
Earlier version appears in: Proceedings of the Fifth International Lisp Users and Vendors Conference, Boston, MA, 1995.

Literate Engines in Lisp

Raja Sooriamurthi

Computer Science Department, Lindley Hall, 215

Indiana University, Bloomington, IN 47405

Email: raja@cs.indiana.edu Phone: 812-855-8702

Civilization advances by extending the number of important operations

which we can perform without thinking about them.

{ ALFRED NORTH WHITEHEAD (An introduction to Mathematics, 1911)

Abstract

An engine is a programming language abstraction that implements timed preemption. Engines form

a useful mechanism where bounded computation is needed. We describe an implementation of engines

in Common Lisp and illustrate its functionality. We conclude with a discussion on how engines are being

used in an ongoing project about goal-driven explanation. This paper is also an exercise in writing a

literate program in Lisp.

1 Introduction

The need for time bounded computation arises in several areas e.g., process scheduling in operating systems,
heuristic search in AI, simulation. Primarily the ability to preempt a process from running and to be able to
resume that process at a later time have been capabilities relegated to an operating system. In 1984 Haynes
and Friedman [7, 8] introduced a programming language abstraction termed engines 1 for timed preemption.
Engines allow a process to be preempted after a prespeci�ed amount of computation has occurred. They
also provide the ability to resume a suspended computation on demand. Engines were �rst introduced as
an extension to the Scheme-84 interpreter [5]. Since then they have also been available in other Scheme
systems (e.g., Chez scheme [3] and PC-scheme [2]). The Scheme implementations of engines are built upon
the fact that in Scheme continuations are �rst-class objects and the programmer has access to the current
continuation at any point by means of the rei�cation procedure call-with-current-continuation (also
called call/cc). Common Lisp does not directly support �rst class continuations. Hence a Scheme style
implementation of engines in terms of continuations is not directly possible. However we could convert the
Lisp code to Continuation Passing Style (CPS) [6] thereby explicitly creating and manipulating continuations.
The engine implementation could then parallel that of Dybvig & Hieb [4].

In this paper we show how engines can be implemented in Common Lisp on top of a multitasking facility.
Though multitasking is not part of ANSI Common Lisp most Lisp systems provide some version. To make
things concrete we show our implementation of engines on top of the multitasking facility in Lucid Common
Lisp [13]. We �rst discuss the functionality of engines and what is required to implement them. This is
followed by a description of our implementation of engines in Lucid Common Lisp. This implementation
can easily be translated to any other Lisp system supporting multitasking. Finally we discuss our current
application of engines in a project on goal-driven explanation.

It should be noted that, conceptually engines are a more primitive facility than multi-tasking. In fact,
in Scheme systems multi-tasking facilities are built on top of engines. The approach we took to implement
engines described in this paper is due to (a) the lack of support for �rst class continuations and (b) the
prevalence of multi-tasking systems in most versions of Common Lisp.

1Eugene Kohlbecker is credited with coining the term engines for this abstraction.

c 1995 Raja Sooriamurthi

file.web

file.lisp

file.tex file.dvi
latex file dvips file

tangle file.web > file.lisp

weave file.web > file.tex

load Lisp

Environment

Typset
Program

and
Documentation

Figure 1: Literate Programming = Structured Code + Structured Documentation

2 Literate Programming in Lisp

The programs in this paper have been written in a literary style using Norman Ramsey's noweb [14]. Literate
programming is a methodology introduced by Knuth in trying to attain his goal that programs should be
works of literature and fun to read [10]. Figure-1 outlines the process of literate programming.

A literate programmer combines both the documentation and code of a program into a single unit known
as a web. Knuth's TEX and METAFONT are perhaps the best (and largest) known examples of this style
of programming. From a web through a process known as tangling the program code can be extracted.
Through weaving typeset documentation can be extracted. This paper and the Lisp code for our engine
system have both been derived from the same noweb �le. The interactive nature of Lisp combined with the
support of the noweb-mode Emacs mode by Thorsten Ohl makes Lisp programming under Emacs an e�ective
literary programming environment [16].

