http://www.strangecreations.com/library/c/naming.txt

Program I dentifier Nam ng Conventions

Thi s nonograph is intended to give you the flavor of the mmjor ideas behind
t he conventi ons.

When confronted with the need for a new name in a program a good
programrer will generally consider the followi ng factors to reach a deci sion

1. WMenonic value - so that the programmer can renenber the nane.

2. Suggestive value - so that others can read the code.

3. "Consistency" - this is often viewed as an aesthetic idea, yet it also
has to do with the information efficiency of the programtext. Roughly
speaki ng, we want sinilar nanes for simlar quantities.

4. Speed of the decision - we cannot spend too nuch tinme pondering the
nane of a single quantity, nor is there tine for typing and editing
extrenely |l ong vari abl e nanes.

All in all, name selection can be a frustrating and tinme consuni ng subt ask
Oten, a nane which satisfies some of the above criteria will contradict the
ot hers. Mui ntaining consi stency can be especially difficult.

Advant ages of the Conventions

The followi ng nani ng conventions provide a very conveni ent framework for
generating nanes that satisfy the above criteria. The basic idea is to nane
all quantities by their types. This sinple statenent requires considerable
el aboration. (Wat is neant by "types"? Wat happens if "types" are not
uni que?) However, once we can agree on the framework, the benefits readily
follow. The followi ng are exanpl es:

1. The nanes will be menonic in a very specific sense: if someone
renenbers the type of a quantity or howit is constructed from ot her
types, the nane will be readily apparent.

2. The nanes will be suggestive as well: we will be able to nap any nane

into the type of the quantity, hence obtaining information about the
shape and the use of the quantity.

3. The nanes will be consistent because they will have been produced by
t he sane rul es.
4. The decision on the nane will be nechanical, thus speedy.

5. Expressions in the program can be subjected to consistency checks that
are very simlar to the "di nension" checks in physics.

Type Cal cul us

As suggested above, the concept of "type" in this context is deternined by
the set of operations that can be applied to a quantity. The test for type
equi val ence is sinple: could the sane set of operations be neaningfully
applied to the quantities in questions? If so, the types are thought to be
the same. |If there are operations which apply to a quantity in exclusion of
others, the type of the quantity is different.

The concept of "operation" is considered quite generally here; "being the
subscript of array A" or "being the second paraneter of procedure Position"
are operations on quantity x (and "A" or "Position" as well). The point is
that "integers" x and y are not of the sane type if Position (X,y) is |lega
but Position (y,x) is nonsensical. Here we can al so sense how the concepts of
type and nane nerge: X is so nanmed because it is an x-coordinate, and it

http://www.strangecreations.com/library/c/naming.txt (1 of 8) [10/1/2000 7:39:33 PM]

http://www.strangecreations.com/library/c/naming.txt

seens that its type is also an x-coordi nate. Mst progranmers probably woul d
have named such a quantity x. In this instance, the conventions nerely codify
and clarify what has been wi despread programr ng practice.

Not e that the above definition of type (which, incidentally, is suggested
by | anguages such as SIMJLA and Smalltalk) is a superset of the nore comon
definition which takes only the quantity's representation into account.
Naturally, if the representations of x and y are different, there will exist
sonme operations that could be applied to x but not y, or vice versa.

Let us not forget that we are tal king about conventions which are to be
used by humans for the benefit of hunans. Capabilities or restrictions of the
progranm ng environnent are not at issue here. The exact determ nation of
what constitutes a "type" is not critical, either. If a quantity is
incorrectly classified, we have style problem not a bug.

Nanmi ng Rul es
My thesis discusses in detail the follow ng specific nam ng rul es:

1. Quantities are naned by their type possibly followed by a qualifier. A
conveni ent (and |l egal) punctuation is reconmended to separate the type
and qualifier part of a nanme. (In C, we use a capital initial for the
qualifier as inrowFirst: rowis the type; First is the qualifier.)

2. Qualifiers distinguish quantities that are of the sanme type and that
exi st within the same naming context. Note that contexts nay include
the whol e system a block, a procedure, or a data structure (for
fields), depending on the progranmmi ng environnent. |f one of the
"standard qualifiers" is applicable, it should be used. O herw se, the
progranmer can choose the qualifier. The choice should be sinple to
nmake, because the qualifier needs to be unique only within the type and
within the scope - a set that is expected to be snall in nost cases. In
rare instances nore than one qualifier may appear in a nane. Standard
qualifiers and their associated semantics are |isted below. An exanple
is worthwhile: rowLast is a type row value; that is, the |ast el enent
in an interval. The definition of "Last" states that the interval is
"closed"; i.e., a loop through the interval should include rowLast as
its last val ue.

