
The CWEB System of Structured Documentation

(Version 3.64 — February 2002)

Donald E. Knuth and Silvio Levy

TEX is a trademark of the American Mathematical Society.
Acrobat Reader is a trademark of Adobe Systems Incorporated.

The printed form of this manual is copyright c© 1994 by Addison-Wesley Publishing Company, Inc. All
rights reserved.
The electronic form is copyright c© 1987, 1990, 1993, 2000 by Silvio Levy and Donald E. Knuth.

Permission is granted to make and distribute verbatim copies of the electronic form of this document provided
that the electronic copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of the electronic form of this document under
the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the
terms of a permission notice identical to this one.
Individuals may make copies of the documentation from the electronic files for their own personal use.
Internet page http://www−cs−faculty.stanford.edu/~knuth/cweb.html contains current info about CWEB
and related topics.



The CWEB System of Structured Documentation

Donald E. Knuth and Silvio Levy

This document describes a version of Don Knuth’s WEB system, adapted to C by Silvio Levy. Since its
creation in 1987, CWEB has been revised and enhanced in various ways, by both Knuth and Levy. We now
believe that its evolution is near an end; however, bug reports, suggestions and comments are still welcome,
and should be sent to Levy (levy@math.berkeley.edu).

Readers who are familiar with Knuth’s memo “The WEB System of Structured Documentation” will be able
to skim this material rapidly, because CWEB and WEB share the same philosophy and (essentially) the same
syntax. In some respects CWEB is a simplification of WEB: for example, CWEB does not need WEB’s features
for macro definition and string handling, because C and its preprocessor already take care of macros and
strings. Similarly, the WEB conventions of denoting octal and hexadecimal constants by @’77 and @"3f are
replaced by C’s conventions 077 and 0x3f. All other features of WEB have been retained, and new features
have been added.

We thank all who contributed suggestions and criticism to the development of CWEB. We are especially
grateful to Steve Avery, Nelson Beebe, Hans-Hermann Bode, Klaus Guntermann, Norman Ramsey, Joachim
Schnitter, and Saroj Mahapatra, who contributed code, and to Cameron Smith, who made many suggestions
improving the manual. Ramsey has made literate programming accessible to users of yet other languages by
means of his SPIDER system [see Communications of the ACM 32 (1989), 1051–1055]. The book Literate
Programming by Knuth (1992) contains a comprehensive bibliography of related early work. Bode, Schnitter,
and Mahapatra adapted CWEB so that it works for C++ as well; therefore in the text below you can read C++

for C if you so desire.

Introduction

The philosophy behind CWEB is that programmers who want to provide the best possible documentation for
their programs need two things simultaneously: a language like TEX for formatting, and a language like C

for programming. Neither type of language can provide the best documentation by itself. But when both
are appropriately combined, we obtain a system that is much more useful than either language separately.

The structure of a software program may be thought of as a “web” that is made up of many interconnected
pieces. To document such a program, we want to explain each individual part of the web and how it relates
to its neighbors. The typographic tools provided by TEX give us an opportunity to explain the local structure
of each part by making that structure visible, and the programming tools provided by C make it possible for
us to specify the algorithms formally and unambiguously. By combining the two, we can develop a style of
programming that maximizes our ability to perceive the structure of a complex piece of software, and at the
same time the documented programs can be mechanically translated into a working software system that
matches the documentation.

The CWEB system consists of two programs named CWEAVE and CTANGLE. When writing a CWEB program
the user keeps the C code and the documentation in the same file, called the CWEB file and generally named
something.w. The command ‘cweave something’ creates an output file something.tex, which can then be
fed to TEX, yielding a “pretty printed” version of something.w that correctly handles typographic details
like page layout and the use of indentation, italics, boldface, and mathematical symbols. The typeset output
also includes extensive cross-index information that is gathered automatically. Similarly, if you run the
command ‘ctangle something’ you will get a C file something.c, which can then be compiled to yield
executable code.

Besides providing a documentation tool, CWEB enhances the C language by providing the ability to permute
pieces of the program text, so that a large system can be understood entirely in terms of small sections and
their local interrelationships. The CTANGLE program is so named because it takes a given web and moves
the sections from their web structure into the order required by C; the advantage of programming in CWEB
is that the algorithms can be expressed in “untangled” form, with each section explained separately. The
CWEAVE program is so named because it takes a given web and intertwines the TEX and C portions contained
in each section, then it knits the whole fabric into a structured document. (Get it? Wow.) Perhaps there is
some deep connection here with the fact that the German word for “weave” is “webe”, and the corresponding
Latin imperative is “texe”!



2 CWEB USER MANUAL (VERSION 3.64)

A user of CWEB should be fairly familiar with the C programming language. A minimal amount of acquain-
tance with TEX is also desirable, but in fact it can be acquired as one uses CWEB, since straight text can be
typeset in TEX with virtually no knowledge of that language. To someone familiar with both C and TEX the
amount of effort necessary to learn the commands of CWEB is small.

Overview

Two kinds of material go into CWEB files: TEX text and C text. A programmer writing in CWEB should be
thinking both of the documentation and of the C program being created; i.e., the programmer should be
instinctively aware of the different actions that CWEAVE and CTANGLE will perform on the CWEB file. TEX text
is essentially copied without change by CWEAVE, and it is entirely deleted by CTANGLE; the TEX text is “pure
documentation.” C text, on the other hand, is formatted by CWEAVE and it is shuffled around by CTANGLE,
according to rules that will become clear later. For now the important point to keep in mind is that there are
two kinds of text. Writing CWEB programs is something like writing TEX documents, but with an additional
“C mode” that is added to TEX’s horizontal mode, vertical mode, and math mode.

A CWEB file is built up from units called sections that are more or less self-contained. Each section has
three parts:
• A TEX part, containing explanatory material about what is going on in the section.
• A middle part, containing macro definitions that serve as abbreviations for C constructions that would be

less comprehensible if written out in full each time. They are turned by CTANGLE into preprocessor
macro definitions.

• A C part, containing a piece of the program that CTANGLE will produce. This C code should ideally be
about a dozen lines long, so that it is easily comprehensible as a unit and so that its structure is
readily perceived.

The three parts of each section must appear in this order; i.e., the TEX commentary must come first, then
the middle part, and finally the C code. Any of the parts may be empty.

A section begins with either of the symbols ‘@ ’ or ‘@*’, where ‘ ’ denotes a blank space. A section ends
at the beginning of the next section (i.e., at the next ‘@ ’ or ‘@*’), or at the end of the file, whichever comes
first. The CWEB file may also contain material that is not part of any section at all, namely the text (if any)
that occurs before the first section. Such text is said to be “in limbo”; it is ignored by CTANGLE and copied
essentially verbatim by CWEAVE, so its function is to provide any additional formatting instructions that may
be desired in the TEX output. Indeed, it is customary to begin a CWEB file with TEX code in limbo that loads
special fonts, defines special macros, changes the page sizes, and/or produces a title page.

Sections are numbered consecutively, starting with 1. These numbers appear at the beginning of each sec-
tion of the TEX documentation output by CWEAVE, and they appear as bracketed comments at the beginning
and end of the code generated by that section in the C program output by CTANGLE.

Section Names

Fortunately, you never mention these numbers yourself when you are writing in CWEB. You just say ‘@ ’
or ‘@*’ at the beginning of each new section, and the numbers are supplied automatically by CWEAVE and
CTANGLE. As far as you are concerned, a section has a name instead of a number; its name is specified by
writing ‘@<’ followed by TEX text followed by ‘@>’. When CWEAVE outputs a section name, it replaces the ‘@<’
and ‘@>’ by angle brackets and inserts the section number in small type. Thus, when you read the output of
CWEAVE it is easy to locate any section that is referred to in another section.

For expository purposes, a section name should be a good description of the contents of that section; i.e.,
it should stand for the abstraction represented by the section. Then the section can be “plugged into” one or
more other sections in such a way that unimportant details of its inner workings are suppressed. A section
name therefore ought to be long enough to convey the necessary meaning.

Unfortunately, it is laborious to type such long names over and over again, and it is also difficult to specify
a long name twice in exactly the same way so that CWEAVE and CTANGLE will be able to match the names to
the sections. To ameliorate this situation, CWEAVE and CTANGLE let you abbreviate a section name, so long
as the full name appears somewhere in the CWEB file; you can type simply ‘@<α...@>’, where α is any string
that is a prefix of exactly one section name appearing in the file. For example, ‘@<Clear the arrays@>’ can
be abbreviated to ‘@<Clear...@>’ if no other section name begins with the five letters ‘Clear’. Elsewhere
you might use the abbreviation ‘@<Clear t...@>’, and so on.



CWEB USER MANUAL (VERSION 3.64) 3

Section names must otherwise match character for character, except that consecutive characters of white
space (spaces, tab marks, newlines, and/or form feeds) are treated as equivalent to a single space, and such
spaces are deleted at the beginning and end of the name. Thus, ‘@< Clear the arrays @>’ will also match
the name in the previous example. Spaces following the ellipsis in abbreviations are ignored as well, but not
those before, so that ‘@<Clear t ...@>’ would not match ‘@<Clear the arrays@>’.

What CTANGLE Does

We have said that a section begins with ‘@ ’ or ‘@*’, but we didn’t say how it gets divided up into a TEX
part, a middle part, and a C part. The middle part begins with the first appearance of ‘@d’ or ‘@f’ in the
section, and the C part begins with the first appearance of ‘@c’ or ‘@<section name@>=’. In the latter case
you are saying, in effect, that the section name stands for the C text that follows. Alternatively, if the C

part begins with ‘@c’ instead of a section name, the current section is said to be unnamed.
The construct ‘@<section name@>’ can appear any number of times in the C part of a section: Subsequent

appearances indicate that a named section is being “used” rather than “defined.” In other words, the C code
for the named section, presumably defined elsewhere, should be spliced in at this point in the C program.
Indeed, the main idea of CTANGLE is to make a C program out of individual sections, named and unnamed.
The exact way in which this is done is this: First all the macro definitions indicated by ‘@d’ are turned into
C preprocessor macro definitions and copied at the beginning. Then the C parts of unnamed sections are
copied down, in order; this constitutes the first-order approximation to the text of the program. (There
should be at least one unnamed section, otherwise there will be no program.) Then all section names that
appear in the first-order approximation are replaced by the C parts of the corresponding sections, and this
substitution process continues until no section names remain. All comments are removed, because the C

program is intended only for the eyes of the C compiler.
If the same name has been given to more than one section, the C text for that name is obtained by putting

together all of the C parts in the corresponding sections. This feature is useful, for example, in a section
named ‘Global variables’, since one can then declare global variables in whatever sections those variables
are introduced. When several sections have the same name, CWEAVE assigns the first section number as the
number corresponding to that name, and it inserts a note at the bottom of that section telling the reader to
‘See also sections so-and-so’; this footnote gives the numbers of all the other sections having the same name
as the present one. The C text corresponding to a section is usually formatted by CWEAVE so that the output
has an equivalence sign in place of the equals sign in the CWEB file; i.e., the output says ‘〈 section name 〉 ≡ C

text’. However, in the case of the second and subsequent appearances of a section with the same name, this
‘≡’ sign is replaced by ‘+≡’, as an indication that the following C text is being appended to the C text of
another section.

As CTANGLE enters and leaves sections, it inserts preprocessor #line commands into the C output file.
This means that when the compiler gives you error messages, or when you debug your program, the messages
refer to line numbers in the CWEB file, and not in the C file. In most cases you can therefore forget about the
C file altogether.

What CWEAVE Does

The general idea of CWEAVE is to make a .tex file from the CWEB file in the following way: The first line of
the .tex file tells TEX to input a file with macros that define CWEB’s documentation conventions. The next
lines of the file will be copied from whatever TEX text is in limbo before the first section. Then comes the
output for each section in turn, possibly interspersed with end-of-page marks. Finally, CWEAVE will generate
a cross-reference index that lists each section number in which each C identifier appears, and it will also
generate an alphabetized list of the section names, as well as a table of contents that shows the page and
section numbers for each “starred” section.

What is a “starred” section, you ask? A section that begins with ‘@*’ instead of ‘@ ’ is slightly special
in that it denotes a new major group of sections. The ‘@*’ should be followed by the title of this group,
followed by a period. Such sections will always start on a new page in the TEX output, and the group title
will appear as a running headline on all subsequent pages until the next starred section. The title will also
appear in the table of contents, and in boldface type at the beginning of its section. Caution: Do not use
TEX control sequences in such titles, unless you know that the cwebmac macros will do the right thing with
them. The reason is that these titles are converted to uppercase when they appear as running heads, and
they are converted to boldface when they appear at the beginning of their sections, and they are also written



4 CWEB USER MANUAL (VERSION 3.64)

out to a table-of-contents file used for temporary storage while TEX is working; whatever control sequences
you use must be meaningful in all three of these modes.

