

 Program Identifier Naming Conventions
 =======================================

 This monograph is intended to give you the flavor of the major ideas behind
the conventions.

 When confronted with the need for a new name in a program, a good
programmer will generally consider the following factors to reach a decision:

 1. Mnemonic value - so that the programmer can remember the name.
 2. Suggestive value - so that others can read the code.
 3. "Consistency" - this is often viewed as an aesthetic idea, yet it also
 has to do with the information efficiency of the program text. Roughly
 speaking, we want similar names for similar quantities.
 4. Speed of the decision - we cannot spend too much time pondering the
 name of a single quantity, nor is there time for typing and editing
 extremely long variable names.

 All in all, name selection can be a frustrating and time consuming subtask.
Often, a name which satisfies some of the above criteria will contradict the
others. Maintaining consistency can be especially difficult.

Advantages of the Conventions

 The following naming conventions provide a very convenient framework for
generating names that satisfy the above criteria. The basic idea is to name
all quantities by their types. This simple statement requires considerable
elaboration. (What is meant by "types"? What happens if "types" are not
unique?) However, once we can agree on the framework, the benefits readily
follow. The following are examples:

 1. The names will be mnemonic in a very specific sense: if someone
 remembers the type of a quantity or how it is constructed from other
 types, the name will be readily apparent.
 2. The names will be suggestive as well: we will be able to map any name
 into the type of the quantity, hence obtaining information about the
 shape and the use of the quantity.
 3. The names will be consistent because they will have been produced by
 the same rules.
 4. The decision on the name will be mechanical, thus speedy.
 5. Expressions in the program can be subjected to consistency checks that
 are very similar to the "dimension" checks in physics.

Type Calculus

 As suggested above, the concept of "type" in this context is determined by
the set of operations that can be applied to a quantity. The test for type
equivalence is simple: could the same set of operations be meaningfully
applied to the quantities in questions? If so, the types are thought to be
the same. If there are operations which apply to a quantity in exclusion of
others, the type of the quantity is different.

 The concept of "operation" is considered quite generally here; "being the
subscript of array A" or "being the second parameter of procedure Position"
are operations on quantity x (and "A" or "Position" as well). The point is
that "integers" x and y are not of the same type if Position (x,y) is legal
but Position (y,x) is nonsensical. Here we can also sense how the concepts of
type and name merge: x is so named because it is an x-coordinate, and it

http://www.strangecreations.com/library/c/naming.txt

http://www.strangecreations.com/library/c/naming.txt (1 of 8) [10/1/2000 7:39:33 PM]

seems that its type is also an x-coordinate. Most programmers probably would
have named such a quantity x. In this instance, the conventions merely codify
and clarify what has been widespread programming practice.

 Note that the above definition of type (which, incidentally, is suggested
by languages such as SIMULA and Smalltalk) is a superset of the more common
definition which takes only the quantity's representation into account.
Naturally, if the representations of x and y are different, there will exist
some operations that could be applied to x but not y, or vice versa.

 Let us not forget that we are talking about conventions which are to be
used by humans for the benefit of humans. Capabilities or restrictions of the
programming environment are not at issue here. The exact determination of
what constitutes a "type" is not critical, either. If a quantity is
incorrectly classified, we have style problem, not a bug.

Naming Rules

 My thesis discusses in detail the following specific naming rules:

 1. Quantities are named by their type possibly followed by a qualifier. A
 convenient (and legal) punctuation is recommended to separate the type
 and qualifier part of a name. (In C, we use a capital initial for the
 qualifier as in rowFirst: row is the type; First is the qualifier.)
 2. Qualifiers distinguish quantities that are of the same type and that
 exist within the same naming context. Note that contexts may include
 the whole system, a block, a procedure, or a data structure (for
 fields), depending on the programming environment. If one of the
 "standard qualifiers" is applicable, it should be used. Otherwise, the
 programmer can choose the qualifier. The choice should be simple to
 make, because the qualifier needs to be unique only within the type and
 within the scope - a set that is expected to be small in most cases. In
 rare instances more than one qualifier may appear in a name. Standard
 qualifiers and their associated semantics are listed below. An example
 is worthwhile: rowLast is a type row value; that is, the last element
 in an interval. The definition of "Last" states that the interval is
 "closed"; i.e., a loop through the interval should include rowLast as
 its last value.