3. Sinple types are naned by short tags that are chosen by the programrer.
The recommendation that the tags be snall is startling to many
programers. The essential reason for short tags is to nmake the
i mpl ementation of rule 4 realistic. Gther reasons are |listed bel ow.

4. Nanmes of constructed types should be constructed fromthe nanes of the
constituent types. A nunber of standard schenes for constructing
poi nter, array, and different types exist. Qther constructions may be
defined as required. For exanple, the prefix p is used to construct
poi nters. ProwLast (prowLast) is then the name of a particul ar pointer
to a row type value that defines the end of a closed interval. The
standard type constructions are also |isted bel ow

In principle, the conventions can be enriched by new type construction
schenmes. However, the standard constructions proved to be sufficient in years
of use. It is worth noting that the types for data structures are generally
not constructed fromthe tags of their fields. First of all, constructions
with over two conponents would be unwi el dy. Mre inportantly, the invariant
property of data structure, the set of operations in which they participate,
seens to be largely independent of the fields of the structure that determ ne
only the representation. W all have had numerous experiences with changes in

http://www.strangecreations.com/library/c/naming.txt (2 of 8) [10/1/2000 7:39:33 PM]

http://www.strangecreations.com/library/c/naming.txt

data structures that left the operations (but not the inplenentation of the
operations) unchanged. Consequently, | recomend the use of a new tag for
every new data structure. The tag with some punctuation (upper case initial
or all upper case) should also be used as the structure name in the program
New tags should al so be used if the constructions accurul ate to the point
where readability suffers.

In my experience, tags are nore difficult to choose than qualifiers. Wen a
new tag is needed, the first inpulse is to use a short descriptive comon
generic English termas the type nane. This is al nost always a nistake. One
shoul d not preenpt the nost useful English phrases for the provincial
pur poses of any given version of a given program Chances are that the sane
generic termcould be equally applicable to nany nore types in the sane
program How will we know which is the one with the pretty "logical" naneg,
and which have the nore arbitrary variants typically obtained by omtting
vari ous vowels or by other disfigurenent? Also, in communicating with the
progranmer, how do we distinguish the generic use of the comon termfromthe
reserved technical usage? By inflection? In the long run, an acronymthat is
not an English worked may work out the best for tags. Related types nay then
share sonme of the letters of the acronym |n speech, the acronym nay be
spel l ed out, or a pronounceabl e ni cknane nmay be used. Wen hearing the
speci al names, the inforned listener will know that the special technica
meani ng shoul d be understood. Generic ternms should renain free for generic
usage.

For exanpl e, a color graphics programnmay have a set of internal val ues
that denote col ors. What should one call the manifest value for the col or
red? The obvi ous choice (which is "wong" here) is RED. The problemw th RED
is that it does not identify its type. Is it a |abel or a procedure that
turns objects RED? Even if we know that it is a constant (because it is
spelled all caps, for exanple), there might be several color-related types.

O which one is RED an instance? If | see a procedure defined as
paint(color), may | call it RED as an argunent? Has the word RED been used
for any other purpose within the progranf? So we decide to find a tag for the
color type and use the word Red as a qualifier.

Not e that the obvious choice for the qualifier is in fact that the
"correct" one! This is because the use of qualifiers are not hanpered by any
of the above difficulties. Qualifiers are not "exclusive" (or rather they are
exclusive only within a snaller set) so we essentially need not take into
account the possibility of other uses of the term"Red." The technical use of
the termwi |l be clear to everyone when the qualifier is paired up with an
obvi ously technical type tag. Since qualifiers (usually) do not participate
in type construction, there is no inherent reason why they would need to be
especially short.

Conversely, the tag for the type of the color value should not be "color."
Just consider all the other color related types that may appear in the
graphics program (or in a future variant): hardware encodi ng of col or, color
map entry nunber, absolute pointer to color map entry, color values in
alternate col or mappi ng node, hue-brightness-saturation triples, other color
values in external interfaces; printers, plotters, interacting external
software, etc. Furthernore, the tag will have to appear in names with
constructed types and qualifiers.