The TEX output produced by CWEAVE for each section consists of the following: First comes the section
number (e.g., ‘\M123.’ at the beginning of section 123, except that ‘\N’ appears in place of ‘\M’ at the
beginning of a starred section). Then comes the TEX part of the section, copied almost verbatim except
as noted below. Then comes the middle part and the C part, formatted so that there will be a little extra
space between them if both are nonempty. The middle and C parts are obtained by inserting a bunch of
funny-looking TEX macros into the C program; these macros handle typographic details about fonts and
proper math spacing, as well as line breaks and indentation.

C Code in TEX Text and Vice Versa

When you are typing TEX text, you will probably want to make frequent reference to variables and other
quantities in your C code, and you will want those variables to have the same typographic treatment when
they appear in your text as when they appear in your program. Therefore the CWEB language allows you
to get the effect of C editing within TEX text, if you place ‘|’ marks before and after the C material. For
example, suppose you want to say something like this:

If pa is declared as ‘int ∗pa ’, the assignment pa = &a[0] makes pa point to the zeroth element of a.

The TEX text would look like this in your CWEB file:

If |pa| is declared as ‘|int *pa|’, the

assignment |pa=&a[0]| makes |pa| point to the zeroth element of |a|.

And CWEAVE translates this into something you are glad you didn’t have to type:

If \\{pa} is declared as ‘\&{int} ${}{*}\\{pa}$’,

the assignment $\\{pa}\K{\AND}\|a[\T{0}]$

makes \\{pa} point to the zeroth element of \|a.

Incidentally, the cross-reference index that CWEAVE would make, in the presence of a comment like this, would
include the current section number as one of the index entries for pa , even though pa might not appear in
the C part of this section. Thus, the index covers references to identifiers in the explanatory comments as
well as in the program itself; you will soon learn to appreciate this feature. However, the identifiers int
and a would not be indexed, because CWEAVE does not make index entries for reserved words or single-letter
identifiers. Such identifiers are felt to be so ubiquitous that it would be pointless to mention every place
where they occur.

Although a section begins with TEX text and ends with C text, we have noted that the dividing line isn’t
sharp, since C text can be included in TEX text if it is enclosed in ‘|...|’. Conversely, TEX text appears
frequently within C text, because everything in comments (i.e., between /* and */, or following //) is treated
as TEX text. Likewise, the text of a section name consists of TEX text, but the construct @<section name@>
as a whole is expected to be found in C text; thus, one typically goes back and forth between the C and TEX
environments in a natural way, as in these examples:

if (x==0) @<Empty the |buffer| array@>

... using the algorithm in |@<Empty the |buffer| array@>|.

The first of these excerpts would be found in the C part of a section, into which the code from the section
named “Empty the buffer array” is being spliced. The second excerpt would be found in the TEX part of the
section, and the named section is being “cited”, rather than defined or used. (Note the ‘|...|’ surrounding
the section name in this case.)

Macros

The control code @d followed by

identifier C text or by identifier (par 1, . . . , par n) C text

(where there is no blank between the identifier and the parentheses in the second case) is transformed by
CTANGLE into a preprocessor command, starting with #define, which is printed at the top of the C output
file as explained earlier.



CWEB USER MANUAL (VERSION 3.64) 5

A ‘@d’ macro definition can go on for several lines, and the newlines don’t have to be protected by
backslashes, since CTANGLE itself inserts the backslashes. If for any reason you need a #define command at
a specific spot in your C file, you can treat it as C code, instead of as a CWEB macro; but then you do have
to protect newlines yourself.

Strings and constants

If you want a string to appear in the C file, delimited by pairs of ’ or " marks as usual, you can type it
exactly so in the CWEB file, except that the character ‘@’ should be typed ‘@@’ (it becomes a control code, the
only one that can appear in strings; see below). Strings should end on the same line as they begin, unless
there’s a backslash at the end of lines within them.

TEX and C have different ways to refer to octal and hex constants, because TEX is oriented to technical
writing while C is oriented to computer processing. In TEX you make a constant octal or hexadecimal by
prepending ’ or ", respectively, to it; in C the constant should be preceded by 0 or 0x. In CWEB it seems
reasonable to let each convention hold in its respective realm; so in C text you get 408 by typing ‘040’,
which CTANGLE faithfully copies into the C file (for the compiler’s benefit) and which CWEAVE prints as ◦40 .
Similarly, CWEAVE prints the hexadecimal C constant ‘0x20’ as #20. The use of italic font for octal digits
and typewriter font for hexadecimal digits makes the meaning of such constants clearer in a document. For
consistency, then, you should type ‘|040|’ or ‘|0x20|’ in the TEX part of the section.

Control codes

A CWEB control code is a two-character combination of which the first is ‘@’. We’ve already seen the meaning
of several control codes; it’s time to list them more methodically.

In the following list, the letters in brackets after a control code indicate in what contexts that code is
allowed. L indicates that the code is allowed in limbo; T (for TEX), M (for middle), and C (for C) mean
that the code is allowed in each of the three parts of a section, at top level—that is, outside such constructs
as ‘|...|’ and section names. An arrow → means that the control code terminates the present part of the
CWEB file, and inaugurates the part indicated by the letter following the arrow. Thus [LTMC → T ] next to
@ indicates that this control code can occur in limbo, or in any of the three parts of a section, and that it
starts the (possibly empty) TEX part of the following section.

Two other abbreviations can occur in these brackets: The letter r stands for restricted context, that is,
material inside C comments, section names, C strings and control texts (defined below); the letter c stands
for inner C context, that is, C material inside ‘|...|’ (including ‘|...|’s inside comments, but not those
occurring in other restricted contexts). An asterisk ∗ following the brackets means that the context from
this control code to the matching @> is restricted.

Control codes involving letters are case-insensitive; thus @d and @D are equivalent. Only the lowercase
versions are mentioned specifically below.
@@ [LTMCrc] A double @ denotes the single character ‘@’. This is the only control code that is legal

everywhere. Note that you must use this convention if you are giving an internet email address in a
CWEB file (e.g., levy@@math.berkeley.edu).

Here are the codes that introduce the TEX part of a section.
@ [LTMC → T ] This denotes the beginning of a new (unstarred) section. A tab mark or form feed or

end-of-line character is equivalent to a space when it follows an @ sign (and in most other cases).
@* [LTMC → T ] This denotes the beginning of a new starred section, i.e., a section that begins a new

major group. The title of the new group should appear after the @*, followed by a period. As explained
above, TEX control sequences should be avoided in such titles unless they are quite simple. When
CWEAVE and CTANGLE read a @*, they print an asterisk on the terminal followed by the current section
number, so that the user can see some indication of progress. The very first section should be starred.

You can specify the “depth” of a starred section by typing * or a decimal number after the @*;
this indicates the relative ranking of the current group of sections in the program hierarchy. Top-level
portions of the program, introduced by @**, get their names typeset in boldface type in the table of
contents; they are said to have depth −1. Otherwise the depth is a nonnegative number, which governs
the amount of indentation on the contents page. Such indentation helps clarify the structure of a long
program. The depth is assumed to be 0 if it is not specified explicitly; when your program is short, you



6 CWEB USER MANUAL (VERSION 3.64)

might as well leave all depths zero. A starred section always begins a new page in the output, unless
the depth is greater than 1.

The middle part of each section consists of any number of macro definitions (beginning with @d) and format
definitions (beginning with @f or @s), intermixed in any order.
@d [TM → M ] Macro definitions begin with @d, followed by an identifier and optional parameters and C

text as explained earlier.
@f [TM → M ] Format definitions begin with @f; they cause CWEAVE to treat identifiers in a special way

when they appear in C text. The general form of a format definition is ‘@f l r’, followed by an optional
comment enclosed between /* and */, where l and r are identifiers; CWEAVE will subsequently treat
identifier l as it currently treats r. This feature allows a CWEB programmer to invent new reserved words
and/or to unreserve some of C’s reserved identifiers. For example, the common words ‘error’ and ‘line’
have been given a special meaning in the C preprocessor, so CWEAVE is set up to format them specially;
if you want a variable named error or line , you should say

@f error normal @f line normal

somewhere in your program.
If r is the special identifier ‘TeX ’, identifier l will be formatted as a TEX control sequence; for

example, ‘@f foo TeX’ in the CWEB file will cause identifier foo to be output as \foo by CWEAVE. The
programmer should define \foo to have whatever custom format is desired, assuming TEX math mode.
(Each underline character is converted to x when making the TEX control sequence, and each dollar
sign is converted to X; thus foo bar becomes \fooxbar. Other characters, including digits, are left
untranslated, so TEX will consider them as macro parameters, not as part of the control sequence itself.
For example,

\def\x#1{x_{#1}} @f x1 TeX @f x2 TeX

will format x1 and x2 not as x1 and x2 but as x1 and x2.)
If r is the special identifier ‘make pair ’, identifier l will be treated as a C++ function template.

For example, after @f convert make_pair one can say ‘convert<int>(2.5)’ without having < and >
misunderstood as less-than and greater-than signs.
CWEAVE knows that identifiers being defined with a typedef should become reserved words; thus you

don’t need format definitions very often.
@s [TM → M ; L] Same as @f, but CWEAVE does not show the format definition in the output, and the

optional C comment is not allowed. This is used mostly in @i files.

Next come the codes that govern the C part of a section.
@c @p [TM → C] The C part of an unnamed section begins with @c (or with @p for “program”; both

control codes do the same thing). This causes CTANGLE to append the following C code to the first-order
program text, as explained on page 3. Note that CWEAVE does not print a ‘@c’ in the TEX output, so
if you are creating a CWEB file based on a TEX-printed CWEB documentation you have to remember to
insert @c in the appropriate places of the unnamed sections.

@< [TM → C; C; c] ∗ This control code introduces a section name (or unambiguous prefix, as discussed
above), which consists of TEX text and extends to the matching @>. The whole construct @<...@> is
conceptually a C element. The behavior is different depending on the context:

A @< appearing in contexts T and M attaches the following section name to the current section, and
inaugurates the C part of the section. The closing @> should be followed by = or +=.

In context C, @< indicates that the named section is being used—its C definition is spliced in by
CTANGLE, as explained on page 3. As an error-detection measure, CTANGLE and CWEAVE complain if such
a section name is followed by =, because most likely this is meant as the definition of a new section, and
so should be preceded by @ . If you really want to say 〈 foo 〉 = bar , where 〈 foo 〉 is being used and not
defined, put a newline before the =.

Finally, in inner C context (that is, within ‘|...|’ in the TEX part of a section or in a comment),
@<...@> means that the named section is being cited. Such an occurrence is ignored by CTANGLE. Note
that even here we think of the section name as being a C element, hence the |...|.

@( [TM → C; C; c] ∗ A section name can begin with @(. Everything works just as for @<, except that
the C code of the section named @(foo@> is written by CTANGLE to file foo. In this way you can get



CWEB USER MANUAL (VERSION 3.64) 7

multiple-file output from a single CWEB file. (The @d definitions are not output to such files, only to the
master .c file.) One use of this feature is to produce header files for other program modules that will be
loaded with the present one. Another use is to produce a test routine that goes with your program. By
keeping the sources for a program and its header and test routine together, you are more likely to keep
all three consistent with each other. Notice that the output of a named section can be incorporated in
several different output files, because you can mention @<foo@> in both @(bar1@> and @(bar2@>.

@h [Cc] Causes CTANGLE to insert at the current spot the #define statements from the middle parts of
all sections, and not to write them at the beginning of the C file. Useful when you want the macro
definitions to come after the include files, say. (Ignored by CTANGLE inside ‘|...|’.)

The next several control codes introduce “control texts,” which end with the next ‘@>’. The closing ‘@>’
must be on the same line of the CWEB file as the line where the control text began. The context from each
of these control codes to the matching @> is restricted.

@^ [TMCc] ∗ The control text that follows, up to the next ‘@>’, will be entered into the index together with
the identifiers of the C program; this text will appear in roman type. For example, to put the phrase
“system dependencies” into the index that is output by CWEAVE, type ‘@^system dependencies@>’ in
each section that you want to index as system dependent.

@. [TMCc] ∗ The control text that follows will be entered into the index in typewriter type.