 3. Simple types are named by short tags that are chosen by the programmer.
 The recommendation that the tags be small is startling to many
 programmers. The essential reason for short tags is to make the
 implementation of rule 4 realistic. Other reasons are listed below.

 4. Names of constructed types should be constructed from the names of the
 constituent types. A number of standard schemes for constructing
 pointer, array, and different types exist. Other constructions may be
 defined as required. For example, the prefix p is used to construct
 pointers. ProwLast (prowLast) is then the name of a particular pointer
 to a row type value that defines the end of a closed interval. The
 standard type constructions are also listed below.

 In principle, the conventions can be enriched by new type construction
schemes. However, the standard constructions proved to be sufficient in years
of use. It is worth noting that the types for data structures are generally
not constructed from the tags of their fields. First of all, constructions
with over two components would be unwieldy. More importantly, the invariant
property of data structure, the set of operations in which they participate,
seems to be largely independent of the fields of the structure that determine
only the representation. We all have had numerous experiences with changes in

http://www.strangecreations.com/library/c/naming.txt

http://www.strangecreations.com/library/c/naming.txt (2 of 8) [10/1/2000 7:39:33 PM]

data structures that left the operations (but not the implementation of the
operations) unchanged. Consequently, I recommend the use of a new tag for
every new data structure. The tag with some punctuation (upper case initial
or all upper case) should also be used as the structure name in the program.
New tags should also be used if the constructions accumulate to the point
where readability suffers.

 In my experience, tags are more difficult to choose than qualifiers. When a
new tag is needed, the first impulse is to use a short descriptive common
generic English term as the type name. This is almost always a mistake. One
should not preempt the most useful English phrases for the provincial
purposes of any given version of a given program. Chances are that the same
generic term could be equally applicable to many more types in the same
program. How will we know which is the one with the pretty "logical" name,
and which have the more arbitrary variants typically obtained by omitting
various vowels or by other disfigurement? Also, in communicating with the
programmer, how do we distinguish the generic use of the common term from the
reserved technical usage? By inflection? In the long run, an acronym that is
not an English worked may work out the best for tags. Related types may then
share some of the letters of the acronym. In speech, the acronym may be
spelled out, or a pronounceable nickname may be used. When hearing the
special names, the informed listener will know that the special technical
meaning should be understood. Generic terms should remain free for generic
usage.

 For example, a color graphics program may have a set of internal values
that denote colors. What should one call the manifest value for the color
red? The obvious choice (which is "wrong" here) is RED. The problem with RED
is that it does not identify its type. Is it a label or a procedure that
turns objects RED? Even if we know that it is a constant (because it is
spelled all caps, for example), there might be several color-related types.
Of which one is RED an instance? If I see a procedure defined as
paint(color), may I call it RED as an argument? Has the word RED been used
for any other purpose within the program? So we decide to find a tag for the
color type and use the word Red as a qualifier.

 Note that the obvious choice for the qualifier is in fact that the
"correct" one! This is because the use of qualifiers are not hampered by any
of the above difficulties. Qualifiers are not "exclusive" (or rather they are
exclusive only within a smaller set) so we essentially need not take into
account the possibility of other uses of the term "Red." The technical use of
the term will be clear to everyone when the qualifier is paired up with an
obviously technical type tag. Since qualifiers (usually) do not participate
in type construction, there is no inherent reason why they would need to be
especially short.

 Conversely, the tag for the type of the color value should not be "color."
Just consider all the other color related types that may appear in the
graphics program (or in a future variant): hardware encoding of color, color
map entry number, absolute pointer to color map entry, color values in
alternate color mapping mode, hue-brightness-saturation triples, other color
values in external interfaces; printers, plotters, interacting external
software, etc. Furthermore, the tag will have to appear in names with
constructed types and qualifiers.

