
Foundations

of

Software Measurement

Horst Zuse

August 22, 1995

Contents

1. Introduction
 
2. Foundations of Software Measurement
 
3. Weyuker Properties
 
4. Validation of Software Measures and Prediction

Models
 
5. Results



1 Introduction

Maintenance of Software

• Today, we have still the fact that over 70% of the
software development effort is spent in testing and
maintenance of software.

 
• Schedule and cost estimates of software are grossly

inaccurate, software has still a poor quality and the
productivity rate for software is increasing more slowly
than the demand for software.

 
• Schneidewind points out that there exists a

maintenance problem because: 70 - 80% percent of
the existing software was produced prior to significant
use of structured programming.

 
• It is difficult to determine whether a change in code will

affect something, It is difficult to relate specific
programming actions to specific code.

 
• The major problem in doing maintenance is that we

cannot do maintenance on a system which is not
designed for maintenance.



Introduction (Cont.)

Specification

Design

Coding

Testing

Maintenance

Figure 1: Software Life-Cycle. The expensive phases
are coding, design, testing and maintenance phases.



1 Introduction (Cont.)

• These facts have generated the need of determining
the quality of software with engineering methods.

 
• For this reason, computer scientists and engineers

have begun to place increasing attention on
quantitative methods as an information source of the
quality of software.

 
• Already in 1976, Belady and Lehman stated in their

classic research on the development of the IBM
OS/360 operating system /BELA76/: Law of increasing
entropy: the entropy of a system (its unstructuredness)
increase with time, unless specific work is executed to
maintain or reduce it. Entropy can result in severe
complications when a project has to be modified and is
generally an obstacle of maintenance.

 
• These statements above characterize the need of

quantitative methods in order to understand the
function of a large software system.



Introduction (Cont.)

Structure Chart

C D

F G J

B

A

E

H I K

L M

N O P Q

R

I j

k

a,b,c

a,c

t

t t t

a
a

a aa
a

a

a

x,y y
v,w

m,n
n p

a,bu,v v

ddd,e

Figure 2: Structure Chart.

The question is what components are difficult to
maintain.



Introduction (Cont.)

Structure Chart and an Analysis with A Software
Measure

C D

F G J

B

A

E

H I K

L M

N O P Q

R

I j

k

a,b,c

a,c

t

t t t

a
a

a aa
a

a

a

x,y y
v,w

m,n
n p

a,bu,v v

ddd,e

STRUCTURE CHART...........: D-BM
COMMUNICATIONS BETWEEN THE MODULES:
#     M1             M2               PARAM   GLOB  SC(M1,M2)
-------------------------------------------------------------
    1 A              B                    3      1      5
    2 A              C                    2      1      4
    3 A              D                    0      1      2
    4 A              E                    0      1      2
    5 B              C                    0      1      2
    6 B              F                    1      1      3
    7 B              G                    1      1      3
    8 C              H                    2      0      2
    9 C              I                    2      0      2
   10 D              E                    0      1      2
   11 D              J                    2      0      2
   12 D              K                    1      0      1
   13 F              G                    0      1      2
   14 H              L                    2      0      2
   15 I              R                    1      0      1
   16 J              M                    2      0      2
   17 J              Q                    1      0      1
   18 K              Q                    1      0      1
   19 L              N                    2      0      2
   20 L              O                    1      0      1
   21 L              P                    1      0      1
   22 M              Q                    1      0      1
   23 N              R                    1      0      1
   24 O              R                    1      0      1
   25 P              R                    1      0      1

Figure 3: External and data coupling between modules.



Introduction (Cont.)

Structure Chart and an Analysis with a Software
Measure

C D

F G J

B

A

E

H I K

L M

N O P Q

R

I j

k

a,b,c

a,c

t

t t t

a
a

a aa
a

a

a

x,y y
v,w

m,n
n p

a,bu,v v

ddd,e

STRUCTURE CHART...........: D-BM
AGGREGATED COMPLEXITIES:
#     MODULE          IMOD   IS   AS    AGGR--MODULES
---------------------------------------------------------
    1 A                  5   13   39   A B C D E
    2 B                  4   11   25   B C F G
    3 C                  3    8   15   C H I
    4 D                  4    5   14   D E J K
    5 E                  1    2    2   E
    6 F                  2    3    6   F G
    7 G                  1    3    3   G
    8 H                  2    4   10   H L
    9 I                  2    3    4   I R
   10 J                  3    5    9   J M Q
   11 K                  2    2    3   K Q
   12 L                  4    6   13   L N O P
   13 M                  2    3    4   M Q
   14 N                  2    3    4   N R
   15 O                  2    2    3   O R
   16 P                  2    2    3   P R
   17 Q                  1    1    1   Q
   18 R                  1    1    1   R

SUM OF AGGREGATED COMPLEXITY AS:          77.00
AVERAGE AGGREGATED COMPLEXITY  :           2.61
MINIMAL AGGREGATED COMPLEXITY  :              1
MAXIMAL AGGREGATED COMPLEXITY  :             39

Figure 5: Does the Measure of Bowles correspond with
the intuitive feeling?