@: [TMCc] ∗ The control text that follows will be entered into the index in a format controlled by the
TEX macro ‘\9’, which you should define as desired.

@t [MCc] ∗ The control text that follows will be put into a TEX \hbox and formatted along with the
neighboring C program. This text is ignored by CTANGLE, but it can be used for various purposes within
CWEAVE. For example, you can make comments that mix C and classical mathematics, as in ‘size < 215’,
by typing ‘|size < 2@t$^{15}$@>|’.

@= [MCc] ∗ The control text that follows will be passed verbatim to the C program.

@q [LTMCc] ∗ The control text that follows will be totally ignored—it’s a comment for readers of the
CWEB file only. A file intended to be included in limbo, with @i, can identify itself with @q comments.
Another use is to balance unbalanced parentheses in C strings, so that your text editor’s parenthesis
matcher doesn’t go into a tailspin.

@! [TMCc] ∗ The section number in an index entry will be underlined if ‘@!’ immediately precedes the
identifier or control text being indexed. This convention is used to distinguish the sections where an
identifier is defined, or where it is explained in some special way, from the sections where it is used.
A reserved word or an identifier of length one will not be indexed except for underlined entries. An ‘@!’
is implicitly inserted by CWEAVE when an identifier is being defined or declared in C code; for example,
the definition

int array [max dim ], count = old count ;
makes the names array and count get an underlined entry in the index. Statement labels, function
definitions like main (int argc , char ∗argv [ ]), and typedef definitions also imply underlining. An old-
style function definition (without prototyping) doesn’t define its arguments; the arguments will, however,
be considered to be defined (i.e., their index entries will be underlined) if their types are declared before
the body of the function in the usual way (e.g., ‘int argc ; char ∗argv [ ]; { . . . }’). Thus @! is not needed
very often, except in unusual constructions or in cases like

enum boolean {@!false, @!true};

here @! gives the best results because individual constants enumerated by enum are not automatically
underlined in the index at their point of definition.

We now turn to control codes that affect only the operation of CTANGLE.

@’ [MCc] This control code is dangerous because it has quite different meanings in CWEB and the original
WEB. In CWEB it produces the decimal constant corresponding to the ASCII code for a string of length 1
(e.g., @’a’ is CTANGLEd into 97 and @’\t’ into 9). You might want to use this if you need to work in
ASCII on a non-ASCII machine; but in most cases the C conventions of <ctype.h> are adequate for
character-set-independent programming.



8 CWEB USER MANUAL (VERSION 3.64)

@& [MCc] The @& operation causes whatever is on its left to be adjacent to whatever is on its right, in the
C output. No spaces or line breaks will separate these two items.

@l [L] CWEB programmers have the option of using any 8-bit character code from the often-forbidden range
128–255 within TEX text; such characters are also permitted in strings and even in identifiers of the C

program. Under various extensions of the basic ASCII standard, the higher 8-bit codes correspond to
accented letters, letters from non-Latin alphabets, and so on. When such characters occur in identifiers,
CTANGLE must replace them by standard ASCII alphanumeric characters or _, in order to generate
legal C code. It does this by means of a transliteration table, which by default associates the string
Xab to the character with ASCII code #ab (where a and b are hexadecimal digits, and a ≥ 8). By
placing the construction @l ab newstring in limbo, you are telling CTANGLE to replace this character
by newstring instead. For example, the ISO Latin-1 code for the letter ‘ü’ is #FC (or ’\374’), and
CTANGLE will normally change this code to the three-character sequence XFC if it appears in an identifier.
If you say @l fc ue, the code will be transliterated into ue instead.
CWEAVE passes 8-bit characters straight through to TEX without transliteration; therefore TEX must

be prepared to receive them. If you are formatting all your nonstandard identifiers as “custom” control
sequences, you should make TEX treat all their characters as letters. Otherwise you should either make
your 8-bit codes “active” in TEX, or load fonts that contain the special characters you need in the correct
positions. (The font selected by TEX control sequence \it is used for identifiers.) Look for special macro
packages designed for CWEB users in your language; or, if you are brave, write one yourself.

The next eight control codes (namely ‘@,’, ‘@/’, ‘@|’, ‘@#’, ‘@+’, ‘@;’, ‘@[’, and ‘@]’) have no effect on the
C program output by CTANGLE; they merely help to improve the readability of the TEX-formatted C that
is output by CWEAVE, in unusual circumstances. CWEAVE’s built-in formatting method is fairly good when
dealing with syntactically correct C text, but it is incapable of handling all possible cases, because it must
deal with fragments of text involving macros and section names; these fragments do not necessarily obey C’s
syntax. Although CWEB allows you to override the automatic formatting, your best strategy is not to worry
about such things until you have seen what CWEAVE produces automatically, since you will probably need to
make only a few corrections when you are touching up your documentation.
@, [MCc] This control code inserts a thin space in CWEAVE’s output. Sometimes you need this extra space

if you are using macros in an unusual way, e.g., if two identifiers are adjacent.
@/ [MC] This control code causes a line break to occur within a C program formatted by CWEAVE. Line

breaks are chosen automatically by TEX according to a scheme that works 99% of the time, but sometimes
you will prefer to force a line break so that the program is segmented according to logical rather than
visual criteria. If a comment follows, say ‘@/@,’ to break the line before the comment.

@| [MC] This control code specifies an optional line break in the midst of an expression. For example,
if you have a long expression on the right-hand side of an assignment statement, you can use ‘@|’ to
specify breakpoints more logical than the ones that TEX might choose on visual grounds.

@# [MC] This control code forces a line break, like @/ does, and it also causes a little extra white space
to appear between the lines at this break. You might use it, for example, between groups of macro
definitions that are logically separate but within the same section. CWEB automatically inserts this extra
space between functions, between external declarations and functions, and between declarations and
statements within a function.

@+ [MC] This control code cancels a line break that might otherwise be inserted by CWEAVE, e.g., before
the word ‘else’, if you want to put a short if–else construction on a single line. If you say ‘{@+’ at the
beginning of a compound statement that is the body of a function, the first declaration or statement of
the function will appear on the same line as the left brace, and it will be indented by the same amount
as the second declaration or statement on the next line.

@; [MC] This control code is treated like a semicolon, for formatting purposes, except that it is invisible.
You can use it, for example, after a section name or macro when the C text represented by that section
or macro is a compound statement or ends with a semicolon. Consider constructions like

if (condition) macro @;

else break;

where macro is defined to be a compound statement (enclosed in braces). This is a well-known infelicity
of C syntax.



CWEB USER MANUAL (VERSION 3.64) 9

@[ [MC] See @].

@] [MC] Place @[...@] brackets around program text that CWEAVE is supposed to format as an expression,
if it doesn’t already do so. (This occasionally applies to unusual macro arguments.) Also insert ‘@[@]’
between a simple type name and a left parenthesis when declaring a pointer to a function, as in

int @[@] (*f)();

otherwise CWEAVE will confuse the first part of that declaration with the C++ expression ‘int(∗f)’.
Another example, for people who want to use low-level #define commands in the midst of C code and
the definition begins with a cast:

#define foo @[(int)(bar)@]

The remaining control codes govern the input that CWEB sees.

@x @y @z [change file ] CWEAVE and CTANGLE are designed to work with two input files, called web file and
change file , where change file contains data that overrides selected portions of web file . The resulting
merged text is actually what has been called the CWEB file elsewhere in this report.

Here’s how it works: The change file consists of zero or more “changes,” where a change has the form
‘@x〈old lines〉@y〈new lines〉@z’. The special control codes @x, @y, @z, which are allowed only in change
files, must appear at the beginning of a line; the remainder of such a line is ignored. The 〈old lines〉
represent material that exactly matches consecutive lines of the web file ; the 〈new lines〉 represent zero
or more lines that are supposed to replace the old. Whenever the first “old line” of a change is found
to match a line in the web file , all the other lines in that change must match too.

Between changes, before the first change, and after the last change, the change file can have any
number of lines that do not begin with ‘@x’, ‘@y’, or ‘@z’. Such lines are bypassed and not used for
matching purposes.

This dual-input feature is useful when working with a master CWEB file that has been received from
elsewhere (e.g., tangle.w or weave.w or tex.web), when changes are desirable to customize the program
for your local computer system. You will be able to debug your system-dependent changes without
clobbering the master web file; and once your changes are working, you will be able to incorporate them
readily into new releases of the master web file that you might receive from time to time.

@i [web file ] Furthermore the web file itself can be a combination of several files. When either CWEAVE or
CTANGLE is reading a file and encounters the control code @i at the beginning of a line, it interrupts
normal reading and starts looking at the file named after the @i, much as the C preprocessor does when
it encounters an #include line. After the included file has been entirely read, the program goes back
to the next line of the original file. The file name following @i can be surrounded by " characters, but
such delimiters are optional. Include files can nest.

Change files can have lines starting with @i. In this way you can replace one included file with
another. Conceptually, the replacement mechanism described above does its work first, and its output
is then checked for @i lines. If @i foo occurs between @y and @z in a change file, individual lines of
file foo and files it includes are not changeable; but changes can be made to lines from files that were
included by unchanged input.

On UNIX systems (and others that support environment variables), if the environment variable
CWEBINPUTS is set, or if the compiler flag of the same name was defined at compile time, CWEB will
look for include files in the directory thus named, if it cannot find them in the current directory.

Additional features and caveats

1. In certain installations of CWEB that have an extended character set, the characters ‘↑’, ‘↓’, ‘→’, ‘≠’, ‘≤’,
‘≥’, ‘≡’, ‘∨’, ‘∧’, ‘⊂’, and ‘⊃’ can be typed as abbreviations for ‘++’, ‘−−’, ‘−>’, ‘!=’, ‘<=’, ‘>=’, ‘==’, ‘|| ’, ‘&&’,
‘<<’, and ‘>>’, respectively.

2. If you have an extended character set, you can use it with only minimal restrictions, as discussed under
the rules for @l above. But you should stick to standard ASCII characters if you want to write programs
that will be useful to all the poor souls out there who don’t have extended character sets.

3. The TEX file output by CWEAVE is broken into lines having at most 80 characters each. When TEX text
is being copied, the existing line breaks are copied as well. If you aren’t doing anything too tricky, CWEAVE



10 CWEB USER MANUAL (VERSION 3.64)

will recognize when a TEX comment is being split across two or more lines, and it will append ‘%’ to the
beginning of such continued comments.

4. C text is translated by a “bottom up” procedure that identifies each token as a “part of speech” and
combines parts of speech into larger and larger phrases as much as possible according to a special grammar
that is explained in the documentation of CWEAVE. It is easy to learn the translation scheme for simple
constructions like single identifiers and short expressions, just by looking at a few examples of what CWEAVE
does, but the general mechanism is somewhat complex because it must handle much more than C itself.
Furthermore the output contains embedded codes that cause TEX to indent and break lines as necessary,
depending on the fonts used and the desired page width. For best results it is wise to avoid enclosing long C

texts in |...|, since the indentation and line breaking codes are omitted when the |...| text is translated
from C to TEX. Stick to simple expressions or statements. If a C preprocessor command is enclosed in |...|,
the # that introduces it must be at the beginning of a line, or CWEAVE won’t print it correctly.

5. Comments are not permitted in |...| text. After a ‘|’ signals the change from TEX text to C text,
the next ‘|’ that is not part of a string or control text or section name ends the C text.

6. A comment must have properly nested occurrences of left and right braces, otherwise CWEAVE will
complain. But it does try to balance the braces, so that TEX won’t foul up too much.

7. When you’re debugging a program and decide to omit some of your C code, do NOT simply “comment
it out.” Such comments are not in the spirit of CWEB documentation; they will appear to readers as if they
were explanations of the uncommented-out instructions. Furthermore, comments of a program must be valid
TEX text; hence CWEAVE will get confused if you enclose C statements in /*...*/ instead of in /*|...|*/. If
you must comment out C code, you can surround it with preprocessor commands like #if 0==1 and #endif.

8. The @f feature allows you to define one identifier to act like another, and these format definitions are
carried out sequentially. In general, a given identifier has only one printed format throughout the entire
document, and this format is used even before the @f that defines it. The reason is that CWEAVE operates
in two passes; it processes @f’s and cross-references on the first pass and it does the output on the second.
(However, identifiers that implicitly get a boldface format, thanks to a typedef declaration, don’t obey this
rule; they are printed differently before and after the relevant typedef. This is unfortunate, but hard to fix.
You can get around the restriction by saying, say, ‘@s foo int’, before or after the typedef.)

