func- 1 Measurement
tion points,” essentially, a weighted sum of the 2 Productivity
numbers of “inputs,” “outputs,” “master files,” 3 Quality
“inquiries” provided to, or generated by, the soft- 4 Complexity Metrics
ware. This paper demonstrates the equivalence be- 5 Correctness Metrics
tween Albrecht’s external input/output data flow 6 Efficiency Metrics
representative of a program (the “function points” 7 Flexibility Metrics
metric) and Halstead’s [2] “software science” or 8 Integrity Metrics
“software linguistics” model of a program as well 9 Interoperability Metrics
as the “soft content” variation of Halstead’s model 10 Maintainability Metrics
suggested by Gaffney [7]. 11 Portability Metrics

12 Reliability MetricsFurther, the high degree of correlation between
13 Reusability Metrics“function points” and the eventual “SLOC”
14 Structure Metrics(source lines of code) of the program, and between
15 Testability Metrics“function points” and the work-effort required to
16 Usability Metricsdevelop the code, is demonstrated. The “function
17 Application of Software Metricspoint” measure is thought to be more useful than
18 Programming Style“SLOC” as a prediction of work effort because
19 IBM Assembly Language Code (ALC)“function points” are relatively easily estimated
20 COBOL Metricsfrom a statement of basic requirements for a pro-
21 PL/I Metricsgram early in the development cycle.
22 Implementing Software Measurement

The strong degree of equivalency between “function Bibliography
points” and “SLOC” shown in the paper suggests a Appendix A. ALC Reserved Words
two-step work-effort validation procedure, first Appendix B. COBOL Reserved Words
using “function points” to estimate “SLOC” and Appendix C. PL/I Reserved Words
then using “SLOC” to estimate the work-effort.

The author presents a set of eleven software qualityThis approach would provide validation of appli-
metrics, including correctness, efficiency, maintain-cation development work plans and work-effort es-
ability, and reliability. These eleven metrics aretimates early in the development cycle. The ap-
then described as functions of a more basic set ofproach would also more effectively use the existing
some 22 different software quality criteria. The au-base of knowledge on producing “SLOC” until a
thor then discusses these metrics in some detail,similar base is developed for “function points.”
with specific applications to various programming

The paper assumes that the reader is familiar with languages. This book may be of more interest to
the fundamental theory of “software science” practitioners than to serious students of software
measurements and the practice of validating es- metrics. There appears to be little new material,
timates of work-effort to design and implement soft- and the presentation is somewhat redundant.
ware applications (programs). If not, a review of
[1]-[3] is suggested.

SEI-CM-12-1.1 19

Software Metrics

odologies. The paper describes the Goal/Questions/Basili80
Metric paradigm for data collection.Basili, V. R. Tutorial on Models and Metrics for

Software Management and Engineering. New York:
Basili87IEEE Computer Society Press, 1980.
Basili, V. R. and H. D. Rombach. TAME: Integrat-

This is a tutorial on quantitative methods of soft- ing Measurement into Software Environments. TR-ware management and engineering. A quantitative
1764, University of Maryland, Computer Sciencemethodology is needed to evaluate, control, and
Department, 1987.predict software development and maintenance

costs. This quantitative approach allows cost, time, Abstract: Based upon a dozen years of analyzing
and quality tradeoffs to be made in a systematic software engineering processes and products, we
manner. The tutorial focuses on numerical product- propose a set of software engineering process and
oriented measures such as size, complexity, and measurement principles. These principles lead to
reliability and on resource-oriented measures such the view that an Integrated Software Engineering
as cost, schedules, and resources. Twenty articles Environment (ISEE) should support multiple proc-
from software engineering literature are reprinted in ess models across the full software life cycle, the
this document. The articles are organized into the technical and management aspects of software engi-
following sections: resource models, changes and neering, and the planning, construction, and feed-
errors, product metrics, and data collection. Suc- back and learning activities. These activities need
cessful application of the techniques, however, re- to be tailored to the specific project under devel-
quires a thorough knowledge of the project under opment and they must be tractable for management
development and any assumptions made. Only then control. The tailorability and tractability attributes
can these techniques augment good managerial and require the support of a measurement process. The
engineering judgement. measurement process needs to be top-down, based

upon operationally defined goals. The TAME proj-
ect uses the goal/question/metric paradigm to sup-Basili84
port this type of measurement paradigm. It pro-Basili, V. R. and D. M. Weiss. “A Methodology For
vides for the establishment of project specific goalsCollecting Valid Software Engineering Data.” IEEE and corporate goals for planning, provides for the

Trans. Software Eng. SE-10, 6 (Nov. 1984), tracing of these goals throughout the software life
728-738. cycle via feedback and post mortem analysis, and

offers a mechanism for long range improvement ofAbstract: An effective data collection method for
all aspects of software development. The TAMEevaluating software development methodologies
system automates as much of this process as pos-and for studying the software development process
sible, by supporting goal development into meas-is described. The method uses goal-directed data
urement via models and templates, providing evalu-collection to evaluate methodologies with respect to
ation and analysis of the development and mainte-the claims made for them. Such claims are used as a
nance processes, and creating and using databasesbasis for defining the goals of the data analysis,
of historical data and knowledge bases that incor-defining a set of data categorization schemes, and
porate experience from prior projects.designing a data collection form.

Ten software process principles and fourteen soft-The data to be collected are based on the changes
ware measurement principles, based upon a dozenmade to the software during development, and are
years of research in the area, are presented. Theobtained when the changes are made. To ensure
Goal/Questions/Metric paradigm for designing soft-accuracy of the data, validation is performed con-
ware measurement systems is also discussed.currently with software development and data col-
TAME stands for Tailoring A Measurement Envi-lection. Validation is based on interviews with
ronment.those people supplying the data. Results from using

the methodology show that data validation is a nec-
essary part of change data collection. Without it, as Behrens83
much as 50 percent of the data may be erroneous. Behrens, C. A. “Measuring the Productivity of Com-
Feasibility of the data collection methodology was puter Systems Development Activities with Function
demonstrated by applying it to five different proj- Points.” IEEE Trans. Software Eng. SE-9, 6 (Nov.
ects in two different environments. The application 1983), 648-652.
showed that the methodology was both feasible and

Abstract: The function point method of measuringuseful.
application development productivity developed by

This article describes an effective data collection Albrecht is reviewed and a productivity improve-
method for studying the software development ment measure introduced. The measurement meth-
process and evaluating software development meth- odology is then applied to 24 development projects.

20 SEI-CM-12-1.1

Software Metrics

Size, environment, and language effects on produc- Part IIIC. Dealing with Uncertainties, Risk, And The
tivity are examined. The concept of a productivity Value Of Information
index which removes size effects is defined and an 19 Coping with Uncertainties: Risk Analysis
analysis of the statistical significance of results is 20 Statistical Decision Theory: The Value of Infor-
presented. mation

Part IV. The Art of Software Cost Estimation
This is a report of a relatively successful attempt to Part IVA. Software Cost Estimation Methods And
correlate function point values with productivity Procedures
and effort values in a production environment. 21 Seven Basic Steps in Software Cost Estimation

22 Alternative Software Cost Estimation Methods
Part IVB. The Detailed COCOMO ModelBoehm76
23 Detailed COCOMO: Summary and OperationalBoehm, B. W., J. R. Brown, and M. Lipow.

Description“Quantitative Evaluation of Software Quality.”
24 Detailed COCOMO Cost Drivers: Product Attri-Proc. 2nd Intl. Conf. on Software Engineering.

butesLong Beach, Calif.: IEEE Computer Society, Oct.
25 Detailed COCOMO Cost Drivers: Computer At-

1976, 592-605. Reprinted in [Basili80], 218-231. tributes
26 Detailed COCOMO Cost Drivers: Personnel At-Abstract: The study reported in this paper estab-

tributeslishes a conceptual framework and some key initial
27 Detailed COCOMO Cost Drivers: Project Attri-results in the analysis of the characteristics of soft-

butesware quality.
28 Factors Not Included in COCOMO

The software quality characteristics delineated in 29 COCOMO Evaluations
this article are also discussed in [Perlis81], where Part IVC. Software Cost Estimation and Life-Cycle
they are compared to those of McCall, et al. Management

30 Software Maintenance Cost Estimation
31 Software Life-Cycle Cost EstimationBoehm81
32 Software Project Planning and ControlBoehm, B. W. Software Engineering Economics.
33 Improving Software ProductivityEnglewood Cliffs, N. J.: Prentice-Hall, 1981.
This is a classic text on software engineering eco-Table of Contents
nomics. It presents an excellent, detailed discussionPart I. Introduction: Motivation and Context
of the use of selected software metrics in one partic-1 Case Study 1: Scientific American Subscription
ular software development process model, i.e.,Processing
COCOMO, which was developed by the author.2 Case Study 2: An Urban School Attendance System
Otherwise it is not appropriate as a text for this3 The Goals of Software Engineering
module; its scope is much too limited, and the bookPart II. The Software Life-Cycle: A Quantitative
is now somewhat out of date.Model

4 The Software Life-Cycle: Phases and Activities
Boehm845 The Basic COCOMO Model

6 The Basic COCOMO Model: Development Modes Boehm, B. W. “Software Engineering Economics.”
7 The Basic COCOMO Model: Activity Distribution IEEE Trans. Software Eng. SE-10, 1 (Jan. 1984),
8 The Intermediate COCOMO Model: Product Level 4-21.

