
Literate Programming

as an

Aid to Marking Student Assignments

by

A. J. Hurst

Department of Computer Science
Monash University

email: ajh@cs.monash.edu.au

Abstract

In a university climate that sees rising student-sta�
ratios and increasing workloads for academics, any
mechanism that reduces the student marking and as-
sessment process must be welcome. One possible path
of improvement is to shift much of the repetitive na-
ture of student assessment away from the academic,
freeing up valuable time that can be spent more di-
rectly with students.

We argue in this paper that the Literate Programming
paradigm (LP for short), �rst proposed by Knuth [1],
can assist substantially in this assessment process. We
detail some experience in using LP, �rstly as a paradigm
for student assignment submission, and secondly as a
model to structure the semi-automated marking pro-
cedures. An electronic submission procedure is used,
in which students' work is handled automatically by
scripts which annotate the literate program, and ex-
tract key components for testing against model an-
swers. Although initial experience is limited in the
style of analysis that can be used, we conclude that
the LP paradigm does o�er some signi�cant advan-
tages to the mundane activity of student assignment
marking.

Introduction

Of all the tasks facing an educator, student assessment
seems to be one of the least popular! There is some-
thing about the repetitive nature of the task, and the
frequently pedestrian and/or confused ideas presented
by the student, that leads assignment and examina-
tion marking to be viewed with some distaste by uni-
versity educators. Colleagues frequently complain of
the \mind-numbing" e�ect of long hours of marking,

the more so in the computing �eld it seems, because of
the necessity to also scan programming code as part
of the assessment process.

We report here some trials in using the Literate Pro-
gramming (LP) paradigm as an aid to relieving this
mental torment. We can identify several aspects for
which LP is helpful.

1) Students are required to write their assign-
ments as literate programs.

2) Assignments presented as LPs can be han-
dled completely electronically through mail-
based submission systems.

3) The use of document typesetters as the back-
end to LP processors means that a common
format of assignment presentation can be
used.

4) Such a common format allows automatic han-
dling, even marking, of student assignments.

5) The automatic marking can be undertaking
by systems themselves written as LPs.

We explore and analyse each of these aspects here.

Literate Programming

While the idea of LP is not new, it does not seem to
have developed or spread widely. Knuth's original pa-
per [1] appeared in 1984, yet very few examples have
appeared in the public domain, nor has the technique
been adopted in many institutions. Knuth's original
system was based upon the programming language
Pascal and the document typesetting system TEX, and
was in fact used to write bootstrapped versions of TEX
itself. The WEB system comprised two programs,
known as `tangle' and `weave', of which more anon.

The interested reader is referred to an extensive bibli-
ography [2] for detailed discussion of literate program-
ming ideas, but a brief introduction in this context is
perhaps appropriate.

The concept of literate programming shifts the focus
of documentation from \code with comments inter-
spersed" to \documentation with code interspersed".
That is to say, the author of the program addresses
primarily the human reader, and structures his doc-
ument to meet the needs of the reader �rst and the
computer second, rather than structuring his program
to meet the demands of a compiler �rst, and the reader
as an afterthought.

Literate programs contain both code and documenta-
tion, but it is the latter to which the `program' de-
faults, rather than the former. Code and documenta-
tion fragments make up the literate program, usually
in alternation, but by no means necessarily so. For

the purposes of compilation, a �lter is applied to the
program, and this �lter writes all the code fragments
to one or more �les. This �lter is known as the `tan-
gle' �lter, after the program written for this purpose
in the original WEB system. Code fragments may re-
fer to other code fragments, and a process of macro
expansion takes place to ensure that the fragments get
`tangled' together in the order required by the com-
piler, even if not the order in which they appear in the
program.

A separate �lter (although sometimes combined with
the `tangle' �lter) program scans the literate program
document and extracts a �le suitable for document
processing. This includes the code fragments suitable
typeset. Such �lters are known as `weave' programs.

Some literate programming systems `prettyprint' the
code before typesetting, but this requires the `weaver'
to have some knowledge of the code syntax rules, and
binds the `weave' �lter to a speci�c language. Be-
cause of this constraint, more recent literate program-
ming systems adopt a `no prettyprinting' rule, which
allows them to be used with arbitrary programming
languages. However, the document processing system,
being less of a constraint to the use of the system, is
usually tightly coupled to the system. TEX and LATEX
are the document processing systems most widely used
in this context.