 A typical arbitrary choice could be "co" (pronounced see-oh). Or, if "co"
was already taken, "cv", "cl", "kl", and so on. Note that the mnemonic value
of the tags is just about average: not too bad, but not too good either. The
conventions cannot help with creating names that are inherently mnemonic,
instead they identify, compress, and contain those parts of the program that
are truly individual, thus arbitrary. The lack of inherent meaning should be

http://www.strangecreations.com/library/c/naming.txt

http://www.strangecreations.com/library/c/naming.txt (3 of 8) [10/1/2000 7:39:33 PM]

compensated by ample comments whenever a new tag is introduced. This is a
reasonable suggestion since the number of basic tags remains very small even
in a large system.

 In conclusion, the name of our quantity would be "coRed", provided that the
color type "co" is properly documented. The value of the name will show later
in program segments such as the following:

 if co == coRed then *mpcopx[coRed]+=dx ...

 At a glance we can see that the variable co is compared with a quantity of
its own kind; coRed is also used as a subscript to an array whose domain is
of the correct type. Furthermore, as we will see, the color is mapped into a
pointer to "x", which is de-referenced (by the *operator in this example) to
yield an x type value, which is then incremented by a "delta x" type value.
Such "dimensional analysis" does not guarantee that the program is completely
free from bugs, but it does help to eliminate the most common kinds. It also
lends a certain rhythm to the writing of the code: "Let's see, I have a co in
hand and I need an x; do I have a mpcox? No, but there is a mpcopx that will
give me a px; *px will get me the x...", and so on.

Naming for "Writability"

 A good yardstick for choosing a name is to try to imagine that there is an
extraordinary reward for two programmers if they can independently come up
with the same program text for the same problem. Both programmers know the
reward, but cannot otherwise communicate. Such an experiment would be
futile, of course, for any sizable problem, but it is a neat goal. The reward
of real life is that a program written by someone else, which is identical to
what one's own program would have been, is extremely readable and modifiable.
By the proper use of the conventions, the idea can be approached very
closely, give or take a relatively few tags and possibly some qualifiers. The
leverage of the tags is enormous. If they are communicated, or are agreed on
beforehand, or come from a common source, the goal becomes reachable and the
reward may be reaped. This makes the documentation of the tags all the more
important.

 An example of such a consideration is the discretionary use of qualifiers
in small scopes where a quantity's type is likely to be unique, for example
in small procedures with a few parameters and locals or in data structures
which typically have only a few fields. One might prefer to attach a
qualifier even to a quantity with a unique type of "writability", the ability
for someone else to come up with the name without hesitation. As many
textbooks point out, the "someone else" can be the same programmer sometime
in the future revisiting the long forgotten code. Conclusion: do not use
qualifiers when not needed, even if they seem valuable.

Naming Rules for Procedures

 Unfortunately, the simple notion of qualified typed tags does not work well
for procedure names. Some procedures do not take parameters or do not return
values. The scopes of procedure names tend to be large. The following set of
special rules for procedures has worked quite satisfactorily:

 1. Distinguish procedure names from other names by punctuation, for
 example by always starting with a capital letter (typed tags of other
 quantities are in lower case). This alleviates the problem caused by
 the large scope.
 2. Start the name with the tag of the value that is returned, if any.

http://www.strangecreations.com/library/c/naming.txt

http://www.strangecreations.com/library/c/naming.txt (4 of 8) [10/1/2000 7:39:33 PM]

 3. Express the action of the procedure in one or two words, typically
 transitive verbs. The words should be punctuated for easy parsing by
 the reader (a common legal method of punctuation is the use of capital
 initials for every word).
 4. Append the list of tags of some or all of the formal parameters if it
 seems appropriate to do so.

 The last point is contrary to the earlier remarks on data structure naming.
When the parameters to a procedure are changed, typically all uses of the
procedure will have to be updated. There is an opportunity during the update
to change the name as well, in fact the name change can serve as a useful
check that all occurrences have been found. With data structures, the
addition or change of a field will not have an effect on all uses of the
changed structure type. Typically, if a procedure has only one or two
parameters, the inclusion of the parameter tags will really simplify the
choice of procedure name.

 Some examples for procedure names are the following:

InitSy: Takes an sy as its argument and initializes it.
OpenFn: fn is the argument. The procedure will "open" the fn.
 No value is returned.
FcFromBnRn: Returns the fc corresponding to the bn,rn,pair given.
 (The names cannot tell us what the types sy, fn, fc,
 etc., are.)