Estimates
Abstract: This paper summarizes the current state9 Intermediate COCOMO: Component Level Estima-
of the art and recent trends in software engineeringtion
economics. It provides an overview of economicPart III. Fundamentals of Software Engineering Eco-
analysis techniques and their applicability to soft-nomics
ware engineering and management. It surveys thePart IIIA. Cost-Effectiveness Analysis
field of software cost estimation, including the10 Performance Models and Cost-Effectiveness
major estimation techniques available, the state ofModels
the art in algorithmic cost models, and the out-11 Production Functions: Economies of Scale
standing research issues in software cost estima-12 Choosing Among Alternatives: Decision Criteria
tion.Part IIIB. Multiple-Goal Decision Analysis

13 Net Value and Marginal Analysis
The cost estimation techniques identified are: al-14 Present versus Future Expenditure and Income
gorithmic models, expert judgment, analogy,15 Figures of Merit
Parkinson’s principle, price-to-win, top-down, and16 Goals as Constraints
bottom-up. Although Parkinson’s principle and17 Systems Analysis and Constrained Optimization
price-to-win are identified as unacceptable methods,18 Coping with Unreconcilable and Unquantifiable
it is acknowledged that, of the other methods, noneGoals

SEI-CM-12-1.1 21

Software Metrics

is demonstrably superior. Thus, since the methods Card88
tend to complement one another, best results will Card, D. N. and W. W. Agresti. “Measuring Soft-
probably come from using some combination of the ware Design Complexity.” J. Syst. and Software 8, 3
other techniques. The following algorithmic cost (June 1988), 185-197.
estimation models are discussed: Putnam’s SLIM,
The Doty Model, RCA PRICE S, COCOMO, Abstract: Architectural design complexity derives
Bailey-Basili, Grumman SOFTCOST, Tausworthe from two sources: structural (or intermodule) com-
Deep Space Network (DSN) model, and the Jensen plexity and local (or intramodule) complexity.

These complexity attributes can be defined in termsmodel. Finally, the author identifies seven major
of functions of the number of I/O variables andissues needing further research—including size es-
fanout of the modules comprising the design. Atimation, size and complexity metrics, cost-driver
complexity indicator based on these measuresattributes, cost model analysis and refinement,
showed good agreement with a subjective assess-models of project dynamics, models for software
ment of design quality but even better agreementevolution, and software data collection.
with an objective measure of software error rate.
Although based on a study of only eight medium-Card87a
scale scientific projects, the data strongly support

Card, D. N. and W. W. Agresti. “Resolving the Soft- the value of the proposed complexity measure in
ware Science Anomaly.” J. Syst. and Software 7, 1 this context. Furthermore, graphic representations
(March 1987), 29-35. of the software designs demonstrate structural dif-

ferences corresponding to the results of the numer-Abstract: The theory of software science proposed
ical complexity analysis. The proposed complexityby Halstead appears to provide a comprehensive
indicator seems likely to be a useful tool for evalu-model of the program construction process. Al-
ating design quality before committing the design tothough software science has been widely criticized
code.on theoretical grounds, its measures continue to be

used because of apparently strong empirical sup- The measure proposed by the authors expresses the
port. This study reexamined one basic relationship total complexity of a software design as the sum of
proposed by the theory: that between estimated and the structural (intermodule) complexity and the lo-
actual program length. The results show that the cal (intramodule) complexity. The number of mod-
apparent agreement between these quantities is a ules, number of I/O variables, and degree of fanout
mathematic artifact. Analyses of both Halstead’s are important factors in determining the complexity.
own data and another larger data set confirm this An important consideration for this metric is that all
conclusion. Software science has neither a firm the required information is available at design time
theoretical nor empirical foundation. and before code is produced. The approach is

similar to that described in [Harrison87].The anomaly referred to in the title is that although
a high correlation between the actual (observed)
program length and estimated (calculated) program Cerino86
length appears to be supported by empirical studies, Cerino, D. A. “Software Quality Measurement Tools
no solid theoretical basis has been established for And Techniques.” Proc. COMPSAC 86. Washing-
such a relationship. The authors resolve the ton, D. C.: IEEE Computer Society, Oct. 1986,
anomaly by demonstrating that the two quantities 160-167.
are defined in such a way that one is mathematically
dependent upon the other. Thus, the strong empiri- Abstract: This paper describes research being per-
cal support previously reported apparently has not formed by RADC, to develop quality measurement
been established either. computer based tools to support quality evaluation

during each activity of the software life cycle. Cur-
rent work has provided a baseline quality measure-Card87b
ment tool to monitor the overall quality andCard, D. N. and W. W. Agresti. “Comments on resource expenditures of developing software by

Resolving the Software Science Anomaly.” J. Syst. collecting (semi-automated), storing, and analyzing
and Software 7, 1 (March 1987), 83-84. software measurement data for software acquisition

and software project personnel. This tool is beingAbstract: Refer to the abstract for [Card87a]
used in the prediction and assessment of developing

The authors offer a rationale for [Card87a], pointing software. In the future, this tool will evolve into a
metrics researcher’s workbench tuned for softwareout that users of software analysis tools based upon
development personnel and will be completely auto-software science metrics may not be aware—but
mated. Efforts are also underway to specify theshould be—of the lack of theoretical and empirical
data collection mechanisms which can be embeddedbasis for these metrics.
within software engineering environment tools. All
three approaches are presented.

22 SEI-CM-12-1.1

Software Metrics

the eighties. Over 120 of the many publications onThis paper reports on work being done at Rome Air
software metrics that have appeared since 1980 areDevelopment Center to develop automated tools to
classified and presented in five tables that comprise,support software quality evaluation during each ac-
respectively, (1) the use of classic metrics, (2) ativity of the development life cycle.
description of new metrics, (3) software metrics
through the life cycle, (4) code metrics and popularChristensen81
programming languages, and (5) various metric-Christensen, K., G. P. Fitsos, and C. P. Smith. “A based estimation models.

Perspective on Software Science.” IBM Systems
This is an excellent overview of the softwareJ. 20, 4 (1981), 372-387.
metrics literature, especially for the period 1981

Abstract: Provides an overview of a new approach through 1986. It cites and classifies over 120 publi-
to the measurement of software. The measurements cations. Six classic papers prior to 1981 are also
are based on the count of operators and operands included, beginning with McCabe’s 1976 paper.
contained in a program. The measurement method- Especially with the five tables described above, this
ologies are consistent across programming lan- paper should prove invaluable to anyone interested
guage barriers. Practical significance is discussed, in consulting the literature for this period.
and areas are identified for additional research and
validation.

Coulter83
The authors review Halstead’s software science. Coulter, N. S. “Software Science and Cognitive
They conclude that software science “offers a meth- Psychology.” IEEE Trans. Software Eng. SE-9, 2
odology not only for making measurements, but (March 1983), 166-171.
also for calibrating the measuring instruments.”

Abstract: Halstead proposed a methodology for
studying the process of programming known as soft-Conte86
ware science. This methodology merges theoriesConte, S. D., H. E. Dunsmore, and V. Y. Shen. from cognitive psychology with theories from com-

Software Engineering Metrics and Models. Menlo puter science. There is evidence that some of the
Park, Calif.: Benjamin/Cummings, 1986. assumptions of software science incorrectly apply

the results of cognitive psychology studies. HalsteadTable of Contents
proposed theories relative to human memory
models that appear to be without support from1 The Role of Metrics and Models in Software Devel-
psychologists. Other software scientists, however,opment
report empirical evidence that may support some of2 Software Metrics
those theories. This anomaly places aspects of soft-3 Measurement and Analysis
ware science in a precarious position. The three4 Small Scale Experiments, Micro-Models of Effort,
conflicting issues discussed in this paper are 1)and Programming Techniques
limitations of short-term memory and a number of5 Macro-Models of Productivity
subroutine parameters, 2) searches in human mem-6 Macro-Models for Effort Estimation
ory and programming effort, and 3) psychological7 Defect Models
time and programming time.8 The Future of Software Engineering Metrics and

Models This paper is a review of Halstead’s theory, and
References critical discussion of Halstead’s use of relevant the-
Appendix A. Statistical Tables ories from the field of psychology.
Appendix B. Data Used in The Text

The basic outline of this book is similar to that of Curtis79a
this module. It is intended to be used as a textbook, Curtis, B., S. B. Sheppard, P. Milliman, M. A. Borst,
and covers most of the topics shown in the module and T. Love. “Measuring the Psychological Com-
outline. plexity of Software Maintenance Tasks with the

Halstead and McCabe Metrics.” IEEE Trans. Soft-
Cote88 ware Eng. SE-5, 2 (March 1979), 96-104.
Cote, V., P. Bourque, S. Oligny, and N. Rivard.

Abstract: Three software complexity measures“Software Metrics: An Overview of Recent
(Halstead’s E, McCabe’s v(G), and the length asResults.” J. Syst. and Software 8, 2 (March 1988), measured by a number of statements) were com-

121-131. pared to a programmer performance on two soft-
ware maintenance tasks. In an experiment on un-Abstract: The groundwork for software metrics
derstanding, length and v(G) correlated with thewas established in the seventies, and from these
percent of statements correctly recalled. In an ex-earlier works, interesting results have emerged in

SEI-CM-12-1.1 23

Software Metrics

periment on modification, most significant correla- programs. Performance was measured by the time
tions were obtained with metrics computed on mod- to locate and successfully correct the bug. Much
ified rather than unmodified code. All three metrics stronger results were obtained than in earlier
correlated with both the accuracy of the modifica- studies. Halstead’s E proved to be the best predic-
tion and the time to completion. Relationships in tor of performance, followed by McCabe’s v(G) and
both experiments occurred primarily in unstruc- the number of lines of code.
tured rather than structured code, and in code with

This paper is a report on the third in a series ofno comments. The metrics were also most predictive
experiments on software complexity metrics,of performance for less experienced programmers.
specifically McCabe’s v(G), Halstead’s E, andThus, these metrics appear to assess psychological
LOC. Intercorrelations of metrics, when applied atcomplexity primarily where programming practices
the subroutine level, were: 0.92 for E:v, 0.89 fordo not provide assistance in understanding the
LOC:E and 0.81 for LOC:v. Intercorrelations ofcode.
metrics, when applied at the program level, were :

This paper investigates the extent to which the 0.76 for E:v, 0.56 for LOC:E and 0.90 for LOC:v.
Halstead (E) and McCabe (v(G)) metrics assess the Correlations of these metrics with measured perfor-
psychological complexity of understanding and mances ranged from 0.52 to 0.75. These results are
modifying software. The authors claim that considerably better than those attained in previous
“Halstead’s metric ... was proposed as an absolute experiments, e.g., as reported in [Curtis79a].
measure of psychological complexity (i.e., number
of mental discriminations).” Furthermore, Mc- DeMarco82
Cabe’s measure, although not formulated in