The outline of the code in this paper is as follows:

2a hLiterate Engines in Lisp 2ai�
hA simple prime number generator 2bi
hA ``primed" engine example 3i
hMake engine 5di
hFirst to complete 7ai
hExample of utility bounded search 8bi

3 Functionality of Engines

An engine is created by means of the procedure make-engine. This takes a thunk as its argument which
represents the computation that is to be performed. For instance consider the following procedure which
computes the �rst n prime numbers:

2b hA simple prime number generator 2bi� (2a)

(defun prime-generator (n &aux i (j 0))

(loop for i from 2

when (= j n)

do (return ls)

when (prime-p i)

do (incf j)

and do (format t "Prime (~a) is ~a~%" j i)

and collect i into ls))

;;; a simple test for primality

(defun prime-p (n)

2

(λ
λ (new-engine) . . .)(

() . . .)λ

(value) . . .)

(

expire

complete

ticks

computation computationengine
make

engine

Figure 2: A conceptual view of engines.

(or (= n 2)

(loop for i from 2 to (1+ (isqrt n))

when (zerop (rem n i))

do (return nil)

finally (return t))))

De�nes:
prime-generator, used in chunk 3.

We can transform the computation to calculate the �rst 15 primes into an engine by means of:

(make-engine #'(lambda () (prime-generator 15)))

This returns an engine for the computation (prime-generator 10). Figure-2 diagrams the creation and
usage of engines.

An engine is implemented as a function of three arguments: (<engine> <ticks> <complete> <expire>)

Ticks A non-negative integer denoting the amount of computation to be
performed by the engine.

Complete A procedure of one argument specifying what to do if the compu-
tation completes 2.

Expire A procedure of one argument specifying what to do if the ticks
are consumed before the computation completes. Its argument is a
new engine capable of continuing the computation from the point
of suspension.

Metaphorically the ticks represent the amount of \fuel" given to an engine. A tick is associated with
some amount of computation measured, for example, in terms of an internal clock, the number of instructions
executed, the number of procedure calls made etc. A tick need not be associated with the same amount of
computation each time. All that is required is that more ticks be associated with more computation.

When an engine is run if its computation completes within its speci�ed amount of ticks then the answer
is returned via the complete procedure. If the computation does not complete within the speci�ed number
of ticks then a new engine is created and passed on to the expire routine. This engine can then be invoked
at a later time to resume the computation.

Following is an example using the prime number generator. We �rst de�ne the computation to be
performed, the completion and expiration routines.

3 hA ``primed" engine example 3i� (2a)

;;; The computation to be performed

(defun computation () (prime-generator 15))

;;; The procedure that manipulates the �nal answer

(defun complete (v)

(format t "Value is = ~a~%" v)

v)

2This is di�erent from Scheme engines wherein the complete procedure takes two arguments, the number of ticks remaining
unconsumed when the computation completes and the result of the computation.

3

> (let ((eng (make-engine #'computation)))

(funcall eng 10 #'complete #'expire))

Prime (1) is 2

Prime (2) is 3

Prime (3) is 5

** Making new engine **

Expired

#<Compiled-Function (:internal make-engine eng) BAF506>

> (funcall *global-eng* 10 #'complete #'expire)

Prime (4) is 7

Prime (5) is 11

Prime (6) is 13

Prime (7) is 17 ;; The engine is called again

Prime (8) is 19

Prime (9) is 23

** Making new engine **

Expired

#<Compiled-Function (:internal make-engine eng) BAF506>

> (funcall *global-eng* 10 #'complete #'expire)

Prime (10) is 29

Prime (11) is 31

Prime (12) is 37 ;; The engine is called one last time

Prime (13) is 41

Prime (14) is 43

Prime (15) is 47

;; The returned answer

(2 3 5 7 11 13 17 19 23 29 31 37 41 43 47)

Figure 3: Trace of the execution of the \primed" engine.

;;; The routine that handles the intermediate engines.

;;; It assigns the intermediate engines to the global variable *global-eng*

(defun expire (new-eng)

(format t "Expired~%")

(setf *global-eng* new-eng))

De�nes:
complete, used in chunk 6.
expire, used in chunk 6.

Uses prime-generator 2b.

Given these de�nitions Figure-3 gives a trace of the behavior.