 The following is a list of standard type constructions. (X and Y stand for
arbitrary tags. According to standard punctuation the actual tags are
lowercase.)

pX pointer to X
dX difference between two instances of type X. X + dX
 is of type X.
cX count of instances of type X.
mpXY an array of Y's indexed by X. Read as "map from X to Y."
rgX an array of X's. read as "range X." The indices of the array
 are called:
iX indent of the array rgX.
dnX (rare) an array indexed by type X. The elements of the array
 are called:
eX (rare) element of the array dnX.
grpX a group of X's stored one after another in storage. Used when
 the X elements are of variable size and standard array indexing
 would not apply. Elements of the group must be referenced by
 means other then direct indexing. A storage allocation zone,
 for example, is a grp of blocks.
bX relative offset to a type X. This is used for field
 displacements in a data structure with variable size fields.
 The offset may be given in terms of bytes or words, depending
 on the base pointer from which the offset is measured.

 Where it matters, quantities named mp, rg, dn, or grp are actually pointers
to the structures described above.

 cbX size of instances of X in bytes
 CwX Size of instances of X in words

 One obvious problem with the constructions is that they make the parsing of
the types ambiguous. Is pfc a tag of its own or is it a pointer to an fc?
Such questions (just as many others) can be answered only if one is familiar
with the specific tags that are used in a program.

http://www.strangecreations.com/library/c/naming.txt

http://www.strangecreations.com/library/c/naming.txt (5 of 8) [10/1/2000 7:39:33 PM]

 The following are standard qualifiers. (The letter X stands for any type
tag. Actual type tags are in lowercase.)

XFirst the first element in an ordered set (interval) of X values.
XLast the last element in an ordered set of X values. XLast is the
 upper limit of a closed interval, hence the loop continuation
 condition should be: x<=xLast
XLim the strict upper limit of an ordered set of X values. Loop
 continuation should be: x<xLim
XMax strict upper limit for all X values (excepting Max, Mac,
 and Nil) for all other x: x<xMax. If x values start with
 x=0, xMax is equal to the number of different x values.
 The allocated length of a dnx vector, for example, will be
 typically xMax.
XMac the Current (as opposed to constant or allocated) upper limit
 for all x values. If x values start with 0, xMac is the
 current number of X values. To iterate through a dnx array,
 for example:
 for x=0 step 1 to xMac-1 do ... dnx[x] ...
 or
 for ix=0 step 1 to ixMac-1 do ... rgx[ix] ...
XNil a distinguished Nil value of type X. The value may or may not
 be 0 or -1.
XT temporary X. An easy way to qualify the second quantity of a
 given type in a scope.

SOME COMMON PRIMITIVE TYPES

f flag (boolean, logical). If qualifier is used, it should describe the
 true state of the flag. Exception: the constants fTrue and fFalse.
w word with arbitrary contents.
ch character, usually in ASCII text.
b byte, not necessarily holding a coded character, more akin to w.
 Distinguished from the b constrictor by the capital letter of the
 qualifier in immediately following.
sz pointer to first character of a zero terminated string.
st pointer to a string. First byte is the count of characters cch.
h pp (in heap).

 The following partial example of an actual symbol table routine illustrates
the use of the conventions in a "real life" situation. The purpose of this
example is not to make any claims about the code itself, but to show how the
conventions can help us learn about the code. In fact, some of the names in
this routine are standard.