DeMarco, T. Controlling Software Projects: Man-psychological terms, “may prove to be a correlated
agement, Measurement & Estimation. New York:measure of psychological complexity.” Two experi-
Yourdon Press, 1982.ments were performed, using professional program-

mers: 1) understanding an existing program and 2) Table of Contents
accurately implementing modifications to it. Each
experiment involved 36 programmers with an Part I. Chaos and Order in the Software Develop-
average of more than 5 years of professional experi- ment Process
ence. Results in the first experiment indicated that 1 The Issue of Control
the Halstead and McCabe metrics correlated well 2 The Estimating Dilemma
with each other (0.84), but not with LOC (0.47, 3 A New Approach to Control
0.64). Correlations with measured performances 4 Projecting Software Costs
were not as high, ranging from -0.10 for E, to -0.61 5 The Cost of Measurement
for LOC. After adjustments in the data, correlations Part II. System Models and System Metrics
were -0.73 (E), -0.21 (v(G)), and -0.65 (LOC). In 6 The Construction and Use of System Models
the second experiment, results indicated that all 7 A Metric Is ...
three metrics correlated well with each other (0.85 8 Specification: Modeling the Problem
to 0.97). By comparison, correlations with perfor- 9 Specification Metrics
mance were not high (< 0.57), but the authors claim 10 Design: Modeling the Solution
that “their magnitudes are typical of significant 11 Design Metrics
results reported in human factors experiments.” 12 Implementation Metrics

13 Project Planning: Modeling the Development
ProcessCurtis79b

14 Result MetricsCurtis, B., S. B. Sheppard, and P. Milliman. “Third
Part III. Cost ModelsTime Charm: Stronger Prediction of Programmer
15 Cost Projection: Modeling Resource Use

Performance by Software Complexity Metrics.” 16 Corrected Single-Factor Cost Models
Proc. 4th Int. Conf. on Software Engineering. New 17 Time-Sensitive Cost Models
York: IEEE, Sept. 1979, 356-360. 18 A Practical Scheme for Putting Cost Models to

WorkAbstract: This experiment is the third in a series
Part IV. Software Qualityinvestigating characteristics of software which are
19 In Search of Software Qualityrelated to its psychological complexity. A major
20 Software Quality Controlfocus of this research has been to validate the use of
21 Improving Software Qualitysoftware complexity metrics for predicting pro-
22 Zero Defect Developmentgrammer performance. In this experiment we im-
Appendix A. A Sample Set of Modelsproved experimental procedures which produced
A1 MSP-4 Specification Modelonly modest results in the previous two studies. The
A2 MSP-4 Project Modelexperimental task required 54 experienced Fortran
A3 MSP-4 Design Modelprogrammers to locate a single bug in each of three
A4 Metric Analysis of the Models

24 SEI-CM-12-1.1

Software Metrics

Appendix B. Notational Conventions for Specifica- to a fixed set of 34 algorithms written in PL/I.
tion and Design Models Some properties of the algorithms vary significantly

Appendix C. A Tailored Primer on Statistics depending on the counting method chosen; other
Appendix D. Sample Program to Compute Code Vol- properties remain stable. Although no one counting

ume method can be shown to be best, the results do in-
dicate the importance of the counting method to the

This is primarily a book on software project man- overall measurement of an algorithm. Moreover,
agement. However, it recognizes the importance of the results provide a reminder of how sensitive
models and metrics in this process, and much of the some of the measurements are and of how careful
book deals with these topics. Of particular interest researchers must be when drawing conclusions
is the development of specification metrics that are from software science measurements.
available early in the development cycle.

The author investigates the effect of variations in
counting methods. Eight different counting meth-Elshoff76
ods were applied to 34 different PL/I programs.Elshoff, J. L. “Measuring Commercial PL/I Pro- Results: Length (N) and volume (V) are relatively

grams Using Halstead’s Criteria.” ACM SIGPLAN insensitive, while level (L) and effort (E) are much
Notices 11, 5 (May 1976), 38-46. more sensitive to the counting method.

Abstract: In 1972 Halstead first reported his inves-
tigation into natural laws of algorithm analogous to Ferrari86
laws of natural or physical sciences. The basic idea Ferrari, D. “Considerations on the Insularity of Per-
is to separate the physical structure of algorithms formance Evaluation.” IEEE Trans. Software Eng.
from the logical structure of algorithms. His theory SE-12, 6 (June 1986), 678-683.
has been refined since that time. Furthermore, the
theory has been applied to algorithms in different Abstract: It is argued that systems performance
languages and different environments. In this evaluation, in the first 20 years of its existence, has
study, Halstead’s criteria are applied to 154 PL/I developed in substantial isolation from such disci-
programs. This sample contains the largest algo- plines as computer architecture, system organiza-
rithms to be measured by his methods to date. A tion, operating systems, and software engineering.
subset of 120 of the programs has been measured The possible causes for this phenomenon, which
previously by other techniques which describe the seems to be unique in the history of engineering, are
basic attributes of the programs herein discussed. explored. Its positive and negative effects on com-

puter science and technology, as well as on perfor-
The correlation between observed program length, mance evaluation itself, are discussed. The draw-
N, and calculated program length is investigated. backs of isolated development outweigh its advan-
Of the 154 programs, 34 have been developed using tages. Thus, instructional and research initiatives to
structured programming techniques, while the other foster the rapid integration of the performance eval-
120 were not. Correlations between observed and uation viewpoint into the mainstream of computer
calculated values of N are reported to be 0.985 (for science and engineering are proposed.
the structured programs) and 0.976, respectively.

This article discusses the degree of isolation of per-
formance evaluation studies from other computerElshoff78
science/software engineering activities. Although

Elshoff, J. L. “An Investigation into the Effects of performance evaluation is now considered a sepa-
the Counting Method Used on Software Science rate field, the author questions whether this is desir-
Measurements.” ACM SIGPLAN Notices 13, 2 (Feb. able and suggests that performance evaluation con-
1978), 30-45. siderations should be introduced into computer sci-

ence and engineering courses in general.Abstract: Professor Maurice Halstead of Purdue
University first defined a set of properties of algo-

Fitzsimmons78rithms in 1972. The properties are defined in terms
of the number of unique operators, unique Fitzsimmons, A. and T. Love. “A Review and Eval-
operands, total operators, and total operands used uation of Software Science.” ACM Computing Sur-
to express the algorithm. Since 1972, independent veys 10, 1 (March 1978), 3-18.
experiments have measured various sets of algo-

Abstract: During recent years, there have beenrithms and have supported Halstead’s theories con-
many attempts to define and measure the “complex-cerning these properties. Also, new properties have
ity” of a computer program. Maurice Halstead hasbeen defined and experiments performed to study
developed a theory that gives objective measures ofthem.
software complexity. Various studies and experi-

This paper reports a study in which different meth- ments have shown that the theory’s predictions of
ods of counting operators and operands are applied

SEI-CM-12-1.1 25

Software Metrics

the number of bugs in programs and of the time 1 Introduction
required to implement a program are amazingly ac- 2 Program Length
curate. It is a promising theory worthy of much 3 Program Volume
more probing scientific investigation. 4 Relations Between Operators and Operands

5 Program LevelThis paper reviews the theory, called “software 6 Quantification of Intelligence Contentscience,” and the evidence supporting it. A brief 7 Program Puritydescription of a related theory, called “software 8 Programming Effortphysics,” is included. 9 Language Level
Part II. Applications of Software TheoryThis article is one of the earliest published critical
10 Obtaining Length and Programming Time fromreviews of Halstead’s work on software science.

Starting Conditions
11 The Error HypothesisGrady87 12 Modularity

Grady, R. B. and D. R. Caswell. Software Metrics: 13 Quantitative Analysis of English Prose
Establishing a Company-Wide Program. Engle- 14 Application to Hardware
wood Cliffs, N. J.: Prentice-Hall, 1987. 15 Application to Operating System Size

ReferencesTable of Contents
This book is a classic in software metrics, the orig-

1 Measuring The Beginning inal book by Halstead expounding the principles of
2 A Process Focus software science. Principal attractions of the theory
3 The Strategy as presented here are its high degree of agreement
4 Initial Data And Research with selected empirical data and its distinction of
5 Establishing Standards providing a unified theory of software metrics. Un-
6 The Selling of Metrics fortunately, a number of later works have pointed
7 The Human Element out several difficulties in the formulation of the the-
8 The Need For Tools ory and its empirical validation, e.g., see [Shen83]
9 Some Early Success Stories and [Card87a].
10 A Company-Wide Database
11 Reflections On The Meaningfulness of Data

Harrison8212 Graphs For Top-Level Management
Harrison, W., K. Magel, R. Kluczny, and A.13 A Training Program
DeKock. “Applying Software Complexity Metrics to14 The Care And Feeding Of A Metrics Program
Program Maintenance.” Computer 15, 9 (Sept.15 Twenty-Twenty Hindsight

16 A Detailed Software Development Process De- 1982), 65-79.
scription

Abstract: The authors find that predicting software17 The “New” Role of The Software Project Man-
complexity can save millions in maintenance costs,ager
but while current measures can be used to some18 The Final Conclusion
degree, most are not sufficiently sensitive or com-Appendix A. Definitions of Metrics Used In HP
prehensive. They examine some complexity metricsAppendix B. The Evolution of HP’s Software Metrics
in use.Forms

Appendix C. Bibliography This is primarily a survey of more than a dozen
complexity measures currently in use. Despite theThis book describes the experience of the Hewlett-
article’s title, little guidance is given on how to ap-Packard Company in setting up a company-wide
ply these to the software maintenance area.program of software metrics designed to improve

the management, productivity, and quality of the
software development process. Enough detail is Harrison87
presented that this book should prove useful to other Harrison, W. and C. Cook. “A Micro/Macro Meas-
organizations seriously contemplating establishing a ure of Software Complexity.” J. Syst. and Software
software metrics program. 7, 3 (Sept. 1987), 213-219.