4 An Implementation of Engines in Lisp

To implement engines we need two capabilities (1) the ability to stop a computation midway and save its
state and (2) the ability to resume a suspended computation. Lucid Common Lisp (and other Common
Lisps) provides a multitasking facility [13]. Using this facility a group of processes can be created. Each of
the processes are then run in a prioritized round robin fashion for a speci�ed amount of time. A process
that is either waiting to run or is running is termed an active process. An active process may be deactivated
upon which it will not be considered for running until activated again. A multi-tasking facility thus provides
the requirements to implement engines. The requisite code is discussed below:

Given the engine computation in the form of a thunk we create a process that will run it.

4

5a hMake process 5ai� (5d)

(make-process

:name (symbol-name (gensym "ENG-"))

:stack-size 2000

:function hEngine computation 5bi
:wait-function hWait function 5ci)

If the engine computation does complete then its result is stored in the processes property list. So the actual
bounded computation performed by the engine is the invocation of the thunk followed by a property list
access.

5b hEngine computation 5bi� (5a)

#'(lambda ()

(with-scheduling-allowed

(setf (getf (process-plist proc) 'answer)

(funcall thunk))))

To suspend the process the moment it is created we use a wait function which will initially return false.

5c hWait function 5ci� (5a)

#'(lambda () go))

We now have the de�nition of make-engine as:

5d hMake engine 5di� (2a)

(defun make-engine (thunk)

(let ((go nil)) ;; used to initially wait the process

(let (proc)

;; create the engine

(setf proc hMake process 5ai)
;; turn o� the process

(deactivate-process proc)

;; The engine per se

hCreate the engine 6ai)))

By deactivating the process we remove it from the list that is being actively scanned by the scheduler. (A
deactivated process is a hibernating process.)

Before we can create the engine we need a mechanism to perform the timed preemption. This is done by
means of another process. The timer process is waited with the same function as the engine. It is started
after the engine process and when it runs it deactivates the engine process. (If the host Common Lisp were
to support an explicit lightweight timer facility a timer process would not be needed.)

5e hTimer process 5ei� (6a)

(make-process

:name "timer-proc"

:function

#'(lambda ()

(unless (not (process-alive-p proc))

(deactivate-process proc)))

:wait-function #'(lambda () go))

5

Finally the code that creates the engine itself.

6a hCreate the engine 6ai� (5d)

(labels ((eng (ticks complete expire)

;; set the timer to run for ticks units

(let-globally ((*scheduling-quantum* ticks))

;; Activate the process

(activate-process proc)

;; create the timer

hTimer process 5ei
;; turn on the wait functions

(setf go t)

;; the process can either complete or

;; it will have been preempted

(process-wait "For engine to run"

#'(lambda () (not (process-active-p proc))))

hComplete or expire 6bi)))
;; return the engine

#'eng)

Uses complete 3 and expire 3.

When the engine has been made inactive it has either completed its computation or it has been suspended.
The occurrence of the property answer in the engines property list indicates completion.

6b hComplete or expire 6bi� (6a)

(cond ((member 'answer (process-plist proc))

;; then we are done

(funcall complete

(getf (process-plist proc) 'answer)))

;; else we create and return a new engine

;; aha! just return the same proc again!

(t (format t "~&** Making new engine **~%")

(funcall expire #'eng)))

Uses complete 3 and expire 3.

This completes a simple de�nition of engines in terms of multi-tasking processes.

5 Using Engines for Goal-Driven Explanation

The ability of engines to perform bounded computation have been used to implement multitasking OS
kernels in Scheme systems. In this section we describe the proposed use of engines in an ongoing project for
goal-driven explanation, gobie3. (Further details about gobie and the motivations behind the project may
be found in [17, 12].)

gobie is a system for performing explanation in a dynamic goal-driven manner. It is an object-oriented
system written in CLOS [1, 9]. The system consists of a planner functioning in a simple simulated world
and a case-based explainer [15] integrated across a blackboard. Case-based explanation applies the problem
solving paradigm of case-based reasoning [11] to the problem of formulating explanations: new explanations
are formed by adapting explanations that had been applied to similar prior problems. The schematic
representation of the system is given in Figure-4.