A typical arbitrary choice could be "co" (pronounced see-oh). O, if "co"
was al ready taken, "cv", "cl", "kl", and so on. Note that the mmenonic val ue
of the tags is just about average: not too bad, but not too good either. The
conventions cannot help with creating nanmes that are inherently menonic,
instead they identify, conpress, and contain those parts of the programthat
are truly individual, thus arbitrary. The lack of inherent nmeani ng shoul d be

http://www.strangecreations.com/library/c/naming.txt (3 of 8) [10/1/2000 7:39:33 PM]

http://www.strangecreations.com/library/c/naming.txt

conmpensat ed by anpl e conmments whenever a new tag is introduced. This is a
reasonabl e suggestion since the nunber of basic tags renmains very small even
in alarge system

In conclusion, the nane of our quantity would be "coRed", provided that the
color type "co" is properly docunented. The value of the nane will show | ater
in program segnments such as the follow ng:

if co == coRed then *npcopx|[coRed] +=dx ..

At a glance we can see that the variable co is conpared with a quantity of
its own kind; coRed is also used as a subscript to an array whose domain is
of the correct type. Furthernore, as we will see, the color is napped into a
pointer to "x", which is de-referenced (by the *operator in this exanple) to
yield an x type value, which is then incremented by a "delta x" type val ue.
Such "di nensi onal anal ysi s" does not guarantee that the programis conpletely
free frombugs, but it does help to elinmnate the nost comon kinds. It also

lends a certain rhythmto the witing of the code: "Let's see, | have a co in
hand and | need an x; do | have a npcox? No, but there is a npcopx that wll
give me a px; *px will get ne the x...", and so on

Nanming for "Witability"

A good yardstick for choosing a nane is to try to inagine that there is an
extraordinary reward for two programrers if they can independently cone up
with the sane programtext for the sane problem Both programmers know t he
reward, but cannot otherw se comruni cate. Such an experinent woul d be
futile, of course, for any sizable problem but it is a neat goal. The reward
of real life is that a programwitten by soneone else, which is identical to
what one's own program woul d have been, is extrenely readabl e and nodifi abl e.
By the proper use of the conventions, the idea can be approached very
closely, give or take a relatively few tags and possibly sone qualifiers. The
| everage of the tags is enornous. If they are comuni cated, or are agreed on
bef orehand, or cone from a common source, the goal becones reachable and the
reward may be reaped. This makes the docunentation of the tags all the nore
i mportant.

An exanpl e of such a consideration is the discretionary use of qualifiers
in small scopes where a quantity's type is likely to be unique, for exanple
in small procedures with a few paranmeters and locals or in data structures
which typically have only a few fields. One nmight prefer to attach a
qualifier even to a quantity with a unique type of "witability", the ability
for someone else to cone up with the nane wi thout hesitation. As many
t ext books point out, the "soneone el se" can be the same programrer sonetine
in the future revisiting the long forgotten code. Conclusion: do not use
qual i fiers when not needed, even if they seem val uabl e.

Nani ng Rul es for Procedures

Unfortunately, the sinple notion of qualified typed tags does not work well
for procedure names. Some procedures do not take parameters or do not return
val ues. The scopes of procedure nanes tend to be large. The foll owi ng set of
special rules for procedures has worked quite satisfactorily:

1. Distinguish procedure nanmes from ot her names by punctuation, for
exanpl e by always starting with a capital letter (typed tags of other
guantities are in lower case). This alleviates the probl em caused by
the | arge scope.

2. Start the nane with the tag of the value that is returned, if any.

http://www.strangecreations.com/library/c/naming.txt (4 of 8) [10/1/2000 7:39:33 PM]

http://www.strangecreations.com/library/c/naming.txt

3. Express the action of the procedure in one or two words, typically
transitive verbs. The words shoul d be punctuated for easy parsing by
the reader (a common | egal nmethod of punctuation is the use of capita
initials for every word).

4. Append the list of tags of sone or all of the formal parameters if it
seens appropriate to do so.

The last point is contrary to the earlier remarks on data structure nam ng.
When the paraneters to a procedure are changed, typically all uses of the
procedure will have to be updated. There is an opportunity during the update
to change the nanme as well, in fact the name change can serve as a usefu
check that all occurrences have been found. Wth data structures, the
addition or change of a field will not have an effect on all uses of the
changed structure type. Typically, if a procedure has only one or two
paraneters, the inclusion of the paraneter tags will really sinplify the
choi ce of procedure nane.