Abstract: A software complexity metric is a quanti-Halstead77
tative measure of the difficulty of comprehendingHalstead, M. H. Elements of Software Science. New and working with a specific piece of software. The

York: Elsevier North-Holland, 1977. majority of metrics currently in use focus on a
program’s “microcomplexity.” This refers to howTable of Contents
difficult the details of the software are to deal with.
This paper proposes a method of measuring thePart I. Basic Properties And Their Relations

26 SEI-CM-12-1.1

Software Metrics

“macrocomplexity,” i.e., how difficult the overall Henry84
structure of the software is to deal with, as well as Henry, S. and D. Kafura. “The Evaluation of Soft-
the microcomplexity. We evaluate this metric using ware Systems’ Structure Using Quantitative Soft-
data obtained during the development of a ware Metrics.” Software—Practice and Experience
compiler/environment project, involving over

14, 6 (June 1984), 561-573.30,000 lines of C code. The new metric’s perfor-
mance is compared to the performance of several Abstract: The design and analysis of the structure
other popular metrics, with mixed results. We then of software systems has typically been based on
discuss how these metrics, or any other metrics, purely qualitative grounds. In this paper we report
may be used to help increase the project manage- on our positive experience with a set of quantitative
ment efficiency. measures of software structure. These metrics,

based on the number of possible paths of informa-The authors propose a software complexity metric
tion flow through a given component, were used toincorporating both the micro (intra–sub-program
evaluate the design and implementation of a soft-level) and macro (inter-program level) complexity
ware system (the UNIX operating system kernel)contributed by each subprogram. The metric
which exhibits the interconnectivity of components(MMC) is compared with other metrics such as typical of large-scale software systems. Several ex-

those of Hall and Preisser, Henry and Kafura, amples are presented which show the power of this
McCabe, Halstead, lines of code, and number of technique in locating a variety of both design and
procedures. The new metric correlated better (0.82) implementation defects. Suggested repairs, which
with the basic error rates than the other five metrics. agree with the commonly accepted principles of
However, in identifying software modules with ex- structured design and programming, are presented.
ceptional error rates, it did little better than the other The effect of these alterations on the structure of the
metrics, and slightly worse than DSLOC. system and the quantitative measurements of that

structure lead to a convincing validation of the util-
Henry81 ity of information flow metrics.
Henry, S., D. Kafura, and K. Harris. “On the

This is an important paper, in the sense that the
Relationships Among Three Software Metrics.” information flow metric developed is shown to be
Performance Eval. Rev. 10, 1 (Spring 1981), 81-88. related to software complexities and thus to poten-

tial problem areas of the UNIX operating system.Abstract: Automatable metrics of software quality
This information is then used to guide efforts toappear to have numerous advantages in the design,
redesign those portions of the system that appear toconstruction and maintenance of software systems.
be overly complex. Of special note here is the factWhile numerous such metrics have been defined,
that these information flow metrics may be com-and several of them have been validated on actual
puted and utilized in the software design process,systems, significant work remains to be done to es-
prior to the generation of any program code.tablish the relationships among these metrics. This

paper reports the results of correlation studies
made among three complexity metrics which were Jones84
applied to the same software system. The three Jones, T. C. “Reusability in Programming: A Survey
complexity metrics used were Halstead’s effort, of the State of the Art.” IEEE Trans. Software Eng.
McCabe’s cyclomatic complexity and Henry and SE-10, 5 (Sept. 1984), 488-494.Kafura’s information flow complexity. The common
software system was the UNIX operating system. Abstract: As programming passes the 30 year mark
The primary result of this study is that Halstead’s as a professional occupation, an increasingly large
and McCabe’s metrics are highly correlated while number of programs are in application areas that
the information flow metric appears to be an inde- have been automated for many years. This fact is
pendent measure of complexity. changing the technology base of commercial pro-

gramming, and is opening up new markets for stan-The results of this study show a high correlation of
dard functions, reusable common systems, modules,all three metrics with the number of errors in the
and the tools and support needed to facilitatesoftware: 0.89 for Halstead’s E, 0.95 for informa- searching out and incorporating existing code seg-

tion flow, and 0.96 for McCabe’s metric. In addi- ments. This report addresses the 1984 state of the
tion, Halstead’s metric and McCabe’s metrics ap- art in the domains of reusable design, common sys-
pear to be highly related to one another (0.84). tems, reusable programs, and reusable modules or
However, the information flow metric correlates subroutines. If current trends toward reusability
poorly with either the Halstead (0.38) or the continue, the amount of reused logic and reused
McCabe (0.35) metric. This may indicate that while code in commercial programming systems may ap-
all three metrics are reasonable predictors of error proach 50 percent by 1990. However, major efforts
rates, the information flow metric is somewhat or- will be needed in the areas of reusable data, reus-
thogonal to the other two complexity metrics.

SEI-CM-12-1.1 27

Software Metrics

able architectures, and reusable design before reus- Kafura85
able code becomes a sound basic technology. Kafura, D. and J. Canning. “A Validation of Soft-

ware Metrics Using Many Metrics and TwoThe author includes interesting statistics on pro-
Resources.” Proc. 8th Intl. Conf. on Softwaregrammer and software populations in a survey of
Engineering. Washington, D. C.: IEEE Computerthe current status of this possible key to program-
Society Press, 1985, 378-385.ming productivity.

Abstract: In this paper are presented the results of
Jones86 a study in which several production software sys-
Jones, T. C. Programming Productivity. New York: tems are analyzed using ten software metrics. The

ten metrics include both measures of code details,McGraw-Hill, 1986.
measures of structure, and combinations of these

Table of Contents two. Historical data recording the number of er-
rors and the coding time of each component are

Introduction used as objective measures of resource expenditure
1 The Problems and Paradoxes of Measuring Soft- of each component. The metrics are validated by

ware showing: (1) the metrics singly and in combination
2 The Search for a Science of Measurement are useful indicators of those components which re-
3 Dissecting Programming Productivity quire the most resources, (2) clear patterns between
4 Exploring the Intangible Software Factors the metrics and the resources expended are visible
Appendix A. Description of the SPQR Model when both resources are accounted for, (3) meas-

ures of the structure are as valuable in examiningThis book is primarily a study of programming
software systems as measures of code details, andproductivity, especially as it might be predicted by
(4) the choice of which, or how many, softwarethe Software Productivity, Quality, and Reliability
metrics to employ in practice is suggested by meas-(SPQR) model developed by the author. It enumer-
ures of “yield” and “coverage”.ates a total of 20 major and 25 less significant fac-

tors that influence productivity, many of which are The code metrics used were LOC, Halstead’s E, and
input to the SPQR model. This book does not pos- McCabe’s v(G). Structure metrics used were Henry
sess sufficient breadth in software metrics to serve and Kafura’s information flow, McClure’s invoca-
as a text for this module, but does contain illuminat- tion complexity, Woodfield’s review complexity,
ing discussions of some currently used metrics and and Yau and Collofello’s stability measure. The
problems associated with them. three hybrid measures were combinations of LOC

with the metrics of Henry and Kafura, Woodfield,
and Yau and Collofello, respectively. The authorsKafura81
conclude that “The interplay between and amongKafura, D. and S. Henry. “Software Quality Metrics
the resources and factors is too subtle and fluid toBased on Interconnectivity.” J. Syst. and Software 2,
be observed accurately by a single metric, or a2 (June 1981), 121-131.
single resource.”

Abstract: States a set of criteria that has guided the
development of a metric system for measuring the Kafura87
quality of a large-scale software product. This Kafura, D. and G. R. Reddy. “The Use of Softwaremetric system uses the flow of information within

Complexity Metrics in Software Maintenance.”the system as an index of system interconnectivity.
IEEE Trans. Software Eng. SE-13, 3 (March 1987),Based on this observed interconnectivity, a variety
335-343.of software metrics can be defined. The types of

software quality features that can be measured by Abstract: This paper reports on a modest study
this approach are summarized. The data-flow anal- which relates seven different software complexity
ysis techniques used to establish the paths of infor- metrics to the experience of maintenance activities
mation flow are explained and illustrated. Finally, performed on a medium size software system. The
a means of integrating various metrics and models seven metrics studied are the same as those used in
into a comprehensive software development envi- [Kafura85]. The software system involved is a single
ronment is discussed. This possible integration is user relational database system, written in Fortran.
explained in terms of the Gandalf system currently Three different versions of the software system that
under development at Carnegie Mellon University. evolved over a period of three years were analyzed

in this study. A major revision of the system, whileThe authors propose a quality metric for large-scale
still in its design phase, was also analyzed.software products, using the program information

flow as a measure of system interconnectivity. The results of the study indicate: 1) that the growth
Results of application to UNIX systems are dis- in system complexity as determined by the software
cussed. metrics agree with the general character of the

28 SEI-CM-12-1.1

Software Metrics

maintenance tasks performed in successive ver- in predicted person-months are large (COCOMO
sions; 2) the metrics were able to identify the im- 600%, SLIM 771%, FP 102%, ESTIMACS 85%).
proper integration of functional enhancements The author concludes that models developed in dif-
made to the system; 3) the complexity values of the ferent environments do not work well without
system components as indicated by the metrics con- recalibration for the environment where they are to
form well to an understanding of the system by be applied.
people familiar with the system; 4) an analysis of
the redesigned version of the system showed the Knafl86
usefulness of software metrics in the (re)design

Knafl, G. J. and J. Sacks. “Software Developmentphase by revealing a poorly structured component
Effort Prediction Based on Function Points.” Proc.of the system.
COMPSAC 86. Washington, D. C.: IEEE Computer

This paper reports on a study of seven different Society Press, Oct. 1986, 319-325.
complexity metrics as related to experience in soft-

Abstract: We analyze a published data set used toware maintenance. The research involved three dif-
predict future software development effort in termsferent versions of a medium-sized system that
of function points. For a full range of COBOL proj-evolved over a period of three years. Conclusions
ect sizes, a straight line model is inappropriate as isinclude the statement that the metrics were able to
a linear regression model using the software sci-identify the improper integration of functional en-
ence transform of function points. Confidencehancements made to the system.
bands based on alternate robust models show the
untenability of the straight line model. AcceptableKemerer87 uncertainty levels require large prediction bands in-

Kemerer, C. F. “An Empirical Validation of Soft- dicating that function points by itself is insufficient
ware Cost Estimation Models.” Comm. ACM 30, 5 for precise prediction.
(May 1987), 416-429.