The processed document then admits of the full type-
setting abilities of the document processing system,
allowing tables, mathematics, �gures, tables of con-
tents and indices all to be automatically gnerated.
These greatly enhance the readability of the literate
program. Code fragments also may be indexed and
cross referenced, and are usually typeset with frag-
ment number or page references to embedded macro
calls.

Figure 1 shows a fragment from one of the marking
scripts referred to later in this paper. The literate
programming system used is nuweb. Macro calls are
shown enclosed in angle brackets, together with the
page number on which they are de�ned. Lowercase
letters are used to resolve multiple de�nitions on a
single page, and ? question marks are used to indicate
macros not de�ned (since this is only an excerpt of a
larger document).

Automatic Submission

In order to automatically mark student assignments,
some formof automatic submission scheme is required.
This allows a student to lodge his code with a program
that can do one or more of the following things:

� vet the code for basic attributes;

� record date, time, subject name, assignment
name and other administrative details;

� mail the code to a remote system;

� compile the code or perform other appropri-
ate processing;

� execute the code against some appropriately
chosen test data, preferably in a secure en-
vironment; and

� evaluate the test results.

The �rst two of these are required for the purposes of
recording the submission. Essential to this project are
the last three, to which we must add two additional
requirements:

� `tangle' and `weave' the literate program to
extract the source code for compilation and
the documentation for typesetting.

� typeset the documentation.

Let us consider each of these in turn.

It is essential to vet the submission at the outset.
We are dealing with students who are still at various
stages of the learning process, and they may not have
adequately prepared themselves to use the submission
system. They may have misunderstood instructions,
and key wrong values into the system. The automatic
submission system must give as much feedback to the
student as possible at this stage in the submission pro-
cess, so that the student is fully aware of just what
has happened to his code. Particularly where marks
are involved, some students may become quite upset
and/or panicky if thet feel that their work has not
been properly processed. Those who do not have con-
�dence in the system will repeat their attempts, which
may prove disastrous in the situation where the initial
problem was caused by lack of disk space!

Some students may behave maliciously towards the
system, in order to break it or otherwise upset the au-
tomatic process as much as possible. Their attempts
must be monitored and rejected as appropriate, and
audit trails left where possible, so that in the case
something does go wrong, su�cient information is avail-
able to improve the robustness of the system.

The submission process must record as much (rele-
vant) information as possible, so that issues of dead-
lines, number of submissions, identity of the submit-
ter, etcetera, are available not only for the marking
process, but also to investigate complaints as and when
they arise. One cannot rely upon the honesty of stu-
dents!

The need to mail the submission arises not only be-
cause the systems responsible for developing the code
(the student system) and processing the code (the
marking system) are generally part of some form of
local area network, but also because of security con-
cerns. Separation of systems in this way decreases the
risk of breakins.

If the student code is to be evaluated, somemechanism
for compiling and executing the received submission
is necessary. This would not normally be a problem,
except that a) the student may be using a di�erent
system to develop and test his code, and subtle sys-
tem dependencies may surface at this stage, and b)
one must be careful to execute student programs in
a secure environment, where accidental or malicious
program misbehaviour may compromise system secu-
rity.

To this end, we have developed a submitroot pro-
gram, which allows execution of a student program in
a (unix) context where the only �le systems accessible
are the directory in which the executable code resides,
together with a subdirectory containing any required
libraries or other executables.

The behaviour of the submitted code under compila-
tion and execution may then be assessed by running
it against a number of test scripts, and examining the
output to see if it conforms to the assignment speci�-
cation. One advantage of such an environment is that
the student will be quite unaware of the nature of the
test data, and this greatly enhances the quality of test,
to say nothing of the need to be accurate in one's ex-
ercise design! For example, test data can be chosen
randomly, or generated on the spot, thereby forcing
accurate adherence to the assignment speci�cations.

We turn our attention to the need for the two addi-
tional requirements in the next section.

Assignments as Literate Programs

It would be fair to say that documentation of assign-
ment programs by students is one area that receives
scant attention. Not only is the process of program
documentation poorly understood at the best of times,
but also the task is compounded by the fact that the
student is struggling to realize his own understand-
ing of just how the program should be designed and
coded. Students often get no tuition in how to docu-
ment programs, or, if they do, it is overlooked as soon
as attention is directed to some other area of program-
ming. In these circumstances, it is little wonder that
documentation becomes something that is done at the
last minute, and is done scrappily at that. This is not
a good model to be giving students!