9. Sometimes it is desirable to insert spacing into formatted C code that is more general than the thin
space provided by ‘@,’. The @t feature can be used for this purpose; e.g., ‘@t\hskip 1in@>’ will leave
one inch of blank space. Furthermore, ‘@t\4@>’ can be used to backspace by one unit of indentation, since
the control sequence \4 is defined in cwebmac to be such a backspace. (This control sequence is used, for
example, at the beginning of lines that contain labeled statements, so that the label will stick out a little at
the left.) You can also use ‘@t}\3{−5@>’ to force a break in the middle of an expression.

10. Each identifier in CWEB has a single formatting convention. Therefore you shouldn’t use the same
identifier to denote, say, both a type name and part of a struct, even though C does allow this.

Running the programs

The UNIX command line for CTANGLE is

ctangle [options] web_file[.w] [{change_file[.ch]|−} [out_file]]

and the same conventions apply to CWEAVE. If ‘−’ or no change file is specified, the change file is null. The
extensions .w and .ch are appended only if the given file names contain no dot. If the web file defined in this
way cannot be found, the extension .web will be tried. For example, ‘cweave cob’ will try to read cob.w;
failing that, it will try cob.web before giving up. If no output file name is specified, the name of the C file
output by CTANGLE is obtained by appending the extension .c; the name of the TEX file output by CWEAVE
gets the extension .tex. Index files output by CWEAVE replace .tex by .idx and .scn.

Programmers who like terseness might choose to set up their operating shell so that ‘wv’ expands to
‘cweave −bhp’; this will suppress most terminal output from CWEAVE except for error messages.

Options are introduced either by a − sign, to turn an option off, or by a + sign to turn one on. For example,
‘−fb’ turns off options f and b; ‘+s’ turns on option s. Options can be specified before the file names, after
the file names, or both. The following options are currently implemented:
b Print a banner line at the beginning of execution. (On by default.)
e Enclose C material formatted by CWEAVE in brackets \PB{...}, so that special hooks can be used. (Off

by default; has no effect on CTANGLE.)



CWEB USER MANUAL (VERSION 3.64) 11

f Force line breaks after each C statement formatted by CWEAVE. (On by default; −f saves paper but looks
less C-like to some people.) (Has no effect on CTANGLE.)

h Print a happy message at the conclusion of a successful run. (On by default.)
p Give progress reports as the program runs. (On by default.)
s Show statistics about memory usage after the program runs to completion. (Off by default.) If you have

large CWEB files or sections, you may need to see how close you come to exceeding the capacity of CTANGLE
and/or CWEAVE.

x Include indexes and a table of contents in the TEX file output by CWEAVE. (On by default.) (Has no effect
on CTANGLE.)

Further details about formatting

You may not like the way CWEAVE handles certain situations. If you’re desperate, you can customize CWEAVE
by changing its grammar. This means changing the source code, a task that you might find amusing. A
table of grammar rules appears in the CWEAVE source listing, and you can make a separate copy of that table
by copying the file prod.w found in the CWEB sources and saying ‘cweave −x prod’, followed by ‘tex prod’.

You can see exactly how CWEAVE is parsing your C code by preceding it with the line ‘@ @c @2’. (The
control code ‘@2’ turns on a “peeping” mode, and ‘@0’ turns it off.) For example, if you run CWEAVE on the
file

@ @c @2
main (argc,argv)
char **argv;
{ for (;argc>0;argc--) printf("%s\n",argv[argc-1]); }

you get the following gibberish on your screen:

[...]
4:*exp ( +exp+ )...
11:*exp +exp+ int...
5:*+exp+ int +unorbinop+...
[...]
60: +fn_decl+*+{+ -stmt- +}-
55:*+fn_decl+ -stmt-
52:*+function-
[...]

The first line says that grammar rule 4 has just been applied, and CWEAVE currently has in its memory a
sequence of chunks of TEX code (called “scraps”) that are respectively of type exp (for expression), open-
parenthesis, exp again, close-parenthesis, and further scraps that haven’t yet been considered by the parser.
(The + and − signs stipulate that TEX should be in or out of math mode at the scrap boundaries. The *
shows the parser’s current position.) Then rule 11 is applied, and the sequence ( exp ) becomes an exp and
so on. In the end the whole C text has become one big scrap of type function .

Sometimes things don’t work as smoothly, and you get a bunch of lines lumped together. This means that
CWEAVE could not digest something in your C code. For instance, suppose ‘@<Argument definitions@>’
had appeared instead of ‘char **argv;’ in the program above. Then CWEAVE would have been somewhat
mystified, since it thinks that section names are just exps. Thus it would tell TEX to format ‘〈Argument
declarations 2 〉’ on the same line as ‘main (argc , argv )’. In this case you should help CWEAVE by putting ‘@/’
after ‘main(argc,argv)’.
CWEAVE automatically inserts a bit of extra space between declarations and the first apparent statement

of a block. One way to defeat this spacing locally is

int x;@+@t}\6{@>
@<Other locals@>@;@#

the ‘@#’ will put extra space after ‘〈Other locals 〉’.



12 CWEB USER MANUAL (VERSION 3.64)

Hypertext and hyperdocumentation

Many people have of course noticed analogies between CWEB and the World Wide Web. The CWEB macros are
in fact set up so that the output of CWEAVE can be converted easily into Portable Document Format, with
clickable hyperlinks that can be read with Adobe’s Acrobat Reader, using a widely available open-source
program called dvipdfm developed by Mark A. Wicks. After using CWEAVE to convert cob.w into cob.tex,
you can prepare and view a hypertext version of the program by giving the commands

tex "\let\pdf+ \input cob"
dvipdfm cob
acroread cob.pdf

instead of invoking TEX in the normal way. (Thanks to Hans Hagen, César Augusto Rorato Crusius, and
Julian Gilbey for the macros that make this work.) Alternatively, thanks to Hàn Thế Thành and Andreas
Scherer, you can generate cob.pdf in one step by simply saying ‘pdftex cob’.

A more elaborate system called CTWILL, which extends the usual cross references of CWEAVE by preparing
links from the uses of identifiers to their definitions, is also available—provided that you are willing to work a
bit harder in cases where an identifier is multiply defined. CTWILL is intended primarily for hardcopy output,
but its principles could be used for hypertext as well. See Chapter 11 of Digital Typography by D. E. Knuth
(1999), and the program sources at ftp://labrea.stanford.edu/pub/ctwill.

Appendices

As an example of a real program written in CWEB, Appendix A contains an excerpt from the CWEB program
itself. The reader who examines the listings in this appendix carefully will get a good feeling for the basic
ideas of CWEB.

Appendix B is the file that sets TEX up to accept the output of CWEAVE, and Appendix C discusses how
to use some of those macros to vary the output formats.

A “long” version of this manual, which can be produced from the CWEB sources via the UNIX command
make fullmanual, also contains appendices D, E, and F, which exhibit the complete source code for CTANGLE
and CWEAVE.



Appendix A: Excerpts from a CWEB Program

This appendix consists of four listings. The first shows the CWEB input that generated sections 12–15 of the
file common.w, which contains routines common to CWEAVE and CTANGLE. Note that some of the lines are
indented to show the program structure; the indentation is ignored by CWEAVE and CTANGLE, but users find
that CWEB files are quite readable if they have some such indentation.

The second and third listings show corresponding parts of the C code output by CTANGLE and of the
corresponding TEX code output by CWEAVE, when run on common.w. The fourth listing shows how that
output looks when printed out.
@ Procedure |prime_the_change_buffer|
sets |change_buffer| in preparation for the next matching operation.
Since blank lines in the change file are not used for matching, we have
|(change_limit==change_buffer && !changing)| if and only if
the change file is exhausted. This procedure is called only when
|changing| is 1; hence error messages will be reported correctly.

@c
void
prime_the_change_buffer()
{

change_limit=change_buffer; /* this value is used if the change file ends */
@<Skip over comment lines in the change file; |return| if end of file@>;
@<Skip to the next nonblank line; |return| if end of file@>;
@<Move |buffer| and |limit| to |change_buffer| and |change_limit|@>;

}

@ While looking for a line that begins with \.{@@x} in the change file, we
allow lines that begin with \.{@@}, as long as they don’t begin with \.{@@y},
\.{@@z}, or \.{@@i} (which would probably mean that the change file is fouled up).

@<Skip over comment lines in the change file...@>=
while(1) {

change_line++;
if (!input_ln(change_file)) return;
if (limit<buffer+2) continue;
if (buffer[0]!=’@@’) continue;
if (xisupper(buffer[1])) buffer[1]=tolower(buffer[1]);
if (buffer[1]==’x’) break;
if (buffer[1]==’y’ || buffer[1]==’z’ || buffer[1]==’i’) {

loc=buffer+2;
err_print("! Missing @@x in change file");

@.Missing @@x...@>
}

}

@ Here we are looking at lines following the \.{@@x}.

@<Skip to the next nonblank line...@>=
do {

change_line++;
if (!input_ln(change_file)) {

err_print("! Change file ended after @@x");
@.Change file ended...@>

return;
}

} while (limit==buffer);

@ @<Move |buffer| and |limit| to |change_buffer| and |change_limit|@>=
{

change_limit=change_buffer-buffer+limit;
strncpy(change_buffer,buffer,limit-buffer+1);

}



14 APPENDIX A — TRANSLATION BY CTANGLE

Here’s the portion of the C code generated by CTANGLE that corresponds to the source on the preceding
page. Notice that sections 13, 14 and 15 have been tangled into section 12.
/*:9*//*12:*/
#line 247 "common.w"

void
prime_the_change_buffer()
{
change_limit= change_buffer;
/*13:*/
#line 261 "common.w"

while(1){
change_line++;
if(!input_ln(change_file))return;
if(limit<buffer+2)continue;
if(buffer[0]!=’@’)continue;
if(xisupper(buffer[1]))buffer[1]= tolower(buffer[1]);
if(buffer[1]==’x’)break;
if(buffer[1]==’y’||buffer[1]==’z’||buffer[1]==’i’){
loc= buffer+2;
err_print("! Missing @x in change file");

}
}

/*:13*/
#line 252 "common.w"
;
/*14:*/
#line 278 "common.w"

do{
change_line++;
if(!input_ln(change_file)){
err_print("! Change file ended after @x");

return;
}
}while(limit==buffer);

/*:14*/
#line 253 "common.w"
;
/*15:*/
#line 288 "common.w"

{
change_limit= change_buffer-buffer+limit;
strncpy(change_buffer,buffer,limit-buffer+1);
}

/*:15*/
#line 254 "common.w"
;
}

/*:12*//*16:*/



APPENDIX A — TRANSLATION BY CWEAVE 15

Here is the corresponding excerpt from common.tex.
\M{12}Procedure \PB{\\{prime\_the\_change\_buffer}}
sets \PB{\\{change\_buffer}} in preparation for the next matching operation.
Since blank lines in the change file are not used for matching, we have
\PB{$(\\{change\_limit}\E\\{change\_buffer}\W\R\\{changing})$} if and only if
the change file is exhausted. This procedure is called only when
\PB{\\{changing}} is 1; hence error messages will be reported correctly.

\Y\B\&{void} \\{prime\_the\_change\_buffer}(\,)\1\1\2\2\6
${}\{{}$\1\6
${}\\{change\_limit}\K\\{change\_buffer}{}$;\C{ this value is used if the
change file ends }\6
\X13:Skip over comment lines in the change file; \PB{\&{return}} if end of file%
\X;\6
\X14:Skip to the next nonblank line; \PB{\&{return}} if end of file\X;\6
\X15:Move \PB{\\{buffer}} and \PB{\\{limit}} to \PB{\\{change\_buffer}} and %
\PB{\\{change\_limit}}\X;\6
\4${}\}{}$\2\par
\fi

\M{13}While looking for a line that begins with \.{@x} in the change file, we
allow lines that begin with \.{@}, as long as they don’t begin with \.{@y},
\.{@z}, or \.{@i} (which would probably mean that the change file is fouled
up).