The authors analyze the data set used by Albrecht
Abstract: Practitioners have expressed concern and Gaffney [Albrecht83]. Their conclusion is that
over their inability to accurately estimate costs as- the function point measure by itself is insufficient
sociated with software development. This concern for precise prediction.
has become even more pressing as costs associated
with development continue to increase. As a result, Lassez81
considerable research attention is now directed at

Lassez, J.-L., D. Van der Knijff, J. Shepherd, andgaining a better understanding of the software-
C. Lassez. “A Critical Examination of Softwaredevelopment process as well as constructing and
Science.” J. Syst. and Software 2, 2 (June 1981),evaluating software cost estimating tools. This
105-112.paper evaluates four of the most popular algorith-

mic models used to estimate software costs (SLIM,
Abstract: The claims that software science couldCOCOMO, Function Points, and ESTIMACS).
provide an empirical basis for the rationalization ofData on 15 large completed business data-
all forms of algorithm description are shown to beprocessing projects were collected and used to test
invalid from a formal point of view. In particular,the accuracy of the models’ ex post effort estima-
the conjectured dichotomy between operators andtion. One important result was that Albrecht’s
operands is shown not to hold over a wide class ofFunction Points effort estimation model was vali-
languages. An experiment that investigated dis-dated by the independent data provided in this study
crepancies between the level measure and its es-[3]. The models not developed in business data-
timator is described to show that its failure was dueprocessing environments showed significant need
to shortcomings in the theory. One cannot obtainfor calibration. As models of the software-
reliable results without tampering with both meas-development process, all of the models tested failed
ure and estimator definitions.to sufficiently reflect the underlying factors affect-

ing productivity. Further research will be required This paper is a critical analysis of Halstead’s theory.
to develop understanding in this area. The authors conclude that his fundamental hy-

potheses are not applicable over the broad rangeThe author compares results of four cost estimation
claimed by Halstead.models on a set of 15 large (average of 200

KSLOC) software products, all developed by the
Levitin86ABC consulting firm (anonymous). The models

compared were Boehm’s COCOMO, Putnam’s Levitin, A. V. “How To Measure Software Size, and
SLIM, Albrecht’s Function Points (FP), and How Not To.” Proc. COMPSAC 86. Washington,
Rubin’s ESTIMACS. Although the models were D. C.: IEEE Computer Society Press, Oct. 1986,
developed and calibrated with very different data, 314-318.
the author seems surprised that the resulting errors

SEI-CM-12-1.1 29

Software Metrics

the length equation, the notion of potential volume,Abstract: The paper suggests a list of criteria de-
and the notion of language level. The paper con-sirable for a measure of software size. The prin-
cludes that the emperor is in urgent need of a goodcipal known size metrics - source lines of code, the
tailor.number of statements, Software Science length and

volume, and the number of tokens -- are discussed
A critical review of Halstead’s results and the 1978from the standpoint of these general criteria. The
review of the same by Fitzsimmons and Love.analysis indicates that the number of tokens is supe-
Halstead’s results for N, V*, L, and E are allrior over the other, much more often used metrics.
criticized.

Levitin compares common size metrics, such as
LOC, number of statements, and Halstead’s meas- McCabe76
ures n, N, and V. He reports that n (the number of McCabe, T. J. “A Complexity Measure.” IEEEtokens) is superior to the other metrics as a measure

Trans. Software Eng. SE-2, 4 (Dec. 1976), 308-320.of size.
Abstract: This paper describes a graph-theoretic
complexity measure and illustrates how it can beLi87
used to manage and control program complexity.Li, H. F. and W. K. Cheung. “An Empirical Study of
The paper first explains how the graph-theory con-Software Metrics.” IEEE Trans. Software Eng.
cepts apply and gives an intuitive explanation of theSE-13, 6 (June 1987), 697-708.
graph concepts in programming terms. The control
graphs of several actual Fortran programs are thenAbstract: Software metrics are computed for the
presented to illustrate the correlation between intui-purpose of evaluating certain characteristics of the
tive complexity and the graph-theoretic complexity.software developed. A Fortran static source code
Several properties of the graph-theoretic complexityanalyzer, FORTRANAL, was developed to study 31
are then proved which show, for example, that com-metrics, including a new hybrid metric introduced
plexity is independent of physical size (adding orin this paper, and applied to a database of 255 pro-
subtracting functional statements leaves complexitygrams, all of which were student assignments.
unchanged) and complexity depends only on the de-Comparisons among these metrics are performed.
cision structure of a program. The issue of usingTheir cross-correlation confirms the internal con-
nonstructured control flow is also discussed. Asistency of some of these metrics which belong to
characterization of nonstructured control graphs isthe same class. To remedy the incompleteness of
given and a method of measuring the “structured-most of these metrics, the proposed metric incorpo-
ness” of a program is developed. The relationshiprates context sensitivity to structural attributes ex-
between structure and reducibility is illustratedtracted from a flow graph. It is also concluded that
with several examples.many volume metrics have similar performance

while some control metrics surprisingly correlate The last section of this paper deals with a testing
well with typical volume metrics in the test samples methodology used in conjunction with the com-
used. A flexible class of hybrid metric can incor- plexity measure; a testing strategy is defined that
porate both volume and control attributes in assess- dictates that a program can either admit of a cer-
ing software complexity. tain minimal testing level or the program can be

structurally reduced.The authors report on a study of 31 different com-
plexity metrics applied to a database of 255 McCabe’s classic paper on the cyclomatic com-
FORTRAN programs (all student assignments). plexity of a computer program. This is an excellent
They claim that all the other metrics are incomplete paper. The contents are well-described by the ab-
and propose a new hybrid metric to fill the gap. stract.
The article includes an interesting classification of
complexity metrics, shown in the form of a chart.

McCall77
McCall, J. A., P. K. Richards, and G. F. Walters.Lister82
Factors in Software Quality, Vol. I, II, III: Final

Lister, A. M. “Software Science—The Emperor’s Tech. Report. RADC-TR-77-369, Rome Air Devel-
New Clothes?” Australian Computer J. 14, 2 (May opment Center, Air Force Systems Command, Grif-
1982), 66-70. fiss Air Force Base, N. Y., 1977.

Abstract: The emergent field of software science This is one of the earliest, often-referenced works
has recently received so much publicity that it on software quality factors. The quality character-
seems appropriate to pose the question above. This istics identified in this report are also discussed in
paper attempts to provide an answer by examining [Perlis81], pages 204-206, where they are compared
the methodology of software science, and by point- to those of Boehm et al.
ing out apparent anomalies in three major areas:

30 SEI-CM-12-1.1

Software Metrics

four medium-sized development projects, all ofMohanty81
which have completed their life cycles. Measure-Mohanty, S. N. “Software Cost Estimation: Present
ments taken of MTTF during operation agree welland Future.” Software—Practice and Experience 11,
with the predictions made at the end of system test.2 (Feb. 1981), 103-121.
As far as the author can determine, these are the
first times that a software reliability model wasAbstract: The state-of-the-art in software cost es-
used during software development projects. Thetimation is reviewed. The estimated cost of a soft-
paper reflects and incorporates the practical expe-ware system varies widely with the model used.
rience gained.Some variation in cost estimation is attributable to

the anomalies in the cost data base used in devel-
The author develops the basic concept of softwareoping the model. The other variations, it is claimed
reliability and discusses its application to actualare due to the presence or absence of certain
projects. This is one of the early papers by this‘qualities’ in the final product. These qualities are
author on this subject. Later work is reported inmeasures of ‘goodness’ in design, development and
[Musa80] and [Musa87].test-integration phases of software. To consider

quality as a driver of software cost, the author sug-
Musa80gests an association between cost and quality and

proposes a way to use quality metrics to estimate Musa, J. D. “Software Reliability Measurement.” J.
software cost. Syst. and Software 1, 3 (1980), 223-241. Reprinted

in [Basili80], 194-212.Mohanty reviews the state-of-the-art in software
cost estimation. More than 15 models are dis- Abstract: The quantification of software reliability
cussed, including those of Wolverton, Price-S, and is needed for the system engineering of products
Walston/Felix. The author lists 49 factors that in- involving computer programs and the scheduling
fluence software development costs. and monitoring of software development. It is also

valuable for the comparative evaluation of the ef-
fectiveness of various design, coding, testing, andMusa75
documentation techniques. This paper outlines aMusa, J. D. “A Theory of Software Reliability and
theory of software reliability based on execution orIts Application.” IEEE Trans. Software Eng. 1, 3
CPU time, and a concomitant model of the testing(Sept. 1975), 312-327. Reprinted in [Basili80],
and debugging process that permits execution time

194-212. to be related to calendar time. The estimation of
parameters of the model is discussed. ApplicationAbstract: An approach to a theory of software
of the theory in scheduling and monitoring softwarereliability based on execution time is derived. This
projects is described, and data taken from severalapproach provides a model that is simple, intui-
actual projects are presented.tively appealing, and immediately useful. The the-

ory permits the estimation, in advance of a project, This paper further develops the basic concepts of
of the amount of testing in terms of execution time software reliability and its measurement. The au-
required to achieve a specified reliability goal thor has developed these concepts much more fully
[stated as a mean time to failure (MTTF)]. Execu- in [Musa87].
tion time can then be related to calendar time, per-
mitting a schedule to be developed. Estimates of

Musa87execution time and calendar time remaining until
the reliability goal is attained can be continually Musa, J. D., A. Iannino, and K. Okumoto. Software
remade as testing proceeds, based only on the Reliability: Measurement, Prediction, Application.
length of execution time intervals between failures. New York: McGraw-Hill, 1987.
The current MTTF and the number of errors

Table of Contentsremaining can also be estimated. Maximum likeli-
hood estimation is employed, and confidence inter-

Part I. Overviewvals are also established. The foregoing informa-
1 Introduction to Software Reliabilitytion is obviously very valuable in scheduling and
2 Selected Modelsmonitoring the progress of program testing. A pro-
3 Applicationsgram has been implemented to compute the forego-
Part II. Practical Applicationsing quantities. The reliability model that has been
4 System Definitiondeveloped can be used in making system tradeoffs
5 Parameter Determinationinvolving software or software and hardware com-
6 Project-Specific Techniquesponents. It also provides a soundly based unit of
7 Application Proceduresmeasure for the comparative evaluation of various
8 Implementation Planningprogramming techniques that are expected to en-
Part III. Theoryhance reliability. The model has been applied to
9 Software Reliability Modeling

SEI-CM-12-1.1 31

Software Metrics

10 Markovian Models The Role of Metrics in Software and Software Devel-
11 Descriptions of Specific Models opment
12 Parameter Estimation Summary of Panel Findings
13 Comparison of Software Reliability Models Software Metrics: A Research Initiative
14 Calendar Time Modeling 1 Toward a Scientific Basis for Software Evaluation
15 Failure Time Adjustment for Evolving Programs 2 Design of Software Experiments
Part IV. Future Development 3 Experimental Evaluation of Software Character-
16 State of the Art istics
Appendixes 4 Software Project Forecasting
A. Review of Probability, Stochastic Processes and 5 Controlling Software Development Through the