With these factors in mind, and following the chal-
lenge o�ered by Hamer [3], it was decided to intro-
duce literate programs as �rst the `preferred', and then
the `mandatory' form of student submission for assign-
ments in two third year courses taught by the author.
The fact that one of these subjects, a course in Com-
piler Construction, used the Eli system developed by
Waite et al. [4], which allows compiler speci�cations to
be written in FunnelWeb [5], a literate programming
system was an added impetus. As Hamer states: \...
there is no `obvious' course in which to include a topic
on literate programming." [3],p286. Eli gave just the
opportunity to respond to that challenge.

Experience to date has shown that the general quality
of student submissions has risen as a result of using lit-
erate programming. One dimension of this quality is
simply that resulting from the use of a document pro-
cessing system being forced upon the students. Previ-
ously, the author had tried to move in this direction by
asking students to submit work that had been type-
set by any document processing system, WYSIWYG
or markup, or at the very least typewritten; but the
variability between layouts and print quality, together
with the variety of skill levels demonstrated by stu-
dents, meant that the overall quality of program doc-
umentation was just as wide (with just as extreme end
points) as it had ever been.

A `skeleton' literate program is made available, which
is used by students as a starting point for constructing
their solutions. The advantage of this is that it can be
as sketchy or as detailed as one likes. The framework
allows hints to be given, and may be used to structure
the design to be used by the student. Figure 2 shows
one such example.

One emphasis presented to students is that they are
encouraged to `make their literate programs tell a story
to the reader'. This paradigm seems to strike a chord
with some students, who relish the opportunity to nar-
rate their way through a program.

It must be admitted that there are students at the
other extreme, who submit literate programs that have
just one macro (the entire program code) and little or
no documentation. Addressing this failing is the topic
of the next section.

Marking the Literate Programs

The use of literate programs as the vehicle for student
submissions not only improves the pedagogic process
from the student's perspective, but it can greatly as-
sist that process from the lecturer's point of view as
well.

At a basic logistic level, the use of literate program-
ming means that everything the student needs to sub-
mit as part of his assignment solution can be present
in the one �le. All code, all documentation, includ-
ing the ability to typeset tables, mathematics, even
include �gures, is available through various mecha-
nisms.

Of course, some of these tools require additional in-
vestment on the part of the student, so these mecha-
nisms must be used with care. However, students as a
whole seem keen to learn their use, and this is appro-
priate for budding computer professionals. Knowledge
of such tools as TEX, LATEX, xfig, Postscript, etc., or
their equivalents, is seen by many computer science
educators in a somewhat equivocal light. On the one
hand, they are regarded as essential components of a
computing professional's knowledge, but on the other
hand, educators may be reluctant to devote curricu-
lum time to teaching them. Using them as part of
the exercise submission cycle can resolve both of these
points of view.

Because the material is submitted entirely electron-
ically, there is no paper to handle. Experience has
shown that paper submissions often go astray, and
the department has had to institute various auditing
processes to ensure that the quality of service to the
student does not degrade as the number of separate
assignment scripts handled per academic rises. With
electronic submission, such procedures are reduced.

So how is the marking handled? The system devel-
oped so far uses shell scripts to perform some ba-
sic tasks, such as compilation and execution against
test scripts. Where the style of the exercises admits,
marks can be automatically accumulated for each test
passed. Upon completion of the submission process-
ing, a summary is mailed back to the student, together
with the mark realized. Depending upon the tests
failed, the script can also generate various hints as to
what the student has done wrong.

Students appreciate this immediate feedback, and are
allowed to rework and resubmit material until they are
satisi�ed with their e�orts, or they run out of time.
Both of these points encourage students to submit
earlier in the assignment cycle, rather than the last
possible moment. On the one hand they can see im-
mediately where they are failing, rather than having
to wait until the deadline has passed, the lecturer has
marked the material, and it has been returned to the
student. By then, the immediacy of the problem has
gone, and the student is often no longer interested in
just what issue caused him to lose marks.

On the other hand, submitting earlier maximises the
amount of time they have to perfect their work, and
the use of automatic testing and hint generation leads
the student to focus directly upon her error.

The literate programs are `tangled' and 'woven', and
the processed material stored until the lecturer is able
to view it. I use scripts to automatically cycle through
the collection of submitted material, so that as each
student's literate program is displayed, another win-
dow shows the marks recorded automatically, and the
lecturer can satisfy himself that the marking proce-
dure is behaving appropriately.

Alternatively, some things in an assignment may not
lend themselves well to automatic marking. For ex-
ample, in one of the subjects taught by the author,
students are required to write Z schemas. These are
di�cult to mark automatically, since there are issues
of layout, style, and a variety of formulations to con-
tend with. The approach used here is to assess the
students work by visually scanning the material, but
here again, the fact that the material is on-line means
that scripts can be created to cycle through the collec-
tion of student submissions, together with a suitable
script that prompts for each mark. As marks are en-
tered according to how the literate program reads, the
script prompts for the next marking point, which fa-
cilitates the marking process.