In gobie the explanation process is shaped by ongoing and strategic decisions as the explainer inter-
acts with its environment (the simulated world). Our model of explanation, termed goal-driven interactive

explanation (GDIE) [12] allows incremental information obtained by interaction with the environment to
inuence the explainer's goals and dynamically re-focus the explanation process. Given a goal the planner
comes up with a collection of plans that may achieve the goal. gobie is a utility-based system. Hence the

3GOal Based Interactive Explanation

6

E
 x p l a i n e rP

 l
 a

 n
 n

 e
 r

X P sP L A N S

G O A L S

U t i l i t y M e t r i c s

W o r l d M o d e l

S i m u l a t o r

S i m u l a t e d W o r l d

Figure 4: The blackboard framework of gobie. The system consists of a planner functioning in a simulated
world and a case-based explainer integrated across a blackboard.

plan that is deemed to be cheaper is selected and executed in a simulated world. If the execution of a plan
step fails the explainer tries to diagnose the fault and helps the planner recover from the failure. But if the
fault is deemed irrecoverable then the planner abandons its current plan and attempts an alternative plan.

For example, consider the following implemented scenario. The planner is given the goal of catching a
ight. To do this the planner has to get to the air-port. The planner has two alternative plans of either
driving or taking a taxi. Choosing the cheaper alternative of driving it simulates the steps involved in that
plan. Events in the simulator are probabilistically driven. In this scenario the simulator is set up such that
the car fails to start. The case-based explainer then tries to diagnose the fault based on prior cases it has
seen. It recalls three prior problems: a problem with the spark-plugs, a dead-battery and fouled fuel pipes.
Each one of these candidate explanations are to be examined in a utility based goal driven manner. In
general in an explanation task we have a collection of alternative hypothesis that have to be examined. In
gobie these alternatives are examined with varying amounts of e�ort depending on the motivation of the
system and the speci�c costs and circumstantial situation of the explanation process. We propose to extend
the current utility based examination of candidates with engines. Each alternative will be examined by an
engine. The amount of \fuel" given to each engine will be representative of how much e�ort the system
wants to expend in examining a particular candidate.

Suppose we have alternatives a1, a2, ... an. Then the type of search we are interested in could be
expressed as: (utility-bounded-search a1 a2 a3 ... an). An engine is created for each alternative and the
engines are run in parallel with varying amounts of e�ort.

utility-bounded-search macro-expands to

(first-to-complete #'(lambda () a1) #'(lambda () a2) . . . #'(lambda () an))

Which in turn is implemented as (the code uses some auxiliary queue functions which are not shown.):

7a hFirst to complete 7ai� (2a)

(defun first-to-complete (&rest proc-list)

(let ((engines (queue)))

(labels ((run () hRun each engine 8ai))
hCreate a group of engines 7bi
(run))))

For each alternative that we have to examine we create an engine and store them in a queue.

7b hCreate a group of engines 7bi� (7a)

(loop for proc in proc-list

do (enqueue (make-engine proc) engines))

7

The engines in the queue are run in sequence. The exact sequence in which the various engines are run (and
hence the various alternatives explored) could be dynamically determined.

8a hRun each engine 8ai� (7a)

(and (not (empty-queue-p engines))

(funcall (dequeue engines)

10

#'(lambda (v) (or v (run)))

#'(lambda (e) (enqueue e engines)

(run))))

As an example, suppose (fact n) computes n!. Then:

8b hExample of utility bounded search 8bi� (2a)

(utility-bounded-search (fact 50) (fact1 7) (fact 6) (fact 10)))

evaluates to that expression which completes its computation �rst. Typically this will be be (fact 6) but
since the amount of computation associated with a tick isn't �xed, at times, it can also be one of the other
alternatives.

6 Conclusions

Engines are a convenient abstraction for implementing bounded computation. In the spirit of Alfred White-
head's quote at the beginning of this paper they are a versatile abstraction building abstraction. In Scheme
engines are normally implemented in terms of continuations. The absence of �rst class continuations in
Common Lisp requires alternative implementations for engines. We have presented an implementation of
engines on top of a multi-tasking facility. We have also described how such engines can help implement
bounded computation in a goal-driven explanation system. In future work we plan to implement utility-
directed processing using engines in other components of our goal-driven explanation system gobie. As part
of this work we also experienced that the concept of literate programming meshes in quite well with the
dynamic nature of Lisp prototyping.