Statistics Life Cycle Model
B. Review of Hardware Reliability 6 Resource Models
C. Review of Software and Software Development for 7 High Level Language Metrics

Hardware Engineers 8 Data Collection, Validation and Analysis
D. Optimization Algorithm 9 A Scientific Approach to Statistical Software
E. Summary of Formulas for Application 10 Performance Evaluation: A Software Metrics Suc-
F. Glossary of Terms cess Story
G. Glossary of Notation 11 Statistical Measures of Software Reliability
H. Problem Solutions 12 The Measurement of Software Quality and Com-
I. Recommended Specifications for Supporting Com- plexity

puter Programs 13 Complexity of Large Systems
References 14 Software Maintenance Tools and Statistics

15 When is “Good” Enough? Evaluating and Se-
This book is an extensive treatment of the appli- lecting Software Metrics
cation of reliability models to software. Annotated Bibliography on Software Metrics

This book provides an extensive review of the statusMyers77
of software metrics as of 1981 or slightly before.Myers, G. J. “An Extension to the Cyclomatic Meas- Specifically, it contains a number of state-of-the-art

ure of Program Complexity.” ACM SIGPLAN evaluations, as well as recommendations for re-
Notices 12, 10 (Oct. 1977), 61-64. search initiatives in related areas of software

metrics. For reference purposes, it also contains anAbstract: A recent paper has described a graph-
extensive annotated bibliography of more than 350theoretic measure of program complexity, where a
related references, almost all of which wereprogram’s complexity is assumed to be only a factor
published in the last ten years.of the program’s decision structure. However sev-

eral anomalies have been found where a higher
complexity measure would be calculated for a pro- Potier82
gram of lesser complexity than for a more complex Potier, D., J. L. Albin, R. Ferreol, and A. Bilodeau.
program. This paper discusses these anomalies, de- “Experiments with Computer Software Complexity
scribes a simple extension to the measure to and Reliability.” Proc. 6th Intl. Conf. on Software
eliminate them, and applies the measure to several

Engineering. New York: IEEE, Sept. 1982, 94-103.programs in the literature.
Abstract: Experiments with quantitative assessmentMyers reviews McCabe’s v(G) metric, and proposes
and prediction of software reliability are presented.an extended metric, replacing the single value of
The experiments are based on the analysis of thev(G) by an ordered pair consisting of a lower bound
error and the complexity characteristics of a large(equal to the number of decision statements plus
set of programs. The first part of the study con-one) and an upper bound value (equal to the number cerns the data collection process and the analysis of

of individual conditions plus one). Although the the error data and complexity measures. The
new metric seems to deal adequately with the ex- relationships between the complexity profile and the
amples cited, the new measure lacks the appeal of a error data of the procedures of the programs are
single value for the metric. then investigated with the help of discriminant

statistical analysis technique. The results of these
Perlis81 analyses show that an estimation can be derived

from the analysis of its complexity profile.Perlis A., F. Sayward, and M. Shaw, eds. Software
Metrics: An Analysis and Evaluation. Cambridge, The software used in this study consisted of a
Mass.: MIT Press, 1981. family of compilers, all written in the LTR lan-

guage. The compiler consisted of a kernel, imple-Table of Contents
mented by seven compilation units, and a code gen-
erator, implemented by four compilation units.Preface

32 SEI-CM-12-1.1

Software Metrics

These programs were developed by a number of Rayleigh model was used to derive an estimating
programmers over an extended period of time, from equation relating the size (LOC) of the project to
1972 through 1977 and beyond. Both textual the product of a state of technology factor, the cube
(Halstead) complexity metrics and structural (Mc- root of the applied effort, and the development time
Cabe, reachability, paths, etc.) complexity metrics to the 4/3 power. This was found to work fairly
were investigated. An error data file containing well in the environment for which the data were
data on over one thousand errors was created, al- available. However, the author states that the es-
though long after the work was done, in some cases. timators developed here probably cannot be used by
Observations: All complexity measures, except the other software houses, “at least not without great
normalized cyclomatic and cocyclomatic numbers, care and considerable danger,” because of the dif-
discriminated between procedures with no errors ference in standards and procedures. The author
and programs with errors. Thus, although the later developed this basic model into the proprietary
cyclomatic number discriminates in the same man- product SLIM (Software LIfe-cycle Methodology)
ner, the authors conclude that this is only because of [Conte86].
its high correlation with the size and volume
metrics. In addition, the discriminating effect ap- Putnam80
peared to be maximal with regard to errors created Putnam, L. H. Tutorial, Software Cost Estimating
during the design specification or coding stages. In

and Life-Cycle Control: Getting the Software Num-ranking the measures as to discriminating effects,
bers. New York: IEEE, 1980.the vocabulary, n, appears at the top level of the

decision tree. Table of Contents

PrefacePutnam78
IntroductionPutnam, L. H. “A General Empirical Solution to the
Overview: Software Costing and Life-Cycle ControlMacro Software Sizing and Estimating Problem.”
Section IIEEE Trans. Software Eng. SE-4, 4 (July 1978),
Introduction345-361. 1 The Software Engineering Management Problem:

Getting the Management NumbersAbstract: Application software development has
2 The Software Life-Cycle Model Concept: Evidencebeen an area of organizational effort that has not

and Behaviorbeen amenable to the normal managerial and cost
3 Phenomenological Basis for Rayleigh Behaviorcontrols. Instances of actual costs of several times
4 The Economics of Softwarethe initial budgeted cost, and a time to initial opera-
5 Practical Application: Getting the Managementtional capability sometimes twice as long as

Numbersplanned are more often the case than not. A mac-
6 Special Topicsromethodology to support management needs has
7 Software Dynamics: How to Control the Projectnow been developed that will produce accurate es-

Once It Is Underwaytimates of manpower, costs, and times to reach cri-
8 Aggregation of a Number of Systems: Controllingtical milestones of software projects. There are

the Entire Software Organizationfour parameters in the basic system and these are in
9 Data Needs for Estimation and Life-Cycle Model-terms managers are comfortable working with—ef-

ingfort, development time, elapsed time, and a state-of-
10 The Life-Cycle Approach to Software Resourcetechnology parameter. The system provides manag-

Managementers sufficient information to assess the financial risk
Section IIand investment value of a new software develop-
Introductionment project before it is undertaken and provides
Example of an Early Sizing, Cost and Schedule Es-techniques to update estimates from the actual data

timate for an Application Software System (Put-stream once the project is underway. Using the
nam)technique developed in the paper, adequate analysis

A Statistical Approach to Scheduling Software De-for decisions can be made in an hour or two using
velopment (Myers)only a few quick reference tables and a scientific

A General Empirical Solution to the Macro Softwarepocket calculator.
Sizing and Estimating Problem (Putnam)

The author studied data on large systems developed Measurement Data to Support Sizing, Estimating and
by the U. S. Army Computer Systems Command, Control of the Software Life Cycle (Putnam)
which develops application software in the logistic, Progress in Modeling the Software Life Cycle in a
personnel, financial, force accounting, and facilities Phenomenological Way to Obtain Engineering
engineering areas. Systems studied ranged in size Quality Estimates and Dynamic Control of the
from 30 man-years of development and mainte- Process (Putnam)
nance effort to over 1,000 man-years. The Norden/ Sensitivity Analysis and Simulation (Durway)

SEI-CM-12-1.1 33

Software Metrics

The Work Breakdown Structure in Software Project pact of software structure on maintainability as-
Management (Tausworthe) pects such as comprehensibility, locality, modifia-

Useful Tools for Project Management (Norden) bility, and reusability in a distributed system envi-
Estimating Resources for Large Programming Sys- ronment. The study was part of a project at the

tems (Aron) University of Kaiserslautern, West Germany, to de-
A Method of Programming Measurement and Es- sign and implement LADY, a LAnguage for

timation (Walston & Felix) Distributed sYstems. The study addressed the im-
Management of Software Development (Daly) pact of software structure from two perspectives.
An Analysis of the Resources Used in the Safeguard The language designer’s perspective was to eval-

System Software Development (Stephenson) uate the general impact of the set of structural con-
The Cost of Developing Large-Scale Software (Wol- cepts chosen for LADY on the maintainability of

verton) software systems implemented in LADY. The lan-
The Mythical Man-Month (Brooks) guage user’s perspective was to derive structural
Estimating Software Costs, Parts I, II & III (Putnam criteria (metrics), measurable from LADY systems,

& Fitzsimmons) that allow the explanation or prediction of the soft-
SLIM (Putnam) ware maintenance behavior. A controlled mainte-
Bibliography nance experiment was conducted involving twelve

medium-size distributed software systems; six of
This is an excellent tutorial on software costing and these systems were implemented in LADY, the other
estimating techniques, as they had developed to the six systems in an extended version of sequential
late 1970’s. It contains contributions from most of Pascal. The benefits of the structural LADY con-
the major figures in this area up to this time, as can cepts were judged based on a comparison of the
be seen from the table of contents, including Put- average maintenance behavior of the LADY systems
nam, Walston and Felix, and Wolverton. Although and the Pascal systems; the maintenance metrics
this material is now quite dated, it is a good source were derived by analyzing the interdependence be-
of information on the work done prior to 1980. tween structure and maintenance behavior of each

individual LADY system.
Rodriguez86

The author reports results of a controlled experi-
Rodriguez, V. and W.-T. Tsai. “Software Metrics ment investigating the effect of software structure
Interpretation Through Experimentation.” Proc. on the maintainability of software in a distributed
COMPSAC 86. Washington, D. C.: IEEE Computer system. The experiments were run on 12 systems of
Society Press, Oct. 1986, 368-374. 1.5 to 15 KLOC. The software systems were devel-

oped in C-TIP (an extended Pascal) and LADY (aAbstract: This paper poses several conjectures de-
LAnguage for Distributed sYstems). Results in-rived from the current view of Software Metrics and
dicated that complexity measures based on infor-then analyzes these conjectures through the use of
mation flows are useful predictors of maintainabil-source code metrics applied to two medium size
ity, including comprehensibility, locality and modi-software systems. The analysis attempts to deter-
fiability. Results with regard to reusability weremine the robustness of several metrics, the infor-
inconclusive.mation conveyed through them and how that infor-

mation could be used for software management pur-
Rubin83poses. One important use observed is the dis-

criminant power of the metrics when software com- Rubin, H. A. “Macro-Estimation of Software Devel-
ponents are grouped together into sets of common opment Parameters: The ESTIMACS System.”
characteristics to statistically distinguish between Proc. SOFTFAIR: A Conference on Software Devel-
the groups. opment Tools, Techniques, and Alternatives. New

York: IEEE, July 1983, 109-118.The authors attempt to determine the robustness of
metrics such as McCabe’s v(G), LOC, etc., for a Abstract: System developers are continually faced
total of 15 code metrics plus Kafura and Henry’s with the problem of being asked to provide reliable
information flow metrics. Results are not easily estimates early in the software development proc-
summarized. ess, often before any of the requirements are known.