One approach tried in this respect is to scan and an-
notate the student's literate program, adding high-
light mechanisms that direct the eye to each salient
point. This process is aided by making available a lit-
erate programming template, which the student can
edit to re
ect his work. Appropriate headings or text
markups can be used to direct the script to anno-
tate the relevant section of text. In Figure 1, the
macro hAnnotate the student's literate program 3bi
does this task, using a perl script to perform the pat-
tern matching and annotation. It relies upon key text
fragments in the skeleton (such as 2.2 Explanation

of stringToInt Schema in Figure 2) to add appropri-
ate annotation. Figure 3 shows the result of annotat-
ing part of Figure 2, as applied to an actual student
submission, as evidenced by the errors in the text!
Marginal notes are used to draw the marker's atten-
tion to the key points. The leading number indicates
how many marks the highlighted fragment carries.

The use of shell scripts, perl scripts, test �les, etc.,
tends to lead to a proliferation of �les in creating a
suitable marking environment. What better way to
manage all these than to write the marking script as
a literate program itself. This has the advantage that
all the scripts are kept in one coherent whole, together
with appropriate documentation. The marking script
then becomes easier to debug and maintain.

One reason for this is that a consistent environment
may be reestablished by `tangling' the literate marking
program: this rewrites all �les to ensure that they are
in a consistent form. Design decisions made in the
development of the marking script are recorded for

posterity: this is particularly useful when the program
is redesigned to handle the next exercise, whether it
be next week, next month or next year.

Towards an Automatic Marker

The system as described above is not automatic. The
lecturer still has to construct the scripts, which, while
having some commonality with each other, are still
highly tailored towards the speci�cs of a particular
exercise. We would like to move a step beyond this,
and have much of the tedium of such script writing
removed from the onus of the lecturer.

A major impediment to the more widespread use of
marking scripts is this need to redevelop the marking
scripts for each exercise. Shell scripts (or their equiva-
lent) require a certain level of programming skill that
some users would not wish to acquire, and if we are to
realize the goal of automatic marking in general, some
automation of script generation is essential.

To do this requires some notational mechanism in which
to describe the marking task. To date little work has
been done to develop this aspect, but several ideas
present themselves. One approach would be to de-
velop a syntactical description of an exercise outline,
and use a translator tool such as Eli to �rstly ensure
that the submission is syntactically correct, and sec-
ondly to perform semantic transformations on the sub-
mission so that it can be handled by more primitive
marking scripts.

Another alternative might be to develop a notation
that abstracts over the essential tasks in building such
scripts: shell tasks such as compilation and execution;
maintenance, selection, and automatic generation of
test �les, together with appropriate outputs; compar-
ison and evaluation of test results; etc.. `Marking'
would then become a process of building upon such
tasks, perhaps by using some form of programming
notation to de�ne how these tasks are composed and
ordered.

Conclusions

We have described a system which is in use in the De-
partment of Computer Science at Monash University.
The system allows automatic submission of student
exercise solutions, and to some extent automates their
marking.

Central to the philosophy of this process is the use
of literate programming, which enforces an appropri-
ate paradigm suitable for automatic marking upon the
students. The design and maintenance of the auto-
matic marking scripts themselves is enhanced and sup-
ported by the use of literate programming to construct
them as well.

Experience in the use of this system indicates that
there is a fairly high overhead in creating and setting
up the various scripts. For single courses, or small
numbers of students, or marking requiring substantial
interaction, this e�ort makes the process of marginal
bene�t. However, for large or repeated courses, or
where there is a high degree of mechanisation to mark-
ing, the e�ort certainly facilitates the learning process.

As yet, we do not have mechanisms to support the au-
tomatic generation of the marking scripts. We believe
that with further research, some progress might be
made towards this goal, and thereby make the overall
process of student exercise marking more tractable.

References

1. Knuth,D.L., Literate Programming,The Com-
puter Journal, 27(2):97-111 (1984).

2. Beebe, N., Literate Programming Bibliogra-
phy, available from URL: ftp://ftp.math.
utah.edu/pub/tex/bib/litprog.{bib,ltx,

twx}.