Some exanpl es for procedure nanes are the follow ng:

I nitSy: Takes an sy as its argunent and initializes it.

OpenFn: fnis the argunment. The procedure will "open" the fn.
No val ue is returned.

FcFromBnRn: Returns the fc corresponding to the bn,rn, pair given.
(The nanes cannot tell us what the types sy, fn, fc,
etc., are.)

The following is a list of standard type constructions. (X and Y stand for
arbitrary tags. According to standard punctuation the actual tags are
| ower case.)

pX pointer to X

dX di fference between two instances of type X X + dX
is of type X

cX count of instances of type X

npXY an array of Y's indexed by X. Read as "map fromX to Y."

rgXx an array of X's. read as "range X." The indices of the array
are call ed:

i X i ndent of the array rgX

dnX (rare) an array indexed by type X. The elenents of the array
are call ed:

ex (rare) elenent of the array dnX

gr pX a group of X' s stored one after another in storage. Used when

the X elenents are of variable size and standard array indexing
woul d not apply. Elenents of the group nust be referenced by
means other then direct indexing. A storage allocation zone,
for exanple, is a grp of bl ocks.

bX relative offset to a type X. This is used for field
di spl acenents in a data structure with variable size fields.
The of fset may be given in ternms of bytes or words, depending
on the base pointer fromwhich the offset is nmeasured.

Where it natters, quantities named np, rg, dn, or grp are actually pointers
to the structures descri bed above.

cbX size of instances of X in bytes
CcwX Si ze of instances of X in words

One obvious problemwi th the constructions is that they make t he parsing of
the types anbiguous. |Is pfc a tag of its own or is it a pointer to an fc?
Such questions (just as many others) can be answered only if one is famliar
with the specific tags that are used in a program

http://www.strangecreations.com/library/c/naming.txt (5 of 8) [10/1/2000 7:39:33 PM]

http://www.strangecreations.com/library/c/naming.txt

The following are standard qualifiers. (The letter X stands for any type
tag. Actual type tags are in |owercase.)

XFirst the first elenent in an ordered set (interval) of X val ues.

XLast the last elenment in an ordered set of X values. XLast is the
upper limt of a closed interval, hence the |oop continuation
condi tion should be: x<=xLast

XLim the strict upper limt of an ordered set of X values. Loop
continuation should be: x<xLim

XMax strict upper limt for all X values (excepting Max, Mac,
and Nil) for all other x: x<xMax. |If x values start with
x=0, xMax is equal to the nunber of different x val ues.
The allocated I ength of a dnx vector, for exanple, will be
typically xMax.

XMac the Current (as opposed to constant or allocated) upper linit
for all x values. |f x values start with 0, xMac is the

current nunber of X values. To iterate through a dnx array,
for exanpl e:

for x=0 step 1 to xMac-1 do ... dnx[Xx]
or
for ix=0 step 1 to ixMac-1 do ... rgx[iX]
XNi | a di stinguished Nil value of type X. The value nay or may not
be 0 or -1.
XT temporary X. An easy way to qualify the second quantity of a

given type in a scope.

SOVE COWON PRI M TI VE TYPES

f flag (boolean, logical). |If qualifier is used, it should describe the
true state of the flag. Exception: the constants fTrue and fFal se.

w word with arbitrary contents.

ch character, usually in ASCH| text.
byte, not necessarily holding a coded character, nore akin to w.
Di stingui shed fromthe b constrictor by the capital letter of the
qualifier in inmediately follow ng

sz pointer to first character of a zero terninated string.

st pointer to a string. First byte is the count of characters cch

h pp (in heap).

The followi ng partial exanple of an actual synbol table routine illustrates
the use of the conventions in a "real life" situation. The purpose of this
exanple is not to nake any clains about the code itself, but to show how the
conventions can help us |learn about the code. In fact, sone of the nanes in
this routine are standard.