The ESTIMACS models offer a solution to his prob-
Rombach87 lem by relating gross business specifications to the

estimate dimensions of effort hours, staff, cost,Rombach, H. D. “A Controlled Experiment on the
hardware, risk and portfolio effects. In addition,Impact of Software Structure on Maintainability.”
their implementation structure takes the userIEEE Trans. Software Eng. SE-13, 3 (March 1987),
through a programmed learning experience in un-344-354.
derstanding the estimates produced.

Abstract: This paper describes a study on the im-
The author describes his recently developed ES-

34 SEI-CM-12-1.1

Software Metrics

evidence supplied by Halstead and others seemed toTIMACS system for use in estimating, planning,
support the theory, it drew widespread attentionand controlling the software development life cycle.
from the computer science community.The model includes estimators for development ef-

fort, staffing requirements, costs, hardware require- Some researchers have raised serious questions
ments, risk assessment, and total resource demands. about the underlying theory of software science. At

the same time, experimental evidence supporting
Rubin87 some of the metrics continue to be presented. This

paper is a critique of the theory as presented byRubin, H. A. “A Comparison of Software Cost Es-
Halstead and a review of experimental results con-timation Tools.” System Development 7, 5 (May
cerning software science metrics published since1987), 1-3.
1977.

Abstract: There are only a handful of software cost
This paper is a critical review of Halstead’s soft-estimation tools that are in general use today. For
ware science and its empirical support. Amongthe 8th International Conference on Software Engi-
other things, shortcomings in the derivations of N,neering held in August 1985, the authors, or
V* and T are noted.representatives, of the most “popular” tools were

presented with a common problem to analyze as
basis for comparison. In this context, each was Shen85
asked to address his analysis approach, input Shen, V. Y., T. J. Yu, S. M. Thebaut, and L. R. Paul-
parameters used, parameters not used, and results sen. “Identifying Error-Prone Software—An Empiri-
generated. This article contains the statement of cal Study.” IEEE Trans. Software Eng. SE-11, 4
the problem, a summary of the results provided by

(April 1985), 317-324.each participant, and a discussion of the implica-
tion of the results for those embarking on estimation Abstract: A major portion of the effort expended in
programs within their own IS organizations. developing commercial software today is associated

with program testing. Schedule and/or resourceThe author reports on a comparison of models JS-2,
constraints frequently require that testing be con-SLIM, GECOMO, ESTIMACS (by author), PCOC,
ducted so as to uncover the greatest number of er-and SPQR/10, all applied to the same cost estima-
rors possible in the time allowed. In this paper wetion problem. Details of the results are not given,
describe a study undertaken to assess the potentialbut Rubin states that the results “varied in a range of
usefulness of various product- and process-relatedalmost 8 to 1.”
measures in identifying error-prone software. Our
goal was to establish an empirical basis for the effi-

Ruston79 cient utilization of limited testing resources using
objective, measurable criteria. Through a detailedRuston, H. (Workshop Chair). Workshop on Quanti-
analysis of three software products and their errortative Software Models for Reliability, Complexity
discovery histories, we have found simple metricsand Cost: An Assessment of the State of the Art.
related to the amount of data and the structuralNew York: IEEE, 1979.
complexity of programs to be of value for this pur-

This proceedings of a workshop on models of the pose.
software process involving reliability, complexity,

This study involved five products developed andand cost factors, is a good collection of work done
released since 1980, in three different languagesup to this time (late 1970s). Although now some-
(assembler, Pascal and PL/S). The authors reportwhat out-of-date, it still serves as a good reference
that the best predictors of defect rates at the end offor work done in this area prior to 1980.
program design and program coding phases were
Halstead’s n and n , and the total number of deci-1 2Shen83 sions, DE. At the end of the software testing

Shen, V. Y., S. D. Conte, and H. E. Dunsmore. period, the best defect indicating metrics were
“Software Science Revisited: A Critical Analysis of found to be Halstead’s n and the actual number of2the Theory and Its Empirical Support.” IEEE Trans. program trouble memoranda (PTMs). The authors
Software Eng. SE-9, 2 (March 1983), 155-165. also state that “Our study of error density shows

that this measure is, in general, a poor size-Abstract: The theory of software science was devel-
normalized index of program quality. Its use inoped by the late M. H. Halstead of Purdue Univer-
comparing the quality of either programs or pro-sity during the early 1970’s. It was first presented
grammers without regard to related factors such asin unified form in the monograph Elements of Soft-
complexity and size is ill-advised.”ware Science published by Elsevier North-Holland

in 1977. Since it claimed to apply scientific meth-
ods to the very complex and important problem of
software production, and since experimental

SEI-CM-12-1.1 35

Software Metrics

Shepperd88 Symons88
Shepperd, M. “A Critique of Cyclomatic Com- Symons, Charles R. “Function Point Analysis: Dif-
plexity as a Software Metric.” Software Engineering ficulties and Improvements.” IEEE Trans. Software
J. 3, 2 (March 1988), 30-36. Eng. 14, 1 (Jan. 1988), 2-11.

Abstract: McCabe’s cyclomatic complexity metric Abstract: The method of Function Point Analysis
is widely cited as a useful predictor of various soft- was developed by Allan Albrecht to help measure
ware attributes such as reliability and development the size of a computerized business information sys-
effort. This critique demonstrates that it is based tem. Such sizes are needed as a component of the
upon poor theoretical foundations and an inade- measurement of productivity in system development
quate model of software development. The argu- and maintenance activities, and as a component of
ment that the metric provides the developer with a estimating the effort needed for such activities.
useful engineering approximation is not borne out Close examination of the method shows certain
by the empirical evidence. Furthermore, it would weaknesses, and the author proposes a partial al-
appear that for a large class of software it is no ternative. The paper describes the principles of this
more than a proxy for, and in many cases is outper- “Mark II” approach, the results of some measure-
formed by, lines of code. ments of actual systems to calibrate the Mark II

approach, and conclusions on the validity and ap-
The author’s criticisms, very briefly summarized, plicability of function point analysis generally.
include the following. Theoretical: 1) simplistic ap-

Symons presents a critical review of Albrecht’s FPproach to decision counting, 2) independence of
methodology, pointing out several perceivedgenerally accepted program structuring techniques,
shortcomings. He concludes that the method wasand 3) arbitrary impact of program modularization.
developed in a particular environment and is un-Empirical: Studies to date do not establish validity
likely to be valid for more general applications. Heof v(G) as a reliable measure of any observed soft-
then proceeds to develop an alternative formulation,ware properties. Responses can be summarized as
for what he calls “Mark II” Function Points.follows. Theoretical: v(G) is a simple, objective
Whereas Albrecht’s FP formula involves inputs,measure of one aspect of a software product. It is
outputs, internal files, external files, and externalprobably unrealistic to expect it to correlate well
inquiries, the author’s new formula involves onlywith any simply observable, gross characteristic of
inputs, outputs, and entities. In addition, the authorsoftware, since such characteristics are determined
introduces six new factors into the computation ofby a large number of factors, many of which are
the TCF (Technical Complexity Factor), thus rais-unknowable, unmeasurable, or uncontrollable. Em-
ing the total number of such factors from 14 to 20.pirical: For similar reasons, empirical studies have
Although the author may have provided additionalfailed to yield definitive results regarding the valid-
rationale for the new formulation, the net resultity of v(G) as a software metric, as pointed out by
seems to be a relatively minor modification of thethe author. A fundamental problem, noted in the
original FP formulas. Furthermore, the new Mark IIarticle, is the lack of any explicit underlying model,
FP formulas suffer from the same type of countingwithout which attempts at empirical validation are
difficulties and lack of universality for which themeaningless.
original formulas were criticized.

Stetter84
Tausworthe81Stetter, F. “A Measure of Program Complexity.”
Tausworthe, R. C. Deep Space Network SoftwareComputer Languages 9, 3-4 (1984), 203-208.
Cost Estimation Model. TR #81-7, Jet Propulsion

Abstract: The author proposes a measure of pro- Lab, Pasadena, Calif., 1981.
gram complexity which takes into account both the
relationship between statements and the relation- Abstract: This report presents a parametric soft-
ships between statements and data objects (con- ware cost estimation model prepared for JPL Deep
stants and variables). This measure, called pro- Space Network (DSN) Data Systems implementation
gram flow complexity, can be calculated from the tasks. The resource estimation model modifies and
source text of a program in an easy way. combines a number of existing models, such as

those of the General Research Corp., Doty Associ-
This paper is a review of McCabe’s complexity ates, IBM (Walston-Felix), Rome Air Development
measure and Myers’s extension to it. The author Center, University of Maryland, and Rayleigh-
proposes a “cyclomatic flow complexity” that is Norden-Putnam. The model calibrates the task
claimed to eliminate the shortcomings of the former magnitude and difficulty, development environment,
metrics. and software technology effects through prompted

responses to a set of approximately 50 questions.
Parameters in the model are adjusted to fit JPL

36 SEI-CM-12-1.1

Software Metrics

software life-cycle statistics. The estimation model Troy81
output scales a standard DSN Work Breakdown Troy, D. A. and S. H. Zweben. “Measuring the
Structure, which is then input to a PERT/CPM sys- Quality of Structured Designs.” J. Syst. and Soft-
tem, producting a detailed schedule and resource ware 2, 2 (June 1981), 113-120.
budget for the project being planned.