\Y\B\4\X13:Skip over comment lines in the change file; \PB{\&{return}} if end
of file\X${}\E{}$\6
\&{while} (\T{1})\5
${}\{{}$\1\6
${}\\{change\_line}\PP;{}$\6
\&{if} ${}(\R\\{input\_ln}(\\{change\_file})){}$\1\5
\&{return};\2\6
\&{if} ${}(\\{limit}<\\{buffer}+\T{2}){}$\1\5
\&{continue};\2\6
\&{if} ${}(\\{buffer}[\T{0}]\I\.{’@’}){}$\1\5
\&{continue};\2\6
\&{if} (\\{xisupper}(\\{buffer}[\T{1}]))\1\5
${}\\{buffer}[\T{1}]\K\\{tolower}(\\{buffer}[\T{1}]);{}$\2\6
\&{if} ${}(\\{buffer}[\T{1}]\E\.{’x’}){}$\1\5
\&{break};\2\6
\&{if} ${}(\\{buffer}[\T{1}]\E\.{’y’}\V\\{buffer}[\T{1}]\E\.{’z’}\V\\{buffer}[%
\T{1}]\E\.{’i’}){}$\5
${}\{{}$\1\6
${}\\{loc}\K\\{buffer}+\T{2};{}$\6
\\{err\_print}(\.{"!\ Missing\ @x\ in\ cha}\)\.{nge\ file"});\6
\4${}\}{}$\2\6
\4${}\}{}$\2\par
\U12.\fi

\M{14}Here we are looking at lines following the \.{@x}.

\Y\B\4\X14:Skip to the next nonblank line; \PB{\&{return}} if end of file\X${}%
\E{}$\6
\&{do}\5
${}\{{}$\1\6
${}\\{change\_line}\PP;{}$\6
\&{if} ${}(\R\\{input\_ln}(\\{change\_file})){}$\5
${}\{{}$\1\6
\\{err\_print}(\.{"!\ Change\ file\ ended}\)\.{\ after\ @x"});\6
\&{return};\6
\4${}\}{}$\2\6
\4${}\}{}$\2\5
\&{while} ${}(\\{limit}\E\\{buffer}){}$;\par
\U12.\fi

\M{15}\B\X15:Move \PB{\\{buffer}} and \PB{\\{limit}} to \PB{\\{change\_buffer}}
and \PB{\\{change\_limit}}\X${}\E{}$\6
${}\{{}$\1\6
${}\\{change\_limit}\K\\{change\_buffer}-\\{buffer}+\\{limit};{}$\6
${}\\{strncpy}(\\{change\_buffer},\39\\{buffer},\39\\{limit}-\\{buffer}+%
\T{1});{}$\6
\4${}\}{}$\2\par
\Us12\ET16.\fi



16 APPENDIX A — FINAL DOCUMENT

And here’s what the same excerpt looks like when typeset.

12. Procedure prime the change buffer sets change buffer in preparation for the next matching operation.
Since blank lines in the change file are not used for matching, we have (change limit ≡ change buffer ∧
¬changing ) if and only if the change file is exhausted. This procedure is called only when changing is 1;
hence error messages will be reported correctly.

void prime the change buffer ( )
{

change limit = change buffer ; /∗ this value is used if the change file ends ∗/
〈Skip over comment lines in the change file; return if end of file 13 〉;
〈Skip to the next nonblank line; return if end of file 14 〉;
〈Move buffer and limit to change buffer and change limit 15 〉;
}

13. While looking for a line that begins with @x in the change file, we allow lines that begin with @, as
long as they don’t begin with @y, @z, or @i (which would probably mean that the change file is fouled up).
〈Skip over comment lines in the change file; return if end of file 13 〉 ≡

while (1) {
change line ++;
if (¬input ln (change file )) return;
if (limit < buffer + 2) continue;
if (buffer [0] 6= ’@’) continue;
if (xisupper (buffer [1])) buffer [1] = tolower (buffer [1]);
if (buffer [1] ≡ ’x’) break;
if (buffer [1] ≡ ’y’ ∨ buffer [1] ≡ ’z’ ∨ buffer [1] ≡ ’i’) {

loc = buffer + 2;
err print ("! Missing @x in change file");

}
}

This code is used in section 12.

14. Here we are looking at lines following the @x.
〈Skip to the next nonblank line; return if end of file 14 〉 ≡

do {
change line ++;
if (¬input ln (change file )) {

err print ("! Change file ended after @x");
return;
}
} while (limit ≡ buffer );

This code is used in section 12.

15. 〈Move buffer and limit to change buffer and change limit 15 〉 ≡
{

change limit = change buffer − buffer + limit ;
strncpy (change buffer , buffer , limit − buffer + 1);
}

This code is used in sections 12 and 16.



Appendix B: The cwebmac.tex file

This is the file that extends “plain TEX” format in order to support the features needed by the output of
CWEAVE.
% standard macros for CWEB listings (in addition to plain.tex)
% Version 3.64 --- February 2002
\ifx\documentstyle\undefined\else\endinput\fi % LaTeX will use other macros
\xdef\fmtversion{\fmtversion+CWEB3.64}
\chardef\cwebversion=3 \chardef\cwebrevision=64
\newif\ifpdf
\ifx\pdf+\pdftrue\fi
% Uncomment the following line if you want PDF goodies to be the default
%\ifx\pdf-\else\pdftrue\fi
\def\pdflinkcolor{0 0 1} % the RGB values for hyperlink color
\newif\ifpdftex
\ifx\pdfoutput\undefined \pdftexfalse \else\ifnum\pdfoutput=0 \pdftexfalse
\else \pdftextrue \pdfoutput=1 \input pdfcolor \let\setcolor\pdfsetcolor \fi\fi
\newif\ifacro \ifpdf\acrotrue\fi \ifpdftex\acrotrue\fi

\let\:=\. % preserve a way to get the dot accent
% (all other accents will still work as usual)

\parskip 0pt % no stretch between paragraphs
\parindent 1em % for paragraphs and for the first line of C text

\font\ninerm=cmr9
\let\mc=\ninerm % medium caps
\def\CEE/{{\mc C\spacefactor1000}}
\def\UNIX/{{\mc U\kern-.05emNIX\spacefactor1000}}
\def\TEX/{\TeX}
\def\CPLUSPLUS/{{\mc C\PP\spacefactor1000}}
\def\Cee{\CEE/} % for backward compatibility
\def\9#1{}
% with this definition of \9 you can say @:sort key}{TeX code@>
% to alphabetize an index entry by the sort key but format with the TeX code

\font\eightrm=cmr8
\let\sc=\eightrm % for smallish caps (NOT a caps-and-small-caps font)
\let\mainfont=\tenrm
\let\cmntfont\tenrm
%\font\tenss=cmss10 \let\cmntfont\tenss % alternative comment font
\font\titlefont=cmr7 scaled\magstep4 % title on the contents page
\font\ttitlefont=cmtt10 scaled\magstep2 % typewriter type in title
\font\tentex=cmtex10 % TeX extended character set (used in strings)
\fontdimen7\tentex=0pt % no double space after sentences

\def\\#1{\leavevmode\hbox{\it#1\/\kern.05em}} % italic type for identifiers
\def\|#1{\leavevmode\hbox{$#1$}} % one-letter identifiers look better this way
\def\&#1{\leavevmode\hbox{\bf

\def\_{\kern.04em\vbox{\hrule width.3em height .6pt}\kern.08em}%
#1\/\kern.05em}} % boldface type for reserved words

\def\.#1{\leavevmode\hbox{\tentex % typewriter type for strings
\let\\=\BS % backslash in a string
\let\{=\LB % left brace in a string
\let\}=\RB % right brace in a string
\let\~=\TL % tilde in a string
\let\ =\SP % space in a string
\let\_=\UL % underline in a string
\let\&=\AM % ampersand in a string
\let\^=\CF % circumflex in a string
#1\kern.05em}}

\def\){{\tentex\kern-.05em}\discretionary{\hbox{\tentex\BS}}{}{}}
\def\AT{@} % at sign for control text (not needed in versions >= 2.9)
\def\ATL{\par\noindent\bgroup\catcode‘\_=12 \postATL} % print @l in limbo
\def\postATL#1 #2 {\bf letter \\{\uppercase{\char"#1}}

tangles as \tentex "#2"\egroup\par}
\def\noATL#1 #2 {}
\def\noatl{\let\ATL=\noATL} % suppress output from @l
\def\ATH{{\acrofalse\X\kern-.5em:Preprocessor definitions\X}}
\let\PB=\relax % hook for program brackets |...| in TeX part or section name



18 APPENDIX B — MACROS FOR FORMATTING

\chardef\AM=‘\& % ampersand character in a string
\chardef\BS=‘\\ % backslash in a string
\chardef\LB=‘\{ % left brace in a string
\chardef\RB=‘\} % right brace in a string
\def\SP{{\tt\char‘\ }} % (visible) space in a string
\chardef\TL=‘\~ % tilde in a string
\chardef\UL=‘\_ % underline character in a string
\chardef\CF=‘\^ % circumflex character in a string

\newbox\PPbox % symbol for ++
\setbox\PPbox=\hbox{\kern.5pt\raise1pt\hbox{\sevenrm+\kern-1pt+}\kern.5pt}
\def\PP{\copy\PPbox}
\newbox\MMbox \setbox\MMbox=\hbox{\kern.5pt\raise1pt\hbox{\sevensy\char0
\kern-1pt\char0}\kern.5pt}

\def\MM{\copy\MMbox}
\newbox\MGbox % symbol for ->
\setbox\MGbox=\hbox{\kern-2pt\lower3pt\hbox{\teni\char’176}\kern1pt}
\def\MG{\copy\MGbox}
\def\MRL#1{\mathrel{\let\K==#1}}
%\def\MRL#1{\KK#1}\def\KK#1#2{\buildrel\;#1\over{#2}}
\let\GG=\gg
\let\LL=\ll
\let\NULL=\Lambda
\mathchardef\AND="2026 % bitwise and; also \& (unary operator)
\let\OR=\mid % bitwise or
\let\XOR=\oplus % bitwise exclusive or
\def\CM{{\sim}} % bitwise complement
\newbox\MODbox \setbox\MODbox=\hbox{\eightrm\%}
\def\MOD{\mathbin{\copy\MODbox}}
\def\DC{\kern.1em{::}\kern.1em} % symbol for ::
\def\PA{\mathbin{.*}} % symbol for .*
\def\MGA{\mathbin{\MG*}} % symbol for ->*
\def\this{\&{this}}

\newbox\bak \setbox\bak=\hbox to -1em{} % backspace one em
\newbox\bakk\setbox\bakk=\hbox to -2em{} % backspace two ems

\newcount\ind % current indentation in ems
\def\1{\global\advance\ind by1\hangindent\ind em} % indent one more notch
\def\2{\global\advance\ind by-1} % indent one less notch
\def\3#1{\hfil\penalty#10\hfilneg} % optional break within a statement
\def\4{\copy\bak} % backspace one notch
\def\5{\hfil\penalty-1\hfilneg\kern2.5em\copy\bakk\ignorespaces}% optional break
\def\6{\ifmmode\else\par % forced break

\hangindent\ind em\noindent\kern\ind em\copy\bakk\ignorespaces\fi}
\def\7{\Y\6} % forced break and a little extra space
\def\8{\hskip-\ind em\hskip 2em} % no indentation

\newcount\gdepth % depth of current major group, plus one
\newcount\secpagedepth
\secpagedepth=3 % page breaks will occur for depths -1, 0, and 1
\newtoks\gtitle % title of current major group
\newskip\intersecskip \intersecskip=12pt minus 3pt % space between sections
\let\yskip=\smallskip
\def\?{\mathrel?}
\def\note#1#2.{\Y\noindent{\hangindent2em%

\baselineskip10pt\eightrm#1~\ifacro{\pdfnote#2.}\else#2\fi.\par}}

\newtoks\toksA \newtoks\toksB \newtoks\toksC \newtoks\toksD
\newtoks\toksE \newtoks\toksF \newtoks\usersanitizer
\newcount\countA \countA=0 \newcount\countB \countB=0
\newcount\countC \countC=0
\newif\iftokprocessed \newif\ifTnum \newif\ifinstr
{\def\\{\global\let\spacechar= }\\ }

\ifacro % The following are pdf macros
\def\thewidth{\the\wd0 \space}
\def\theheight{\the\ht\strutbox\space}
\def\thedepth{\the\dp\strutbox\space}
\ifpdftex

\ifx\pdfannotlink\undefined\let\pdfannotlink\pdfstartlink\fi% for pdfTeX 0.14



APPENDIX B — MACROS FOR FORMATTING 19

\def\pdflink#1#2{\hbox{\pdfannotlink height\ht\strutbox depth\dp\strutbox
attr{/Border [0 0 0]} goto num #1 \BlueGreen #1\Black\pdfendlink}}