1 #i ncl ude "sy. h"

2 Extern int *rgwbhic
3 extern int bsyMac;

4 struct SY *PsySz(sz)
5 char sz[];

6

7 char *pch;

8 int cch;

9 struct SY *psy, *PsyCreate();
10 i nt *pbsy;
11 int cwsz;
12 unsi gned wHash=0;
13 pch=sz;
14 while (*pch! =0

http://www.strangecreations.com/library/c/naming.txt (6 of 8) [10/1/2000 7:39:33 PM]

http://www.strangecreations.com/library/c/naming.txt

15 wHash=(wHash<<5) +(wHash>>11+* pch++;
16 cch=pch-sz;

17 pbsy=& gbsyHash[(wHash&077777) Y%ewHash] ;
18 for (; *pbsy!=0; pbsy = &psy->bsyNext)
19 {

20 char *szSy;

21 szSy= (psy=(struct SY *) & gwhi c[*pbsy]) - >sz;
22 pch=sz;

23 whil e (*pch==*szSy++)

24 {

25 i f (*pch++==0)

26 return (psy);

27 {

28 }

29 cwWSz=0;

30 if (cch>=2)

31 cwSz=(cch- 2/ si zeof (i nt) +1;

32 *pbsy=(int *)(psy=PsyCreat e(cwSY+cwSz))-rgwhi c;
33 Zero((int *)psy, cwsY);

34 bl t byte(sz, psy->sz, cch+l);

35 return(psy);

36 }

The tag SY is the only product specific type in this routine. The
definition of SY is found in the include file sy.h (fair enough). The type
nane itself is in all capitals, a conmon convention

Line 2 - says that there is an array of words, which is called
Dic(tionary). Renenber that since Dic is a qualifier, it is nanmed
traditionally.

Line 3 - is the offset pointing beyond the |ast sy (see b constructor + Mac
standard qualifier.) One has to guess at this tine that this is used for
all ocating new sy's. The "base" of the offset would al so have to be guessed
to be rgwbic. Actually, the nane grpsy woul d have been better instead of
rgwbic, fromthis |local perspective. In the real program the rgwbic area is
used for a nunber of different purposes, hence the "neutral" nane.

Line 4 - is a procedure declaration. Procedure returns a pointer to an SY
as the result. The paraneter nust be a zero ternminated string.

Lines 7-12 - declare quantities. The usages should be clear fromthe nanes.
For exanple, cwSz is the nunber of words in sone string (probably the
argunent), pbsy is a pointer to an offset of an sy (p constructor + b
constructor). The only qualifier used here is in wHash - the hash code.

Line 13 - pch will be a pointer to the first character of sz.

Line 16 - cch is the count of characters (c constructor) ostensibly,
in sz.

Line 17 - cwHash is the nunber of words in the hash table (I woul d have
called it ibsyMax). In a way, the qualifier on rgbsyHash could be omtted,
but it helps identifying the hash table in external contexts.

Lines 17-18 - note the opportunities for dinensional checking:

rgbsy[...] follows frompX = &gX[...]
psy->bsy Next follows from pX=&uY->X; or pX = &Y. X

pbsy
pbsy

So even the use of -> instead of . follows fromlocal context. The p on the

http://www.strangecreations.com/library/c/naming.txt (7 of 8) [10/1/2000 7:39:33 PM]

http://www.strangecreations.com/library/c/naming.txt

| eft hand side signals the need for the & on the right.

Line 20 - introduces a new sz, qualified to distinguish it fromthe
argunment. The qualifier, very appropriately, is the source of the datum Sy.

Line 23 - given the use of szSy in this |ine, the name pchSy woul d have
been a little nore appropriate. No harm done, however.

Lines 29-31 - this strange code has to do with the fact that the
decl aration of SY includes 2 bytes of sz, so that cwSz is really the nunber
of words in the sz-2 bytes! This should deserve a coment or at |least a
qualifier M (mnus 2) or the like. cwSY is the length of the SY structure in
words. The all caps qualifier is not strictly standard, but it helps to
associate the quantity with the declaration of SY, rather than with any
random sy i nstance.

PsyCreate is a good procedure nane; PsyCreateCw woul d have been even
better. In line 32 we can al so see an exanpl e of di nensional checking: while
we have a psy inside the parenthesis, we need a bsy for the left side (*pbsy
=bsy!) so we subtract the "base" of the bsy fromthe psy

bX + base = pX; hence: bX = pX - base.
In closing, it is evident that the conventions participated in making the
code nore correct, easier to wite and easier to read. Nami ng conventions
cannot guarantee "good" code however, only the skill of the programmer can

Charl es Si nonyi
M crosoft Corporation

http://www.strangecreations.com/library/c/naming.txt (8 of 8) [10/1/2000 7:39:33 PM]

	strangecreations.com
	http://www.strangecreations.com/library/c/naming.txt

