1

Large software projects produce an impressive array of documents. In a
sense, program source code is the most important type of document pro-
duced, since it is the most direct expression of the nature of the program
itself. But it is often the case that the majority of software documents are
Table 1 shows a number of examples, catego-
rized by the phases of the “waterfall” model of the software development
process [2]. Some of these documents are descriptions of the program (e.g.
user documentation and architectural design). Others describe the process

not program source code.

To appear in the Proceedings of the Workshop on Software Engineering and

Interoperability of Software Documents

Ethan V. Munson

December 15, 1993

Abstract

The software development process produces a diverse collection of doc-
uments ranging from requirements specifications to architecture dia-
grams to program source code to bug reports. Some are written in
formal languages, but others, while highly structured, are written in
natural language. The content of these documents is interconnected in
complex ways. For instance, a change report might describe how source
code was modified to conform to a design specification, the problem
having been identified because test output was incorrect. The current
state of the art in software development environments uses many differ-
ent, and often incompatible, tools to manage these different documents.
Many significant advances in interaction for the software development
process will not be possible until all the documents it produces inter-
operate.

Software documents

Human-Computer Interaction, Sorrento, Italy, May 1994.



Phase Document Types

Requirements system definition
project plan
software requirements specification

Design architectural design specification
detailed design specification
preliminary user’s manual
software verification plan

Implementation | program source code
walkthrough and inspection reports

Testing test plans
test data
testing scripts
bug reports

Maintenance bug reports

change reports

program source code

errata for user documentation

Table 1: Software document types categorized by the phases of the waterfall
model of the software process. (Some of the document types listed here were
taken from [2].)

of producing the program (e.g. project plan and walkthrough reports). Cer-
tain documents describe how other documents change over time (e.g. change
reports and errata).

2 Interconnectedness of Software Documents

What stands out about these documents, when taken as a whole, is their
interconnectedness. Admittedly, a few documents from the requirements
phase make sense in isolation, but

o Design documents are motivated by material in requirements docu-
ments;



e Implementation documents are a more concrete expression of the ideas
in design documents;

e Test phase documents are intended to make sure that certain imple-
mentation documents (particularly source code) meet the requirements
and design specifications;

¢ Maintenance documents describe the process of maintaining the doc-
uments from the implementation phase.

These are the obvious, more-or-less linear relationships between the docu-
ments and phases. In practice, most software is developed in a series of
design-build-evaluate cycles. The evaluation stage of one cycle motivates
changes to the design and implementation of the next cycle. Thus, software
documents have other interconnections that reflect the relationship between
the cycles.

Ideally, each member of the community working on a software project
should have fast, interactive access to on-line versions of every document
produced by the project. As an example, a programmer working on a mod-
ule, without leaving the workstation, should be able to find

o the design documents for the module,

o the higher-level design documents describing how the module will be
used by other parts of the program,

e and the requirements documents that motivated the design.

Navigation among these documents could be performed by following links
in the manner of hypertext. In fact, where it was appropriate, documents
could include fragments of other documents. For example, a program source
file could include fragments of the relevant design documents as part of its
internal documentation. Furthermore, these included fragments could be
active, so that when the design changed, they would either be updated
automatically or their appearance could change in a manner signaling a
possible conflict between the new design and the current source code.
Unfortunately, exploiting even simple interconnections between software
documents is rarely possible. Typically, each division of the development
team uses a document tool well-suited to the division’s task, but incompati-
ble with the tools used by other divisions of the team. Some tools that might
be used are: program editors (for programs), easy-to-use word-processing



programs (for internal natural language documents), and high-quality docu-
ment composition systems (for external documents). While there exist some
formats (e.g. ASCII text and PostScript) that can be used for interchange
of data between these systems, a great deal of information and functionality
is sacrificed in the interchange process.

The inability to exploit the connections among the various software
documents is a significant hindrance to the development of better human-
computer interfaces for software. In building a software system, one of the
key difficulties is managing the large amount of information that is avail-
able, often in the form of documents. If the natural connections between
the documents can be used as a navigational framework, it should be much
easier to construct advanced interfaces.