Introduction (Cont.)

Structure Chart and an Analysis with a Software
Measure

IMOD Number of modules connected by data and 
external coupling.M

IS Complexity of the module based on parameters
and global variables.

AS Aggregated Complexity of the module (Ripple 
effect complexity)

AGGR Modules which have to be maintained if  
Module # is modified.



Object-Oriented Measurement

• Do object-oriented techniques make the design more
robust, more maintainable, more understandable, or
more reuseable?

 
• Is measurement in the object-oriented area not

necessary?
 
• This is a poignant question, since there have been

many recent examples where applications designed
with so-called OO-methods have turned out not to fulfil
those claims /MART94/.

 
• Are these qualities of robustness, maintainablity,

reuseablility intrinsic to object-oriented design (OOD)?
If so, why do not all applications designed with OOD
have them. If not, then what other characteristics does
an OOD require in order to have these desirable
qualities?.

 
• It is a fact, that at this time more than 200 software

measures in the object-oriented area were proposed.
These measures are used for analyzing
understandability.



Introduction (Cont.)

Simple Measures

Measure LOC

LOC = |N|

Measures of McCabe 1976

MCC-V = |E| - |N| + 2 or MCC-V2 = |E| - |N| + 1.

Measure Defect Density

DD = Defects / LOC

Measure of Henry et al. 1981

D-INFO = Σ (fi(i) * fo(i))2

COCOMO-Model 1981

EFFORT = a LOCb   , a, b >0.

Function-Point Method

FP = UC * (0.65 + 0.01, Fi
i=
∑

1

14

, where

UC = 4 I + 5 O + 4 E + 10 L + 7 F., and

TCF = 0.65 + 0.01 Fi
i=
∑

1

14

,



Simple Measure in the Object-Oriented Area

Chidamber and Kemerer 1991 / 1994

CBO = Coupling between Objects

DIT = Depth of the Inheritance Tree

LCOM = Lack of Cohesion

NOC = Number of Children

Other Measures: Abreu, Henderson-Sellers, etc.



Validation and Prediction

The acceptance of software measures by practioneers
depends on whether a software measures is valid or can
be used as a predictor.

MR D C T

Software Measurement

Qualitative Assessment of
Software Quality

Figure 5: Qualitative Assessment during the Software
Life-cycle.



Validation and Prediction

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA

Measure:
u: A -> B

External
Variable V

Internal
Variable I

?
V = f(I)

Figure 5: Internal and External Variables.

Internal Variable: Measure u

External Variable: Costs of maintenance, etc.

Function f Function, which has to be 
validated.

Question: What properties of an external variable can
be predicted?



Software Measures

• How can the results of software measurement
(product and processes)  be interpreted.

 
• Is it possible to predict the error-proneness of a

system using software measures from its design
phase.

 
• Is it possible to extract quantitative features from the

representation of a software design to enable us to
predict the degree of maintainability of a software
system.

 
• Are there any quantifiable key features of the program

code of a module that would enable us to predict  the
degree of difficulty of testing for that module, and the
number of residual errors in the module after a
particular level of testing has occurred.



Software Measures (Cont.)

• Is it possible to extract quantifiable features from the
representation of a software design to enable us to
predict the  amount of effort required  to build the
software described by that design.

 
• What properties of software measures are required in

order to determine the quality of a design..
 
• Are there features in order to predict the size of a

project from the specification phase.
 
• What are appropriate  software measures to underlie

the software quality attributes of the ISO 9126 norm by
numbers.

 
• Above we showed that one goal of using software

measures is  to predict error-proneness or
maintainability risk. Following Berns /BERN84/ it
holds:  the more difficult to maintain, the higher its
maintainability risk.



Software Measures (Grady 1992)

1. We use them to derive a basis for estimates,
 
2. to track project progress,
 
3. to determine complexity,
 
4. to help us to understand when we have achieved a

desired state of software quality,
 
5. to analyze our defects,
 
6. and to experimental validate best practices.
 
7. In short, they help us to make better decisions.



Numbers, Numbers, Numbers

4.1  5.8  11.2 33.7 88.9 111 333 555

6.1  7.8  13.2 35.7 90.9 113 335 557

12.2  14.6  26.4 71.4 181.8 226 770 1114

What are Numbers? What can we
do with them?

Figure 6:What is the meaning of Numbers?

• We know that 333 is greater than 111 and we know
that the number 333 is three times greater than 111.

 
• We also know, that we can add numbers, for example

111 + 333 = 444.
 