 1 #include "sy.h"
 2 Extern int *rgwDic;
 3 extern int bsyMac;
 4 struct SY *PsySz(sz)
 5 char sz[];
 6 {
 7 char *pch;
 8 int cch;
 9 struct SY *psy, *PsyCreate();
10 int *pbsy;
11 int cwSz;
12 unsigned wHash=0;
13 pch=sz;
14 while (*pch!=0

http://www.strangecreations.com/library/c/naming.txt

http://www.strangecreations.com/library/c/naming.txt (6 of 8) [10/1/2000 7:39:33 PM]

15 wHash=(wHash<<5)+(wHash>>11+*pch++;
16 cch=pch-sz;
17 pbsy=&rgbsyHash[(wHash&077777)%cwHash];
18 for (; *pbsy!=0; pbsy = &psy->bsyNext)
19 {
20 char *szSy;
21 szSy= (psy=(struct SY *)&rgwDic[*pbsy])->sz;
22 pch=sz;
23 while (*pch==*szSy++)
24 {
25 if (*pch++==0)
26 return (psy);
27 {
28 }
29 cwSz=0;
30 if (cch>=2)
31 cwSz=(cch-2/sizeof(int)+1;
32 *pbsy=(int *)(psy=PsyCreate(cwSY+cwSz))-rgwDic;
33 Zero((int *)psy,cwSY);
34 bltbyte(sz, psy->sz, cch+1);
35 return(psy);
36 }

 The tag SY is the only product specific type in this routine. The
definition of SY is found in the include file sy.h (fair enough). The type
name itself is in all capitals, a common convention.

 Line 2 - says that there is an array of words, which is called
Dic(tionary). Remember that since Dic is a qualifier, it is named
traditionally.

 Line 3 - is the offset pointing beyond the last sy (see b constructor + Mac
standard qualifier.) One has to guess at this time that this is used for
allocating new sy's. The "base" of the offset would also have to be guessed
to be rgwDic. Actually, the name grpsy would have been better instead of
rgwDic, from this local perspective. In the real program, the rgwDic area is
used for a number of different purposes, hence the "neutral" name.

 Line 4 - is a procedure declaration. Procedure returns a pointer to an SY
as the result. The parameter must be a zero terminated string.

 Lines 7-12 - declare quantities. The usages should be clear from the names.
For example, cwSz is the number of words in some string (probably the
argument), pbsy is a pointer to an offset of an sy (p constructor + b
constructor). The only qualifier used here is in wHash - the hash code.

 Line 13 - pch will be a pointer to the first character of sz.

 Line 16 - cch is the count of characters (c constructor) ostensibly,
in sz.

 Line 17 - cwHash is the number of words in the hash table (I would have
called it ibsyMax). In a way, the qualifier on rgbsyHash could be omitted,
but it helps identifying the hash table in external contexts.

 Lines 17-18 - note the opportunities for dimensional checking:

 pbsy = rgbsy[...] follows from pX = &rgX[...]
 pbsy = psy->bsy Next follows from pX=&pY->X; or pX = &Y.X

So even the use of -> instead of . follows from local context. The p on the

http://www.strangecreations.com/library/c/naming.txt

http://www.strangecreations.com/library/c/naming.txt (7 of 8) [10/1/2000 7:39:33 PM]

left hand side signals the need for the & on the right.

 Line 20 - introduces a new sz, qualified to distinguish it from the
argument. The qualifier, very appropriately, is the source of the datum, Sy.

 Line 23 - given the use of szSy in this line, the name pchSy would have
been a little more appropriate. No harm done, however.

 Lines 29-31 - this strange code has to do with the fact that the
declaration of SY includes 2 bytes of sz, so that cwSz is really the number
of words in the sz-2 bytes! This should deserve a comment or at least a
qualifier M2 (minus 2) or the like. cwSY is the length of the SY structure in
words. The all caps qualifier is not strictly standard, but it helps to
associate the quantity with the declaration of SY, rather than with any
random sy instance.

 PsyCreate is a good procedure name; PsyCreateCw would have been even
better. In line 32 we can also see an example of dimensional checking: while
we have a psy inside the parenthesis, we need a bsy for the left side (*pbsy
=bsy!) so we subtract the "base" of the bsy from the psy

 bX + base = pX; hence: bX = pX - base.

 In closing, it is evident that the conventions participated in making the
code more correct, easier to write and easier to read. Naming conventions
cannot guarantee "good" code however, only the skill of the programmer can.

Charles Simonyi
Microsoft Corporation

http://www.strangecreations.com/library/c/naming.txt

http://www.strangecreations.com/library/c/naming.txt (8 of 8) [10/1/2000 7:39:33 PM]

	strangecreations.com
	http://www.strangecreations.com/library/c/naming.txt