\else\def\pdflink#1#2{\setbox0=\hbox{\special{pdf: bc [ \pdflinkcolor ]}{#1}%
\special{pdf: ec}}\special{pdf: ann width \thewidth height \theheight

depth \thedepth << /Type /Annot /Subtype /Link
/Border [0 0 0] /A << /S /GoTo /D (#2) >> >>}\box0\relax}\fi

\def\pdfnote#1.{\setbox0=\hbox{\toksA={#1.}\toksB={}\maketoks}\the\toksA}
\def\firstsecno#1.{\setbox0=\hbox{\toksA={#1.}\toksB={}%

\def\makenote{\addtokens\toksB{\the\toksC}\def\makenote{\toksD={}
\toksC={}\let\space\empty}\makenote}\maketoks}}

\def\addtokens#1#2{\edef\addtoks{\noexpand#1={\the#1#2}}\addtoks}
\def\poptoks#1#2|ENDTOKS|{\let\first=#1\toksD={#1}%

\ifcat\noexpand\first0\countB=‘#1\else\countB=0\fi\toksA={#2}}
\def\maketoks{\expandafter\poptoks\the\toksA|ENDTOKS|%

\ifnum\countB>‘9 \countB=0 \fi
\ifnum\countB<‘0

\ifnum0=\countC\else\makenote\fi
\ifx\first.\let\next=\maketoksdone\else

\let\next=\maketoks
\addtokens\toksB{\the\toksD}
\ifx\first,\addtokens\toksB{\space}\fi

\fi
\else \addtokens\toksC{\the\toksD}\global\countC=1\let\next=\maketoks
\fi
\next

}
\def\makenote{\addtokens\toksB

{\noexpand\pdflink{\the\toksC}{\romannumeral\the\toksC}}\toksC={}\global\countC=0}
\def\maketoksdone{\edef\st{\global\noexpand\toksA={\the\toksB}}\st}
\def\pdfURL#1#2{\ifpdftex\pdfannotlink height\ht\strutbox depth\dp\strutbox

attr {/Border [0 0 0]} user { /Type /Action /Subtype /Link /A
<< /S /URI /URI (#2) >>}\BlueGreen #1\Black \pdfendlink

\else \ifpdf{\setbox0=\hbox{\special{pdf: bc [ \pdflinkcolor ]}{#1}%
\special{pdf: ec}}\special{pdf: ann width \thewidth\space height \theheight

\space depth \thedepth\space << /Border [0 0 0]
/Type /Action /Subtype /Link /A << /S /URI /URI (#2) >> >>}\box0\relax}%

\else #1 ({\tt#2})\fi\fi}
{\catcode‘\~=12 \gdef\TILDE/{~}} % ~ in a URL
{\catcode‘\_=12 \gdef\UNDER/{_}} % _ in a URL
\def\sanitizecommand#1#2{\addtokens\usersanitizer

{\noexpand\dosanitizecommand\noexpand#1{#2}}}
\def\dosanitizecommand#1#2{\ifx\nxt#1\addF{#2}\fi}

\catcode‘\[=1 \catcode‘\]=2 \catcode‘\{=12 \catcode‘\}=12
\def\lbchar[{] \def\rbchar[}]

\catcode‘\[=12 \catcode‘\]=12 \catcode‘\{=1 \catcode‘\}=2
\catcode‘\~=12 \def\tildechar{~} \catcode‘\~=13
\catcode‘\|=0 |catcode‘|\=12 |def|bschar{\} |catcode‘|\=0 \catcode‘\|=12
\def\makeoutlinetoks{\Tnumfalse\afterassignment\makeolproctok\let\nxt= }
\def\makeolnexttok{\afterassignment\makeolproctok\let\nxt= }
\def\makeolgobbletok{\afterassignment\makeolnexttok\let\nxt= }
\def\addF#1{\addtokens\toksF{#1}\tokprocessedtrue}
% now comes a routine to "sanitize" section names, for pdf outlines
\def\makeolproctok{\tokprocessedfalse

\let\next\makeolnexttok % default
\ifx\nxt\outlinedone\let\next\outlinedone
\else\ifx{\nxt \else\ifx}\nxt \Tnumfalse \instrfalse % skip braces
\else\ifx$\nxt % or a $ sign
\else\ifx^\nxt \addF^\else\ifx_\nxt \addF_% sanitize ^ and _
\else\ifx\nxt\spacechar \addF\space
\else\if\noexpand\nxt\relax % we have a control sequence; is it one we know?

\ifx\nxt~\addF\space
\else\ifx\nxt\onespace\addF\space
\else\the\usersanitizer
\iftokprocessed\else\makeolproctokctli
\iftokprocessed\else\makeolproctokctlii
\iftokprocessed\else\makeolproctokctliii % if not recognised, skip it
\fi\fi\fi\fi\fi

\else % we don’t have a control sequence, it’s an ordinary char
\ifx/\nxt \addF{\string\/}% quote chars special to PDF with backslash
\else\ifx(\nxt \addF{\string\(}\else\ifx)\nxt \addF{\string\)}%



20 APPENDIX B — MACROS FOR FORMATTING

\else\ifx[\nxt \addF{\string\[}\else\ifx]\nxt \addF{\string\]}%
\else\expandafter\makeolproctokchar\meaning\nxt

\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi
\next

}
\def\makeolproctokchar#1 #2 #3{\addF{#3}}
\def\makeolproctokctli{%

\ifx\nxt\CEE\addF{C}\let\next\makeolgobbletok % \CEE/
\else\ifx\nxt\UNIX\addF{UNIX}\let\next\makeolgobbletok % \UNIX/
\else\ifx\nxt\TEX\addF{TeX}\let\next\makeolgobbletok % \TEX/
\else\ifx\nxt\TeX\addF{TeX}\else\ifx\nxt\LaTeX\addF{LaTeX}%
\else\ifx\nxt\CPLUSPLUS\addF{C++}\let\next\makeolgobbletok % \CPLUSPLUS/
\else\ifx\nxt\Cee\addF{C}%
\else\ifx\nxt\PB \let\next\makeolgobbletok \tokprocessedtrue % \PB{...}
\else\ifx\nxt\.\tokprocessedtrue\instrtrue % \.{...}

% skip \|
\else\ifx\nxt\\\ifinstr\addF{\bschar\bschar}\else\tokprocessedtrue\fi
\else\ifx\nxt\&\ifinstr\addF&\else\tokprocessedtrue\fi
\else\ifx\nxt\~\ifTnum\addF{0}\else\addF\tildechar\fi % 077->\T{\~77}
\else\ifx\nxt\_\ifTnum\addF{E}\else\addF_\fi % 0.1E5->\T{0.1\_5}
\else\ifx\nxt\^\ifTnum\addF{0x}\else\addF^\fi % 0x77 -> \T{\^77}
\else\ifx\nxt\$\ifTnum\tokprocessedtrue\else\addF$\fi % \T{77\$L}
\else\ifx\nxt\{\addF\lbchar \else\ifx\nxt\}\addF\rbchar
\else\ifx\nxt\ \addF\space \else\ifx\nxt\#\addF{\string\#}%
\else\ifx\nxt\PP\addF{++}\else\ifx\nxt\MM\addF{--}%
\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi

}
\def\makeolproctokctlii{%

\ifx\nxt\MG\addF{->}\else\ifx\nxt\GG\addF{>>}%
\else\ifx\nxt\LL\addF{<<}\else\ifx\nxt\NULL\addF{NULL}%
\else\ifx\nxt\AND\addF&\else\ifx\nxt\OR\addF|%
\else\ifx\nxt\XOR\addF^\else\ifx\nxt\CM\addF\tildechar
\else\ifx\nxt\MOD\addF{\string\%}\else\ifx\nxt\DC\addF{::}%
\else\ifx\nxt\PA\addF{.*}\else\ifx\nxt\MGA\addF{->*}%
\else\ifx\nxt\this\addF{this}\else\ifx\nxt\?\addF?%
\else\ifx\nxt\E\addF{==}\else\ifx\nxt\G\addF{>=}%
\else\ifx\nxt\I\addF{!=}\else\ifx\nxt\K\addF{=}%
\else\ifx\nxt\l\addF{l}\else\ifx\nxt\L\addF{L}%
\else\ifx\nxt\o\addF{o}\else\ifx\nxt\O\addF{O}%
\else\ifx\nxt\R\addF!%
\else\ifx\nxt\T \Tnumtrue \let\next\makeolgobbletok

\tokprocessedtrue % \T{number}
\else\ifx\nxt\AM\addF&\else\ifx\nxt\%\addF{\string\%}%
\fi\fi\fi\fi\fi \fi\fi\fi\fi\fi
\fi\fi\fi\fi\fi \fi\fi\fi\fi\fi
\fi\fi\fi\fi\fi\fi

}
\def\makeolproctokctliii{%

\ifx\nxt\V\addF{||}\else\ifx\nxt\W\addF{&&}\else\ifx\nxt\Z\addF{<=}%
\else\ifx\nxt\*\addF*\else\ifx\nxt\Xand\addF{\space and\space}%
\else\ifx\nxt\Xandxeq\addF{\space and_eq\space}%
\else\ifx\nxt\Xbitand\addF{\space bitand\space}%
\else\ifx\nxt\Xbitor\addF{\space bitor\space}%
\else\ifx\nxt\Xcompl\addF{\space compl\space}%
\else\ifx\nxt\Xnot\addF{\space not\space}%
\else\ifx\nxt\Xnotxeq\addF{\space not_eq\space}%
\else\ifx\nxt\Xor\addF{\space or\space}%
\else\ifx\nxt\Xorxeq\addF{\space or_eq\space}%
\else\ifx\nxt\Xxor\addF{\space xor\space}%
\else\ifx\nxt\Xxorxeq\addF{\space xor_eq\space}%
\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi
\fi\fi\fi\fi\fi

}
\def\outlinedone{\edef\outlinest{\global\noexpand\toksE={\the\toksF}}%

\outlinest\let\outlinedone=\relax}
\fi % End of pdf macros

\def\lapstar{\rlap{*}}
\def\stsec{\rightskip=0pt % get out of C mode (cf. \B)

\sfcode‘;=1500 \pretolerance 200 \hyphenpenalty 50 \exhyphenpenalty 50
\noindent{\let\*=\lapstar\bf\secstar.\quad}%



APPENDIX B — MACROS FOR FORMATTING 21

\ifpdftex\smash{\raise\baselineskip\hbox to0pt{%
\let\*=\empty\pdfdest num \secstar fith}}

\else\ifpdf\smash{\raise\baselineskip\hbox to0pt{%
\let\*=\empty\special{%

pdf: dest (\romannumeral\secstar) [ @thispage /FitH @ypos ]}}}\fi\fi}
\let\startsection=\stsec
\def\defin#1{\global\advance\ind by 2 \1\&{#1 } } % begin ‘define’ or ‘format’
\def\A{\note{See also section}} % xref for doubly defined section name
\def\As{\note{See also sections}} % xref for multiply defined section name
\def\B{\rightskip=0pt plus 100pt minus 10pt % go into C mode

\sfcode‘;=3000
\pretolerance 10000
\hyphenpenalty 1000 % so strings can be broken (discretionary \ is inserted)
\exhyphenpenalty 10000
\global\ind=2 \1\ \unskip}

\def\C#1{\5\5\quad$/\ast\,${\cmntfont #1}$\,\ast/$}
\let\SHC\C % "// short comments" treated like "/* ordinary comments */"
%\def\C#1{\5\5\quad$\triangleright\,${\cmntfont#1}$\,\triangleleft$}
%\def\SHC#1{\5\5\quad$\diamond\,${\cmntfont#1}}
\def\D{\defin{\#define}} % macro definition
\let\E=\equiv % equivalence sign
\def\ET{ and~} % conjunction between two section numbers
\def\ETs{, and~} % conjunction between the last two of several section numbers
\def\F{\defin{format}} % format definition
\let\G=\ge % greater than or equal sign
% \H is long Hungarian umlaut accent
\let\I=\ne % unequal sign
\def\J{\.{@\&}} % TANGLE’s join operation
\let\K== % assignment operator
%\let\K=\leftarrow % "honest" alternative to standard assignment operator
% \L is Polish letter suppressed-L
\outer\def\M#1{\MN{#1}\ifon\vfil\penalty-100\vfilneg % beginning of section

\vskip\intersecskip\startsection\ignorespaces}
\outer\def\N#1#2#3.{% beginning of starred section

\ifacro{\toksF={}\makeoutlinetoks#3\outlinedone\outlinedone}\fi
\gdepth=#1\gtitle={#3}\MN{#2}%
\ifon\ifnum#1<\secpagedepth \vfil\eject % force page break if depth is small