3 Interoperability

The solution is to make software documents interoperate. If all software
documents share a common framework that possesses sufficient functional-
ity, it should be much easier to construct and experiment with advanced
interfaces. Of course, if interoperability were easy to achieve, we would al-
ready have it. Instead, we must settle for a clear description of the kind of
interoperability we desire and an understanding of the technical challenges
that lie along the path to achieving it.
These are my desiderata for interoperability of software documents:

Support for structure: All documents have structure. In some docu-
ments, the structure is so simple as to be degenerate, but most soft-
ware documents have structure of at least moderate complexity. Some
software documents have the standard technical document structure of
sections, paragraphs, and sentences. Others, such as bug reports, have
a specialized structure all their own. Program source code (along with
certain other formalized language documents) has the special quality
that its structure can be determined by analysis of its content.

Whatever a document’s structure, it can be exploited to create better
interfaces. Structure can be used to support navigation both by direct
traversal of the structure and by queries that exploit structural infor-
mation (e.g. “find all bug reports issued by John Doe” or “find the
declaration of the global variable z”). Structure can also be used as
the basis for presentation. For example, a pretty-printing service uses
the structure of a program to determine how the program is formatted.



Support for exploiting connections: It must be possible to take advan-
tage of the connections between software documents. One way is
through the use of hyperlinks (from hypertext or hypermedia), which
allow navigation between arbitrary points in the same document or
in separate documents. Another way is through active inclusions. If
every software document can include arbitrary portions of other doc-
uments, then it should be easier to maintain correspondences between
the documents. If the included portions are active, they can be auto-
matically updated, if that is appropriate.

Tolerance for multimedia: Currently, many software documents use mul-
tiple static media (text, graphics, tables, raster images). The key ex-
ception to this rule has been program source code, which has been lim-
ited to a very restricted model of text. Research on literate program-
ming [6, 11] has made a case for the benefits of applying high-quality
document formatting techniques to program text. Further benefits will
be derived if programs and all other software documents can include
a wide variety of static and dynamic media. This does not require a
complete reworking of our model of programs. Rather, our systems
for handling programs (and other specialized document types) should
be able to tolerate the presence of multimedia data. If our support
of interoperability is general enough, this requirement may be easy to
meet, because documents drawn from all media will interoperate.

Support for large systems: Any mechanisms for document interoperabil-
ity must scale up to meet the needs of very large systems. It is the very
largest systems whose complexity most strongly demands better inter-
faces. Thus, solutions that do not scale up sufficiently will probably
never be used.

There are many technical obstacles to achieving the goal of software
document interoperability. The following are some of the issues that must

be addressed:

System Architecture: There are three basic approaches to building a sys-
tem or collection of systems which provide interoperability.

Integrated: One approach is to construct a single integrated system
which handles all document types. This approach is likely to pro-
vide uniform mechanisms for handling all document types. It is



also much easier to share services and information between mod-
ules in an integrated system. A disadvantage to this approach
is that it forces all users to work with the same large system.
It is difficult to construct a single system that do a good job of
meeting the specialized needs of every particular group of users.

Encoding Standards: Another approach is to store all documents
using an encoding standard of sufficient generality to handle all
types of software documents. The encoding standard becomes the
common denominator for the various software document tools.
Examples of such standards are SGML [3], ODA [5] and Hy-
Time [8] (an extension of SGML suitable for hypermedia docu-
ments). The problem with this approach is that it may impose a
complex and verbose storage representation on tools whose task
is fundamentally quite simple.

Tool-based: A final approach involves the construction of small, spe-
cialized tools that cooperate. These tools might be similar in
function to the incompatible programs currently used, but they
would use a common communication protocol to cooperate. The
tools can be carefully designed to meet the needs of their users
and their relatively small size should reduce computing infrastruc-
ture requirements. Furthermore, unlike the encoding standards
approach, the communication between pairs of tools can be tuned
to improve efficiency. Two different ways to build tool-based sys-
tems have been explored in Tcl/Tk [9, 10] and OLE [7].

The problem with the tool-based approach is that it is hard to
guarantee that the tools really share common models, particu-
larly if they evolve independently. Also, fine-grained sharing is
typically more difficult than in an integrated system.

These three approaches are not mutually exclusive. For instance, an
encoding standard can be used as the lowest common denominator
for document interoperability among a set of cooperating tools. But
when circumstances require it, pairs of tools can use more efficient
coding schemes for communication or sharing. Furthermore, the tools
can share code for common operations in the form of various libraries.
If the libraries become powerful enough, it may be hard to tell the
difference between the tool-based and integrated approaches.