3. Hamer, J., Literate Programming: A Soft-
ware Engineering Perspective, Software Ed-
ucation Conference (SRIG-ET'94), Univer-
sity of Otago, New Zealand, pp282-288, Nov-
ember 1994. (published by IEEE Computer
Society Press, ISBN 0-8186-5870-3)

4. Gray, R. W., Heuring, V. P., Levi, S. P.,
Sloane, A. M. and Waite, W. M., Eli: A
Complete, Flexible Compiler Construction
System, Communications of the ACM, 35(2):
121-131 (February 1992).

5. Williams, R., The FunnelWeb User's Man-
ual. Available for anonymous ftp from URL:
ftp://ftp.adelaide.edu.au/pub/funnel-

web, or any Comprehensive TEX Archive Net-
work (CTAN) site, May 1992.

The Submission Script

This uses the submit program written in the Department of Computer Science at Monash. The submitr program
used to register a submission relies upon a script embedded in the database �le submitrc. That script executed
is this program, submitscript. This script gets executed in the context of the student's submit directory, hence
we must be careful to copy in all necessary �les for the mark script, and to clean up afterwards.

This script is called with three mandatory parameters: the nuweb �le name submitted, the student ID number,
and the student's user name.

"submitscript" 3a �#! /bin/sh

ex1dir=$HOME/Submit/csc3080/exercise1

latex=/usr/local/bin/latex

nuwebfile=$1; studID=$2; studlogin=$3

rm ex1-output >/dev/null 2>&1

hAnnotate the student's literate program 3bi
cat ex1-errors

hcompile the student's code ?i
htest the student's code ?i
�

Annotate the Student's Literate Program

This script does not do much marking. The human marker is still require to scan the submitted text and assess
the result. To assist in this process, we annotate the literate program with some marking comments, using
the \marginpar mechanism of LATEX. A perl script is used to do the annotation, and the resultant markup is
processed through nuweb and latex.

hAnnotate the student's literate program 3bi �
perl perl-file <$nuwebfile >ex1-annotate.w

nuweb ex1-annotate.w >>ex1-output 2>&1

$latex ex1-annotate.tex </dev/null >>ex1-output 2>&1

�
Macro referenced in scrap 3a.

The perl script breaks into two parts: those annotations which must appear before the matching input line, and
those which appear after the line.

"perl-file" 3c �#! /usr/monash/gnu/bin/perl

hinitialize perl script ?i
while (<STDIN>) {

hannotate question 1 ?i
hannotate question 2 ?i
hannotate Literate Programming ?i
print $_;

hannotate question 1.1 ?i
hother stu� not shown ?i

}

hCheck and report on missing sections ?i
�

Figure 1: Sample literate program excerpt.

2.1 TEAM versus Team

Include your explanation here.

2.2 Explanation of stringToInt Schema

stringToInt : seqCHARACTER ! N [1]

8 s : dom stringToInt j [2]
(ran s � f`0' : : `9'g) ^ (k = #s) � [3]

stringToInt(s) =
Pk

i=1
(s(i) � `0') � 10k�i [4]

Complete the following lines.
1) This line says : : :

2) This line says : : :

3) This line says : : :

4) This line says : : :

3 Exercise 1.3

Include your discussion about the Ladder class here.

hLadder class de�nition 6i �
class Ladder {

public:

? teams;

? initialize(?);

? sort(?);

};�
Macro never referenced.

Figure 2: Skeleton Literate Program issued to students (excerpt)

2.1 TEAM versus Team 1 Team v Team

The [TEAM] set is a data type containing irrelevent variables and data structures (e.g.
player's names, pay roll, what ever) where as the class Team is just concerned with the
stats that a�ect it position on the ladder (e.g. wins, loses, etc).

2.2 Explanation of stringToInt Schema 2 Explain stringToInt

stringToInt : seqCHARACTER ! N [1]

8 s : dom stringToInt j [2]
(ran s � f`0' : : `9'g) ^ (k = #s) � [3]

stringToInt(s) =
Pk

i=1
(s(i) � `0') � 10k�i [4]

1) This line says that string to int turns CHARACTER to natural numbers
2) This line says that for all s the domain of string to int is
3) This line says that the range of s must be between '0' and '9' and that k =

number of digits in s (e.g. if s = 564 k = 3)
4) This line does the working out translated to C : for (i = 1; i <= k; i++)

number = number + (s(i) - '0') * pow(10, k-i); simple huh - it takes away
the acsii value for 0 which gives a number then the place the number is in is
worked out e.g. 1 or 10 or 100 or 1000 etc.

Figure 3: Result of Annotating Figure 2 (excerpt)
(The e�ective page width has been shrunk to show the marginal annotations.)