Acknowledgments: My thanks to Prof. David Leake with whom I have been working on goal-driven
explanation and the gobie system. Thanks also to the anonymous reviewers for their helpful comments.

Chunks:

hA \primed" engine example 3i
hA simple prime number generator 2bi
hComplete or expire 6bi
hCreate a group of engines 7bi
hCreate the engine 6ai
hEngine computation 5bi
hExample of utility bounded search 8bi
hFirst to complete 7ai
hLiterate Engines in Lisp 2ai
hMake engine 5di
hMake process 5ai
hRun each engine 8ai
hTimer process 5ei
hWait function 5ci

Index:

complete: 3, 6a, 6b
computation: 3
expire: 3, 6a, 6b
prime-generator: 2b, 3
prime-p: 2b

8

References

[1] Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya E Keene, Gregor Kiczales, and
David A. Moon. Common lisp object system speci�cation. Technical Report Document 88-002R,
X3J13, 1988. Also appears in Lisp and Symbolic Computation 1 3/4, January, 1989 245{394 and as
Chapter 28 of [18], 770{864.

[2] Computer Science Laboratory, Texas Instruments Inc., Dallas, Texas. TI Scheme language reference

manual, 1986. (TI Scheme was also released as PC-Scheme.).

[3] R. Kent Dybvig. The Scheme Programming Language. Prentice Hall, 1987. (Second edition in prepa-
ration. Expected in October 1995.).

[4] R. Kent Dybvig and Hieb Robert. Engines from continuations. Technical Report 254, Indiana University,
Computer Science Department, July 1988.

[5] Daniel P Friedman, Christopher T. Haynes, Eugene Kohlbecker, and Mitchell Wand. The scheme 84
interim reference manual. Technical Report 153, Indiana University, Computer Science Department,
June 1985.

[6] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Essentials of Programming Languages.
MIT Press / McGraw Hill Press, 1992.

[7] Christopher T. Haynes and Daniel P. Friedman. Engines build process abstractions. Proceedings of the
1984 ACM Conference on Lisp and Functional Programming, pages 18{24, 1984.

[8] Christopher T Haynes and Daniel P. Friedman. Abstracting timed preemption with engines. Journal

of Computer Languages, 12(2):109{121, 1987.

[9] Sonya E. Keene. Object-Oriented Programming in Common Lisp. Addison-Wesley Publishing Company,
1989.

[10] Donald E. Knuth. Literate Programming. CSLI, Stanford University, Stanford, CA, 1992.

[11] Janet Kolodner. Case-Based reasoning. Morgan Kaufmann, 1994.

[12] David B. Leake. Issues in goal-driven explanation. In Mariie desJardins and Ashwin Ram, editors,
Working notes of the AAAI Spring Symposium in goal-driven learning, pages 72{79, 1994.

[13] Lucid Inc. Lucid Common Lisp: Advanced User's Guide, 2nd edition, September 1991.

[14] Norman Ramsey. Literate programming simpli�ed. IEEE Software, 11(5):97{105, Sept 1994.

[15] Roger C. Schank, Alex Kass, and Christopher K. Riesbeck. Inside Case-Based Explanation. Lawrence
Erlbaum Associates, Inc., Hillsdale, New Jersey, 1994.

[16] Raja Sooriamurthi. A scheme word count program | a tutorial introduction to literate programming
in scheme. Unpublished tutorial handout, September 1995.

[17] Raja Sooriamurthi and David B. Leake. An architecture for goal-driven explanation. In John H.
Stewman, editor, Proceedings of the eigth Florida Arti�cial Intelligence Research Symposium, pages
218{222. Florida Arti�cial Intelligence Research Symposium, April 1995.

[18] Guy L. Steele Jr. Common Lisp the language. Digital Press, 2nd edition, 1990. Also available online
from the CMU AI repository at
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/cltl/cltl2.html.

9