Formalized Language Support: Perhaps the hardest technical problem



is providing advanced support for formalized languages (programs and
specifications). It is very difficult to provide incremental program anal-
ysis services with interactive performance. Such services must share
large amounts of fine-grained data, which is typically easiest to do in
an integrated system. It is even more difficult to build a system that
gracefully handles error states, a common situation if text editing is
not restricted by the program [1].

Structured Documents: One model which has the potential to provide
software document interoperability is the structured document model.
Structured documents have hierarchical structure which is specified
separately from the document instances (using grammar-like specifi-
cations). The model applies equally well to both formalized language
and natural language documents and forms the basis of the encoding
standards mentioned earlier (SGML, ODA, and HyTime).

One of the key benefits of the structured document model is that it
separates document presentation from document content. Thus, it
is possible to view the same document different ways, depending on
current needs. One of the focuses of my own work on the Ensemble
environment has been to provide support for multiple presentations of
the same document [4].

While the structured document model can be applied to both programs
and natural language documents, there are some problems. First, ef-
ficient incremental program analysis requires a much more complex
tree model than is necessary for natural language documents. While
such a tree model is both space and time efficient, its construction
is a demanding engineering task. Second, the best way to make pro-
grams able to include non-program documents is not yet clear. One
method would be to modify the program’s grammar to explicitly allow
inclusion of non-program documents at certain points (e.g. between
statements but not in the middle of expressions). Another approach
would be to create a special type of document which can intermix the
program’s text stream and arbitrary fragments of multimedia docu-
mentation.



4 Conclusions

Ultimately, every document produced in the software development process
discusses the same topic: the program being developed. Because of this
shared topic, the content of the various documents is highly interconnected.
Yet these connections can rarely be exploited because the software currently
used to produce the different documents is often incompatible. This obstacle
to the creation of advanced interfaces can be removed by making software
documents interoperable.

I have argued that any approach to interoperability must take advan-
tage of the natural structure of software documents, exploit the connections
among the various documents, tolerate multimedia, and scale up to meet
the needs of large systems.

We, as computer scientists and software engineers, have a compelling
interest in improving the software development process, which makes it a
topic of great interest to us. Sometimess our work has little application out-
side our own domain. However, improvements in document interoperability
should also benefit domains outside computer science. Other engineering
domains have the same general problems with managing complex sets of
documents covering the design, construction, and evaluation of their par-
ticular engineering artifacts. Furthermore, certain collections of business
documents also share the quality of interconnectedness. Thus, document
interoperability could benefit computer users outside the engineering fields.

References

[1] Robert A Ballance, Susan L. Graham, and Michael L. Van De Van-
ter. The Pan language-based editing system. ACM Transactions on
Software Engineering and Methodology, 1(1):96-127, January 1992.

[2] Richard Fairley. Software Engineering Concepts. Series in Software
Engineering and Technology. McGraw-Hill, New York, 1985.

[3] Charles F. Goldfarb, editor. Information Processing — Text and Office
Systems — Standard Generalized Markup Language (SGML). Inter-
national Organization for Standardization, Geneva, Switzerland, 1986.
International Standard ISO 8879.

[4] Susan L. Graham, Michael A. Harrison, and Ethan V. Munson. The
Proteus presentation system. In Proceedings of the ACM SIGSOFT



[10]

[11]

Fifth Symposium on Software Development Environments, pages 130-
138, Tyson’s Corner, VA, December 1992. ACM Press.

International Standards Organization. Office Document Architecture,
1986. Draft International Standard 8813.

Donald E. Knuth. Literate programming. The Computer Journal,
27(2):97-111, May 1984.

Microsoft Corporation, Redmond, WA. Object Linking & Fmbedding,
Programmer’s Reference, Version 2.0 (Pre-Release), 1993.

Stephen R. Newcomb, Neill A. Kipp, and Victoria T. Newcomb. The
HyTime hypermedia/time-based document structuring language. Com-
munications of the ACM, 34(11):67-83, November 1991.

John Ousterhout. Tcl: An embeddable command language. In 7990
Winter USENIX Conference Proceedings, 1990.

John Qusterhout. An X11 toolkit based on the Tcl language. In 7991
Winter USENIX Conference Proceedings, pages 105-115, 1991.

Norman Ramsey and Carla Marceau. Literate programming on a team
project. Software — Practice and Frperience, 21(7):677-683, July 1991.