Abstract: Investigates the possibility of providing
The above abstract is quoted from DACS Document some useful measures to aid in the evaluation of
#MBIB-1, “The DACS Measurement Annotated software designs. Such measurements should allow
Bibliography, A Bibliography of Software Measure- some degree of predictability in estimating the qual-
ment Literature,” May 1986. ity of a coded software product based upon its de-

sign and should allow identification and correction
Thebaut84 of deficient designs prior to the coding phase, thus

providing lower software development costs. TheThebaut, S. M. and V. Y. Shen. “An Analytic
study involves the identification of a set of hypoth-Resource Model For Large-Scale Software Develop-
esized measures of design quality and the collectionment.” Information Processing and Management 20,
of these measures from a set of designs for a soft-1-2 (1984), 293-315.
ware system developed in industry. In addition, the
number of modifications made to the coded soft-Abstract: Recent work conducted by members of
ware that resulted from these designs was collected.the Purdue software metrics research group has
A data analysis was performed to identify relation-focused on the complexity associated with coor-
ships between the measures of design quality anddinating the activities of persons involved in large-
the number of modifications made to the coded pro-scale programming efforts. A resource model is
grams. The results indicated that module couplingpresented which is designed to reflect the impact of
was an important factor in determining the qualitythis complexity on the economics of software devel-
of the resulting product. The design metrics ac-opment. The model is based on a formulation in
counted for roughly 50-60 percent of the variabilitywhich development effort is functionally related to
in the modification data, which supports the find-measures of product size and manloading. The par-
ings of previous studies. Finally, the weaknesses ofticular formulation used is meant to suggest a logi-
the study are identified and proposed improvementscal decomposition of development effort into com-
are suggested.ponents related to the independent programming

activity of individuals and to the overhead associ-
The authors attempt to correlate software designated with the required information flow within a
parameters, as taken from structure charts, withprogramming team. The model is evaluated in light
software quality, as measured by defect counts.of acquired data reflecting a large number of com-

mercially developed software products from two
Walston77separate sources. Additional sources of data are

actively being sought. Although strongly analytic in Walston, C. E. and C. P. Felix. “A Method of Pro-
nature, the model’s performance is, for the avail- gramming Measurement and Estimation.” IBM Sys-
able data, at least as good in accounting for the tems J. 16, 1 (1977), 54-73. Reprinted in [Putnam-
observed variability in development effort as some 80], 238-257.
highly publicized empirically based models for com-
parable complexity. It is argued, however, that the Abstract: Improvements in programming technol-
model’s principal strength lies not in its data fitting ogy have paralleled improvements in computing
ability, but rather in its straight forward and intui- system architecture and materials. Along with in-
tively appealing representation of relationships in- creasing knowledge of the system and program de-
volving manpower, time, and effort. velopment processes, there has been some notable

research into programming project measurement,
The cooperative programming model (COPMO) is estimation, and planning. Discussed is a method of
proposed in this article. In this model, the equation programming project productivity estimation. Also
for total effort includes two terms, one correspond- presented are preliminary results of research into
ing to the effort expended in programming-related methods of measuring and estimating programming
activities by individuals and the other corresponding project duration, staff size and computer cost.
to the effort expended in coordinating these activi-
ties among all programming team members. As This is a classic paper in the area of software project
noted above, attempts to validate the model against measurement and estimation; it is based on statis-
empirical data indicate that the model compares tical analyses of historical software data. It dis-
favorably with other models of comparable com- cusses the software measurements program initiated
plexity, while possessing a more satisfying intuitive in 1972 in the IBM Federal Systems Division as an
basis. NASA and Boehm’s data sets were used to attempt to assess the effects of structured program-
compare the model with the COCOMO and Putnam ming on the software development process. At the
models. time the paper was written, the software database

SEI-CM-12-1.1 37

Software Metrics

contained data on 60 completed projects that ranged factors have been estimated, the cost of the module
from 4,000 to 467,000 LOC, and from 12 to 11,758 can be computed from historical cost data for
person-months of effort. The projects represented similar projects. The cost of the software system is
28 high-level languages, and 66 computer systems, then simply the sum of the costs for all modules.
and were classified as small less-complex, medium Like most such models, it may work well in the
less-complex, medium complex, and large complex environment for which it was developed but cannot
systems. After obtaining a basic relationship be- be used in other environments without caution and,
tween LOC and total effort, 68 variables were in- probably, recalibration to that environment.
vestigated for their effects on productivity. Of
these, 29 were found to correlate with productivity Woodfield81
changes; they were then used to compute a produc- Woodfield, S. N., V. Y. Shen, and H. E. Dunsmore.
tivity index for a given project. “A Study of Several Metrics for Programming

Effort.” J. Syst. and Software 2, 2 (June 1981),
Wolverton74 97-103.
Wolverton, R. W. “The Cost of Developing Large-

Abstract: As the cost of programming becomes aScale Software.” IEEE Trans. Computers C-23, 6
major component of the cost of computer systems, it(June 1974), 615-636. Reprinted in [Putnam80],
becomes imperative that program development and282-303.
maintenance be better managed. One measurement
a manager could use is programming complexity.Abstract: The work of software cost forecasting
Such a measure can be very useful if the manager isfalls into two parts. First we make what we call
confident that the higher the complexity measure isstructural forecasts, and then we calculate the abso-
for a programming project, the more effort it takeslute dollar-volume forecasts. Structural forecasts
to complete the project and perhaps to maintain it.describe the technology and function of a software
Until recently most measures of complexity wereproject, but not its size. We allocate resources
based only on intuition and experience. In the past(costs) over the project’s life cycle from the struc-
3 years two objective metrics have been introduced,tural forecasts. Judgement, technical knowledge,
McCabe’s cyclomatic number v(G) and Halstead’sand econometric research should combine in
effort measure E. This paper reports an empiricalmaking the structural forecasts. A methodology
study designed to compare these two metrics with abased on a 25 x 7 structural forecast matrix that
classic size measure, lines of code. A fourth metrichas been used by TRW with good results over the
based on a model of programming is introducedpast few years is presented in this paper. With the
and shown to be better than the previously knownstructural forecast in hand, we go on to calculate
metrics for some experimental data.the absolute dollar-volume forecasts. The general

logic followed in “absolute” cost estimating can be
Four software metrics—LOC, McCabe’s v(G),based on either a mental process or an explicit al-
Halstead’s E, and an author-modified E metric—aregorithm. A cost estimating algorithm is presented
compared to observed program development times.and five traditional methods of software cost
The authors introduce the “Logical Module Hypoth-forecasting are described: top-down estimating,
esis” as support for a modification of the E metric.similarities and differences estimating, ratio es-

timating, standards estimating, bottom-up estimat-
ing. All forecasting methods suffer from the need Woodward79
for a valid cost data base for many estimating situa- Woodward, M. R., M. A. Hennell, and D. Hedley.
tions. Software information elements that experi- “A Measure of Control Flow Complexity in Program
ence has shown to be useful in establishing such a Text.” IEEE Trans. Software Eng. SE-5, 1 (Jan.
data base are given in the body of the paper. Major 1979), 45-50.pricing pitfalls are identified. Two case studies are
presented that illustrate the software cost forecast- Abstract: This paper discusses the need for meas-
ing methodology and historical results. Topics for ures of complexity and unstructuredness of pro-
further work and study are suggested. grams. A simple language independent concept is

put forward as a measure of control flow complexityThis is a classic paper, for Wolverton’s model is
in program text and is then developed for use as aone of the best-known cost estimation models de-
measure of unstructuredness. The proposed metricveloped in the early 1970s. The method is based
is compared with other metrics, the most notable ofupon using historical data from previous projects.
which is the cyclomatic complexity measure ofEstimating the cost for a software module consists McCabe. Some experience with automatic tools for

of three steps: first, estimating the type of software obtaining these metrics is reported.
module; second, estimating the difficulty (complex-
ity) based upon a six-point scale; and third, estimat- The concept of a “knot” as a measure of program
ing the size (LOC) of the module. Once these three complexity is introduced and compared with

McCabe’s v(G).

38 SEI-CM-12-1.1

Software Metrics

ple effects upon other modules if a module is modi-Yau80
fied.Yau, S. S. and J. S. Collofello. “Some Stability

Measures for Software Maintenance.” IEEE Trans.
Software Eng. SE-6, 6 (Nov. 1980), 545-552.

Abstract: Software maintenance is the dominant
factor contributing to the high cost of software. In
this paper, the software maintenance process and
the important software quality attributes that affect
the maintenance effort are discussed. One of the
most important quality attributes of software main-
tainability is the stability of a program, which in-
dicates the resistance to the potential ripple effect
that the program would have when it is modified.
Measures for estimating the stability of a program
and the modules of which the program is composed
are presented, and an algorithm for computing
these stability measures is given. An algorithm for
normalizing these measures is also given. Applica-
tions of these measures during the maintenance
phase are discussed along with an example. An
indirect validation of these stability measures is
also given. Future research efforts involving ap-
plications of these measures during the design
phase, program restructuring based on these meas-
ures, and the development of an overall maintain-
ability measure are also discussed.

Yau85
Yau, S. S. and J. S. Collofello. “Design Stability
Measures For Software Maintenance.” IEEE Trans.
Software Eng. SE-11, 9 (Sept. 1985), 849-856.

Abstract: The high cost of software during its life
cycle can be attributed largely to software mainte-
nance activities, and a major portion of these activi-
ties is to deal with the modifications of the software.
In this paper, design stability measures which in-
dicate the potential ripple effect characteristics due
to modifications of the program at design level are
presented. These measures can be generated at any
point in the design phase of the software life cycle
which enables early maintainability feedback to the
software developers. The validation of these meas-
ures and future research efforts involving the devel-
opment of a user-oriented maintainability measure,
which incorporates the design stability measures as
well as other design measures, are discussed.

The approach taken is based upon the data abstrac-
tion and information hiding principles discussed by
D. L. Parnas. Thus, the metrics defined assume a
modular program structure and should be applicable
to software designs employing modern program-
ming practices. A design stability measure (DS) is
computed for each module, and these values are
then used to compute a program design stability
measure (PDS) for the whole program. The design
stability measures are based upon the assumptions
buried in the module designs, and the potential rip-

SEI-CM-12-1.1 39