\else\vfil\penalty-100\vfilneg\vskip\intersecskip\fi\fi
\message{*\secno} % progress report
\def\stripprefix##1>{}\def\gtitletoks{#3}%
\edef\gtitletoks{\expandafter\stripprefix\meaning\gtitletoks}%
\edef\next{\write\cont{\ZZ{\gtitletoks}{#1}{\secno}% write to contents file
{\noexpand\the\pageno}{\the\toksE}}}\next % \ZZ{title}{depth}{sec}{page}{ss}

\ifpdftex\expandafter\xdef\csname curr#1\endcsname{\secno}
\ifnum#1>0\countB=#1 \advance\countB by-1

\advancenumber{chunk\the\countB.\expnumber{curr\the\countB}}\fi\fi
\ifpdf\special{pdf: outline #1 << /Title (\the\toksE) /Dest

[ @thispage /FitH @ypos ] >>}\fi
\ifon\startsection{\bf#3.\quad}\ignorespaces}

\def\MN#1{\par % common code for \M, \N
{\xdef\secstar{#1}\let\*=\empty\xdef\secno{#1}}% remove \* from section name
\ifx\secno\secstar \onmaybe \else\ontrue \fi
\mark{{{\tensy x}\secno}{\the\gdepth}{\the\gtitle}}}

% each \mark is {section reference or null}{depth plus 1}{group title}
% \O is Scandinavian letter O-with-slash
% \P is paragraph sign
\def\Q{\note{This code is cited in section}} % xref for mention of a section
\def\Qs{\note{This code is cited in sections}} % xref for mentions of a section
\let\R=\lnot % logical not
% \S is section sign
\def\T#1{\leavevmode % octal, hex or decimal constant

\hbox{$\def\?{\kern.2em}%
\def\$##1{\egroup_{\,\rm##1}\bgroup}% suffix to constant
\def\_{\cdot 10^{\aftergroup}}% power of ten (via dirty trick)
\let\~=\oct \let\^=\hex {#1}$}}

\def\U{\note{This code is used in section}} % xref for use of a section
\def\Us{\note{This code is used in sections}} % xref for uses of a section
\let\V=\lor % logical or
\let\W=\land % logical and
\def\X#1:#2\X{\ifmmode\gdef\XX{\null$\null}\else\gdef\XX{}\fi %$% section name

\XX$\langle\,${\let\I=\ne#2\eightrm\kern.5em



22 APPENDIX B — MACROS FOR FORMATTING

\ifacro{\pdfnote#1.}\else#1\fi}$\,\rangle$\XX}
\def\Y{\par\yskip}
\let\Z=\le
\let\ZZ=\let % now you can \write the control sequence \ZZ
\let\*=*

\def\Xand{\W} \def\Xandxeq{\MRL{{\AND}{\K}}} \def\Xbitand{\AND}
\def\Xbitor{\OR} \def\Xcompl{\CM} \def\Xnot{\R} \def\Xnotxeq{\I} \def\Xor{\V}
\def\Xorxeq{\MRL{{\OR}{\K}}} \def\Xxor{\XOR} \def\Xxorxeq{\MRL{{\XOR}{\K}}}

%\def\oct{\hbox{\rm\char’23\kern-.2em\it\aftergroup\?\aftergroup}} % WEB style
%\def\hex{\hbox{\rm\char"7D\tt\aftergroup}} % WEB style
\def\oct{\hbox{$^\circ$\kern-.1em\it\aftergroup\?\aftergroup}}% CWEB style
\def\hex{\hbox{$^{\scriptscriptstyle\#}$\tt\aftergroup}} % CWEB style
\def\vb#1{\leavevmode\hbox{\kern2pt\vrule\vtop{\vbox{\hrule

\hbox{\strut\kern2pt\.{#1}\kern2pt}}
\hrule}\vrule\kern2pt}} % verbatim string

\def\onmaybe{\let\ifon=\maybe} \let\maybe=\iftrue
\newif\ifon \newif\iftitle \newif\ifpagesaved

\newif\ifheader
\def\lheader{\headertrue\mainfont\the\pageno\eightrm\qquad\grouptitle

\hfill\title\qquad\mainfont\topsecno} % top line on left-hand pages
\def\rheader{\headertrue\mainfont\topsecno\eightrm\qquad\title\hfill

\grouptitle\qquad\mainfont\the\pageno} % top line on right-hand pages
\def\grouptitle{\let\i=I\let\j=J\uppercase\expandafter{\expandafter

\takethree\topmark}}
\def\topsecno{\expandafter\takeone\topmark}
\def\takeone#1#2#3{#1}
\def\taketwo#1#2#3{#2}
\def\takethree#1#2#3{#3}
\def\nullsec{\eightrm\kern-2em} % the \kern-2em cancels \qquad in headers

\let\page=\pagebody \raggedbottom
% \def\page{\box255 }\normalbottom % faster, but loses plain TeX footnotes
\def\normaloutput#1#2#3{\ifodd\pageno\hoffset=\pageshift\fi
\shipout\vbox{
\vbox to\fullpageheight{
\iftitle\global\titlefalse
\else\hbox to\pagewidth{\vbox to10pt{}\ifodd\pageno #3\else#2\fi}\fi
\vfill#1}} % parameter #1 is the page itself
\global\advance\pageno by1}

\gtitle={\.{CWEB} output} % this running head is reset by starred sections
\mark{\noexpand\nullsec0{\the\gtitle}}
\def\title{\expandafter\uppercase\expandafter{\jobname}}
\def\topofcontents{\centerline{\titlefont\title}\vskip.7in

\vfill} % this material will start the table of contents page
\def\startpdf{\ifpdftex\pdfcatalog{/PageMode /UseOutlines}\else

\ifpdf{\special{pdf: docview << /PageMode /UseOutlines >>}}\fi\fi}
\def\botofcontents{\vfill

\centerline{\covernote}} % this material will end the table of contents page
\def\covernote{}
\def\contentspagenumber{0} % default page number for table of contents
\newdimen\pagewidth \pagewidth=6.5in % the width of each page
\newdimen\pageheight \pageheight=8.7in % the height of each page
\newdimen\fullpageheight \fullpageheight=9in % page height including headlines
\newdimen\pageshift \pageshift=0in % shift righthand pages wrt lefthand ones
\def\magnify#1{\mag=#1\pagewidth=6.5truein\pageheight=8.7truein

\fullpageheight=9truein\setpage}
\def\setpage{\hsize\pagewidth\vsize\pageheight} % use after changing page size
\def\contentsfile{\jobname.toc} % file that gets table of contents info
\def\readcontents{\input \contentsfile}
\def\readindex{\input \jobname.idx}
\def\readsections{\input \jobname.scn}

\newwrite\cont
\output{\setbox0=\page % the first page is garbage

\openout\cont=\contentsfile
\write\cont{\catcode ‘\noexpand\@=11\relax} % \makeatletter



APPENDIX B — MACROS FOR FORMATTING 23

\global\output{\normaloutput\page\lheader\rheader}}
\setpage
\vbox to \vsize{} % the first \topmark won’t be null

\def\ch{\note{The following sections were changed by the change file:}
\let\*=\relax}

\newbox\sbox % saved box preceding the index
\newbox\lbox % lefthand column in the index
\def\inx{\par\vskip6pt plus 1fil % we are beginning the index

\def\page{\box255 } \normalbottom
\write\cont{} % ensure that the contents file isn’t empty

\write\cont{\catcode ‘\noexpand\@=12\relax} % \makeatother
\closeout\cont % the contents information has been fully gathered
\output{\ifpagesaved\normaloutput{\box\sbox}\lheader\rheader\fi

\global\setbox\sbox=\page \global\pagesavedtrue}
\pagesavedfalse \eject % eject the page-so-far and predecessors
\setbox\sbox\vbox{\unvbox\sbox} % take it out of its box
\vsize=\pageheight \advance\vsize by -\ht\sbox % the remaining height
\hsize=.5\pagewidth \advance\hsize by -10pt

% column width for the index (20pt between cols)
\parfillskip 0pt plus .6\hsize % try to avoid almost empty lines
\def\lr{L} % this tells whether the left or right column is next
\output{\if L\lr\global\setbox\lbox=\page \gdef\lr{R}

\else\normaloutput{\vbox to\pageheight{\box\sbox\vss
\hbox to\pagewidth{\box\lbox\hfil\page}}}\lheader\rheader

\global\vsize\pageheight\gdef\lr{L}\global\pagesavedfalse\fi}
\message{Index:}
\parskip 0pt plus .5pt
\outer\def\I##1, ##2.{\par\hangindent2em\noindent##1:\kern1em

\ifacro\pdfnote##2.\else##2\fi.} % index entry
\def\[##1]{$\underline{##1}$} % underlined index item
\rm \rightskip0pt plus 2.5em \tolerance 10000 \let\*=\lapstar
\hyphenpenalty 10000 \parindent0pt
\readindex}

\def\fin{\par\vfill\eject % this is done when we are ending the index
\ifpagesaved\null\vfill\eject\fi % output a null index column
\if L\lr\else\null\vfill\eject\fi % finish the current page
\parfillskip 0pt plus 1fil
\def\grouptitle{NAMES OF THE SECTIONS}
\let\topsecno=\nullsec
\message{Section names:}
\output={\normaloutput\page\lheader\rheader}
\setpage
\def\note##1##2.{\quad{\eightrm##1~\ifacro{\pdfnote##2.}\else{##2}\fi.}}
\def\Q{\note{Cited in section}} % crossref for mention of a section
\def\Qs{\note{Cited in sections}} % crossref for mentions of a section
\def\U{\note{Used in section}} % crossref for use of a section
\def\Us{\note{Used in sections}} % crossref for uses of a section
\def\I{\par\hangindent 2em}\let\*=*
\ifacro \def\outsecname{Names of the sections} \let\Xpdf\X
\ifpdftex \makebookmarks \pdfdest name {NOS} fitb

\pdfoutline goto name {NOS} count -\secno {\outsecname}
\def\X##1:##2\X{\Xpdf##1:##2\X \firstsecno##1.%

{\toksF={}\makeoutlinetoks##2\outlinedone\outlinedone}%
\pdfoutline goto num \the\toksA \expandafter{\the\toksE}}

\else\ifpdf
\special{pdf: outline -1 << /Title (\outsecname)

/Dest [ @thispage /FitH @ypos ] >>}
\def\X##1:##2\X{\Xpdf##1:##2\X \firstsecno##1.%

{\toksF={}\makeoutlinetoks##2\outlinedone\outlinedone}%
\special{pdf: outline 0 << /Title (\the\toksE)

/A << /S /GoTo /D (\romannumeral\the\toksA) >> >>}}
\fi\fi\fi
\readsections}

\def\makebookmarks{\let\ZZ=\writebookmarkline \readcontents\relax}
\def\expnumber#1{\expandafter\ifx\csname#1\endcsname\relax 0%

\else \csname#1\endcsname \fi} % Petr Olsak’s macros from texinfo.tex
\def\advancenumber#1{\countA=\expnumber{#1}\relax \advance\countA by1

\expandafter\xdef\csname#1\endcsname{\the\countA}}
\def\writebookmarkline#1#2#3#4#5{{%

\let\(=\let \let\)=\let \let\[=\let \let\]=\let \let\/=\let



24 APPENDIX B — MACROS FOR FORMATTING

\pdfoutline goto num #3 count -\expnumber{chunk#2.#3} {#5}}}
\def\con{\par\vfill\eject % finish the section names
% \ifodd\pageno\else\titletrue\null\vfill\eject\fi % for duplex printers

\rightskip 0pt \hyphenpenalty 50 \tolerance 200
\setpage \output={\normaloutput\page\lheader\rheader}
\titletrue % prepare to output the table of contents
\pageno=\contentspagenumber
\def\grouptitle{TABLE OF CONTENTS}
\message{Table of contents:}
\topofcontents \startpdf
\line{\hfil Section\hbox to3em{\hss Page}}
\let\ZZ=\contentsline
\readcontents\relax % read the contents info
\botofcontents \end} % print the contents page(s) and terminate

\def\contentsline#1#2#3#4#5{\ifnum#2=0 \smallbreak\fi
\line{\consetup{#2}#1

\rm\leaders\hbox to .5em{.\hfil}\hfil
\ \ifacro\pdflink{#3}{\romannumeral#3}\else#3\fi\hbox to3em{\hss#4}}}