• Comparing the first row with the second row we see

that the numbers in the second row are always by two
greater.

 
• The third row is a multiplication of two of the second

row.
 
• The question is whether these are only mathematical

modifications are do we have other objects. Only
considering the numbers, we cannot decide that. We
need criteria of the properties of the numbers.



2 Measurement Theory (Definition by Roberts)

Measurement has something to do with assignment of
numbers that correspond to or represent or preserve
certain objected relations.

In the case of temperature, measurement is the
assignment of numbers that preserve the observed
relation warmer than. In the case of mass, the relation
preserved is the relation heavier than. More precisely,
suppose A is a set of objects and the binary relation a W
b holds if and only if you judge a to be warmer than b.

Then we want to assign a real number f(a) to each a ∈  A
such that for all a, b ∈  A,

a W b <=> f(a) > f(b).

The statement above is the base of measurement.
Without this statement we cannot get a ranking order of
objects.  Later, we denote W as an empirical relation
and write •>  for warmer or •≥ for equally warm or
warmer.



Software Quality Factors

In the software measurement field, quality factors and
subfactors have to be expressed by measures.

Functionality Reliability Usability

PortabilityMaintainabilityEfficiency

ISO 9126

Time Economy
Resource Economy

Correctability
Testability

Expandability

Completeness
Correctness

Security
Compatability
Interoperability

Non-Deficiency
Error tolerance

Availabilityl

Understandability
Ease of >Learning

Operability
Communicativeness

Hardware Independence
Software Independence

Installability
Reuseability

Software
Measures

Figure 7: Software quality model ISO9126 with quality
factors and subfactors, which have to be expressed by
software measures.



Software Quality Factors (Cont.)

For example, software measures for the factor
Maintainability and the subfactor Expandability are
change counts, like change effort, change size, change
rate, change count.

More precisely, suppose P is a set of objects and the
binary relation a •≥ b holds if and if only you judge the
maintainability of a is greater than for b. Then we want
to assign a real number f(a) to each a ∈  P such that for
all a, b ∈  P,

a  •> b <=> f(a) > f(b).

If we include the binary relation equally or more difficult
to maintain, then we have the relation •≥  and it holds:

a  •≥ b <=> f(a) ≥ f(b).



Empirical Statements

• There are several  reasons  to consider software
measurement from an empirical view. We collected
some of them.

 
• Empirical conditions or statements are more intuitive

for the user than mathematical statements.
 
• In reality empirical statements are considered together

with the Measures LOC and the Measures of McCabe,
for example the term difficulty of maintenance, or
complexity of a program.

 
• Quality characteristics of software are also described

by empirical statements in the ISO 9126 norm
/ISO.91a/.

 
• Different formal definitions of a measure can be

reduced to one empirical condition, for example,
wholeness (the sum should be greater than the sum of
the parts) can be reduced numerically  to an additive
measure without modifying the empirical assumptions.

 
• Another example  is the normalization of software

measures to numbers between 0 and 1.
 
• The GQM (Goal-Question-Measure paradigm) of Basili

et al. /BASI84/ defines goals of measurement
empirically, the questions are also empirically, but the
measure are formally.

 



• Discussing measurement scales, like ordinal, interval,
ratio or absolute  scales, we need both: the empirical
and formal conditions.

 
• The  calculation of correlations (for example with

Spearman, Kendell Tau or Pearson) between a
software measure and an external variable, like costs
of maintenance, requires an empirical interpretation of
the measure and the external variable. The reason is
that the use of correlation coefficients requires certain
scales levels. Scales are defined by empirical and
numerical relational systems (Scale types are defined
by admissible transformations). The correlation
coefficient itself  is used to compare empirical
relational systems.

 
• The  Basic COCOMO-model is defined as: EFFORT =

a LOCb, where  a, b >0.



Definition of a Measure

Empirical Relational System

A = (A, •≥ , o)

Numerical Relational System

B = (ℜ , ≥, +)

A = (A, •>=, o)

P 1 P 2 F3

F3

P 2

F3P 2

u(a) =3
u(b) = 5

1 2 3 4 5 6 7 88 99
23.5 77.8

B = (R, >=, +)
F3

P 2

u(a o b) =
 u(a) +

 u(b)



Definition 4.x (Measure):

A measure  is a mapping: u: A -> B such that the
following holds for all  a,b ∈  A:

a •≥≥  b <=> u(a) ≥ u(b)

Then the Triple (A, B, u) is called a scale.


This definition is the basic definition of a measure.



Definition 4.x (Measure):

A measure  is a mapping: u: A -> B such that the
following holds for all  a,b ∈  A:

a •≥≥  b <=> u(a) ≥ u(b)

and

u(a o b) = u(a) + u(b)

Then the Triple (A, B, u) is called a scale.


This definition is an extended definition of a measure
which includes the additive homomorphism.