\def\consetup#1{\ifcase#1 \bf % depth -1 (@**)
\or % depth 0 (@*)
\or \hskip2em % depth 1 (@*1)
\or \hskip4em \or \hskip6em \or \hskip8em \or \hskip10em % depth 2,3,4,5
\else \hskip12em \fi} % depth 6 or more

\def\noinx{\let\inx=\end} % no indexes or table of contents
\def\nosecs{\let\FIN=\fin \def\fin{\let\parfillskip=\end \FIN}}

% no index of section names or table of contents
\def\nocon{\let\con=\end} % no table of contents
\def\today{\ifcase\month\or

January\or February\or March\or April\or May\or June\or
July\or August\or September\or October\or November\or December\fi
\space\number\day, \number\year}

\newcount\twodigits
\def\hours{\twodigits=\time \divide\twodigits by 60 \printtwodigits

\multiply\twodigits by-60 \advance\twodigits by\time :\printtwodigits}
\def\gobbleone1{}
\def\printtwodigits{\advance\twodigits100

\expandafter\gobbleone\number\twodigits
\advance\twodigits-100 }

\def\TeX{{\ifmmode\it\fi
\leavevmode\hbox{T\kern-.1667em\lower.424ex\hbox{E}\hskip-.125em X}}}

\def\,{\relax\ifmmode\mskip\thinmuskip\else\thinspace\fi}
\def\datethis{\def\startsection{\leftline{\sc\today\ at \hours}\bigskip

\let\startsection=\stsec\stsec}}
% say ‘\datethis’ in limbo, to get your listing timestamped before section 1

\def\datecontentspage{%
\def\topofcontents{\leftline{\sc\today\ at \hours}\bigskip
\centerline{\titlefont\title}\vfill}} % timestamps the contents page



APPENDIX C — NOTES ON FORMATTING 25

Appendix C: How to use CWEB macros

The macros in cwebmac make it possible to produce a variety of formats without editing the output of
CWEAVE, and the purpose of this appendix is to explain some of the possibilities.

1. Four fonts have been declared in addition to the standard fonts of PLAIN format: You can say
‘{\mc UNIX}’ to get UNIX in medium-size caps; you can say ‘{\sc STUFF}’ to get STUFF in small caps;
and you can select the largish fonts \titlefont and \ttitlefont in the title of your document, where
\ttitlefont is a typewriter style of type. There are macros \UNIX/ and \CEE/ to refer to UNIX and C with
medium-size caps.

2. When you mention an identifier in TEX text, you normally call it ‘|identifier|’. But you can also
say ‘\\{identifier}’. The output will look the same in both cases, but the second alternative doesn’t put
identifier into the index, since it bypasses CWEAVE’s translation from C mode. In the second case you must
put a backslash before each underline character in the identifier.

3. To get typewriter-like type, as when referring to ‘CWEB’, you can use the ‘\.’ macro (e.g., ‘\.{CWEB}’).
In the argument to this macro you should insert an additional backslash before the symbols listed as ‘special
string characters’ in the index to CWEAVE, i.e., before backslashes and dollar signs and the like. A ‘\ ’ here
will result in the visible space symbol; to get an invisible space following a control sequence you can say
‘{ }’. If the string is long, you can break it up into substrings that are separated by ‘\)’ ; the latter gives a
discretionary backslash if TEX has to break a line here.

4. The three control sequences \pagewidth, \pageheight, and \fullpageheight can be redefined in
the limbo section at the beginning of your CWEB file, to change the dimensions of each page. The default
settings

\pagewidth=6.5in

\pageheight=8.7in

\fullpageheight=9in

were used to prepare this manual; \fullpageheight is \pageheight plus room for the additional heading
and page numbers at the top of each page. If you change any of these quantities, you should call the macro
\setpage immediately after making the change.

5. The \pageshift macro defines an amount by which right-hand pages (i.e., odd-numbered pages) are
shifted right with respect to left-hand (even-numbered) ones. By adjusting this amount you may be able to
get two-sided output in which the page numbers line up on opposite sides of each sheet.

6. The \title macro will appear at the top of each page in small caps; it is the job name unless redefined.

7. The first page usually is assigned page number 1. To start on page 16, with contents on page 15, say
this: ‘\def\contentspagenumber{15} \pageno=\contentspagenumber \advance\pageno by 1’.

8. The macro \iftitle will suppress the header line if it is defined by ‘\titletrue’. The normal value
is \titlefalse except for the table of contents; thus, the contents page is usually unnumbered.

Two macros are provided to give flexibility to the table of contents: \topofcontents is invoked just before
the contents info is read, and \botofcontents is invoked just after. Here’s a typical definition:

\def\topofcontents{\null\vfill

\titlefalse % include headline on the contents page

\def\rheader{\mainfont The {\tt CWEAVE} processor\hfil}

\centerline{\titlefont The {\ttitlefont CWEAVE} processor}

\vskip 15pt \centerline{(Version 3.64)} \vfill}

Redefining \rheader, which is the headline for right-hand pages, suffices in this case to put the desired
information at the top of the contents page.

9. Data for the table of contents is written to a file that is read after the indexes have been TEXed;
there’s one line of data for every starred section. The file common.toc might look like this:

\ZZ {Introduction}{0}{1}{28}{}

\ZZ {The character set}{2}{5}{29}{}

and so on. The \topofcontents macro could redefine \ZZ so that the information appears in any desired
format. (See also point 19 below.)



26 APPENDIX C — NOTES ON FORMATTING

10. Sometimes it is necessary or desirable to divide the output of CWEAVE into subfiles that can be
processed separately. For example, the listing of TEX runs to more than 500 pages, and that is enough to
exceed the capacity of many printing devices and/or their software. When an extremely large job isn’t cut
into smaller pieces, the entire process might be spoiled by a single error of some sort, making it necessary
to start everything over.

Here’s a safe way to break a woven file into three parts: Say the pieces are α, β, and γ, where each piece
begins with a starred section. All macros should be defined in the opening limbo section of α, and copies of
this TEX code should be placed at the beginning of β and of γ. In order to process the parts separately, we
need to take care of two things: The starting page numbers of β and γ need to be set up properly, and the
table of contents data from all three runs needs to be accumulated.

The cwebmac macros include two control sequences \contentsfile and \readcontents that facilitate the
necessary processing. We include ‘\def\contentsfile{cont1}’ in the limbo section of α, and we include
‘\def\contentsfile{cont2}’ in the limbo section of β; this causes TEX to write the contents data for α
and β into cont1.tex and cont2.tex. Now in γ we say

\def\readcontents{\input cont1 \input cont2 \input \contentsfile} ;

this brings in the data from all three pieces, in the proper order.
However, we still need to solve the page-numbering problem. One way to do it is to include the following

in the limbo material for β:

\message{Please type the last page number of part 1: }

\read −1 to \temp \pageno=\temp \advance\pageno by 1

Then you simply provide the necessary data when TEX requests it; a similar construction is used at the
beginning of γ.

This method can, of course, be used to divide a woven file into any number of pieces.

11. Sometimes it is nice to include things in the index that are typeset in a special way. For example, we
might want to have an index entry for ‘TEX’. CWEAVE provides two simple ways to typeset an index entry
(unless the entry is an identifier or a reserved word): ‘@^’ gives roman type, and ‘@.’ gives typewriter type.
But if we try to typeset ‘TEX’ in roman type by saying, e.g., ‘@^\TeX@>’, the backslash character gets in the
way, and this entry wouldn’t appear in the index with the T’s.

The solution is to use the ‘@:’ feature, declaring a macro that simply removes a sort key as follows:

\def\9#1{}

Now you can say, e.g., ‘@:TeX}{\TeX@>’ in your CWEB file; CWEAVE puts it into the index alphabetically,
based on the sort key, and produces the macro call ‘\9{TeX}{\TeX}’ which will ensure that the sort key isn’t
printed.

A similar idea can be used to insert hidden material into section names so that they are alphabetized
in whatever way you might wish. Some people call these tricks “special refinements”; others call them
“kludges.”

12. The control sequence \secno is set to the number of the section being typeset.

13. If you want to list only the sections that have changed, together with the index, put the command
‘\let\maybe=\iffalse’ in the limbo section before the first section of your CWEB file. It’s customary to
make this the first change in your change file.

This feature has a TEXnical limitation, however: You cannot use it together with control sequences like
\proclaim or \+ or \newcount that plain TEX has declared to be ‘\outer’, because TEX refuses to skip
silently over such control sequences. One way to work around this limitation is to say

\fi \let\proclaim\relax \def\proclaim{...} \ifon

where \proclaim is redefined to be the same as usual but without an \outer qualification. (The \fi here
stops the conditional skipping, and the \ifon turns it back on again.) Similarly,

\fi \newcount\n \ifon

is a safe way to use \newcount. Plain TEX already provides a non-outer macro \tabalign that does the



APPENDIX C — NOTES ON FORMATTING 27

work of \+; you can say
\fi \let\+\tabalign \ifon

if you prefer the shorter notation \+.
14. To get output in languages other than English, redefine the macros \A, \As, \ET, \ETs, \Q, \Qs, \U,

\Us, \ch, \fin, \con, \today, \datethis, and \datecontentspage. CWEAVE itself need not be changed.
15. Some output can be selectively suppressed with the macros \noatl, \noinx, \nosecs, \nocon.
16. All accents and special text symbols of plain TEX format will work in CWEB documents just as they

are described in Chapter 9 of The TEXbook, with one exception. The dot accent (normally \.) must be
typed \: instead.

17. Several commented-out lines in cwebmac.tex are suggestions that users may wish to adopt. For
example, one such line inserts a blank page if you have a duplex printer. Appendices D, E, and F of the
complete version of this manual are printed using a commented-out option that substitutes ‘←’ for ‘=’ in
the program listings. Looking at those appendices might help you decide which format you like better.

18. Andreas Scherer has contributed a macro called \pdfURL with which one can say things like the
following, anywhere in the TEX parts or the C comments of a CWEB file:

You can send email to \pdfURL{the author}{mailto:andreas.scherer@@pobox.com}
or visit \pdfURL{his home page}{http://www.pobox.com/\TILDE/scherer}.

In a PDF document, the first argument will appear in blue as clickable text; the Acrobat reader, if correctly
configured, will then redirect those links to the user’s browser and open either the email client or the
HTML viewer. In a hardcopy document, both arguments will be printed (the second in parentheses
and typewriter type). Certain special characters in an Internet address need to be handled in a somewhat
awkward way, so that CWEAVE and/or TEX will not confuse them with formatting controls: Use @@ for @ and
\TILDE/ for ~ and \UNDER/ for _.

19. PDF documents contain bookmarks that list all the major group titles in the table of contents, some
of which will be subsidiary to others if the depth feature of @* has been used. Such bookmark entries are
also known as “outlines.” Moreover, the final group title, ‘Names of the sections’, can be opened up to list
every section name; Acrobat users can therefore navigate easily to any desired section.

The macros of cwebmac.tex are careful to “sanitize” all the names that appear as bookmarks, by removing
special characters and formatting codes that are inappropriate for the limited typographic capabilities of
PDF outlines. For example, one section of CWEAVE is named ‘Cases for case like ’, which is represented by
the TEX code ‘Cases for \PB{\\{case\_like}}’ in cweave.tex; its sanitized name is simply ‘Cases for
case_like’. (When .pdf files are produced, the fifth parameter of every \ZZ in the .toc file is set to the
sanitized form of the first parameter; see point 9 above and point 20 below.)

In general, sanitization removes TEX control sequences and braces, except for control sequences defined
by CWEB itself. Such a translation works most of the time, but you can override the defaults and obtain any
translation that you want by using TEXnical tricks. For example, after

\sanitizecommand\foo{bar}

the control sequence \foo will sanitize to ‘bar’. And after

\def\kluj#1\\{foo}

the TEX code ‘\kluj bar\\’ will print as ‘foo’ but sanitize to ‘bar’, because the control sequences \kluj
and \\ are removed by sanitization.

20. Furthermore, group titles can be converted to an arbitrary sanitized text while also changing their
form in running headlines, by using \ifheader. Consider, for example, a CWEB source file that begins with
the two lines

\def\klujj#1\\{\ifheader FOO\else foo\fi}

@*Chinese \klujj bar\.

This coding introduces a major group entitled ‘Chinese foo’, with running headline ‘CHINESE FOO’ and
table-of-contents entry ‘Chinese foo’. The corresponding bookmark is, however, ‘Chinese bar’. And the
corresponding .toc file entry is ‘\ZZ {Chinese \klujj bar\\}{1}{1}{1}{Chinese bar}’.