Homomorphism with Flowgraphs

P1 P2 P1 P2<=>.>= >=u u

P1

P1

P1 P1uuu = +

Figure 8: Ranking and additive homomorphism. P1 and
P2 are arbitrary flowgraphs.



Additivity for Structure Charts

D1 D2

R D1

D2

u
u

u

=

Figure 9: Additive homomorphism of structure charts.



Scale Types

Scale Types are defined by admissible transformations.

Name of the Scale Transformation g   
Nominal Scale Any one to one g
Ordinal Scale g: Strictly increasing function
Interval Scale g(x) = a x + b, a > 0
Ratio Scale g(x) = a x, a > 0
Absolute Scale g(x) = x

More empirical knowledge

Scale Types and Scales:

• Scales and Scale types are different things.
 
• A scale is defined by a homomorphism.
 
• A scale type is defined by an admissible transformtion.
 
• Scales are not the power of measurement theory, the

power are the empirical and numerical conditions.
 
• Behind scale types empirical properties are hidden.
 



• The higher the scale type the more empirical
conditions are hidden.



Measurement Process

Real World

Relevant
Empirical results

Reduced
Numbers

Numbers

Intelligence barrier

Measures
R

el
ev

an
t R

es
ul

ts

S
ta

tis
tic

s

Interpretation

Figure 10: Measurement Process of Kriz.



Theorem of Krantz et al. 1971

Let A be a non empty set,  •≥≥  is a binary relation on A,
and o a closed binary operation on A.  Then (A, •≥≥, o) is
a closed extensive structure iff there exists a real-valued
function on P such that for all a, b ∈  A:

(1)     a •≥≥  b <=>  u(a) ≥ u (b)

and

(2)     u(a o b) =  u(a) +  u(b)

Another function u'  satisfies (1) and (2) iff there exists
α >0 such that

u' (a) = α u(a).
®

The statement u' (a) = α u (a) gives us the admissible
transformation for a ratio scale.



Modified Extensive Structure

Definition 4.x: (Modified Extensive Structure):

Let P be a non-empty set,    •≥≥   binary relation on A,
and o a closed binary operation on P. The relational
system (P, •≥≥, o ) is an extensive structure if and only
if the following axioms hold for all P1,..,P4 ∈  P.

A1': (P,•≥≥  ) is a weak order

A2': P1 o (P2 o P3 ) ≈ (P1 o P2 ) o P3,
axiom of weak associativity

A3': P1 o P2  ≈ P2 o P1,
axiom of weak commutativity

A4': P1  •≥≥  P2 => P1 o P3  •≥≥ P2 o P3
axiom of weak monotonicity

A5': If P1 •> P2 then for any P3,P4 there exists a 
natural number n, such that nP1 o P3 •>

nP2 o P4,
Archimedian Axiom

®

Both extensive structuresareequivalent.



Concatenation Operations

Definition (Binary Operation):
A binary operation is a mapping of: A x A into A
®

Important is that holds:

A x A -> A. Every combination of (a∈ A) x (b∈ A) and

a o b

maps into the set A, again.

=>

P1 P1

P2 P2

P1

P2

Figure 11: Concatenation Operation BSEQ.



Binary Operation

Definition (Binary Operation)

A x A into A
®

Concatenation Table

Assume, we have a finite set of Flowgraphs F1-F5, F11-
F15, F21-F25, F31-F35, F41-F45, and F51 to F55   P.

P1
P2 F3 F4 F5

Figure 12: Flowgraphs F1-F5.

In this table we have the Flowgraphs F1-F5 in a row and
a column in an arbitrary sequence. We denote the
concatenation of F1 with F1 as F1oF1 and use the
abbreviation F11.
      F1      F2      F3     F4     F5
---------------------------------------
F1    F11     F12     F13    F14    F15
F2    F21     F22     F23    F24    F25
F3    F31     F32     F33    F34    F35
F4    F41     F42     F43    F44    F45
F5    F51     F52     F53    F54    F55

Figure 13: Concatenation table with the finite set F1 -
F5..



Concatenation Operations



Concatenation Operations

Structure Chart

A'

B' D'

C'

D2A

B D

C

D1

E

R
DSEQ = D1 o D2



Concatenation Operations

OO-Environment

A
a M1

M2 B
a M1

M3b

CUNI(A,B)

a
b

M1

M2

M3

Figure 14: Concatenation Operation CUNI(A,B).



Concatenation Operations

OO-Environment

A
a M1

M2 B
a M1

M3b

CUNI(A,B)

a
b

M1

M2

M3a'
M1'

Figure 15: Again, the Concatenation Operation
CUNI(A,B).



Concatenation Operations

OO-Environment

C D E

M1
M2
M3

V

D E

CUNI

A©BA
M1

M2

C

V

B
M4

M3

M4

Figure 16: Concatenation operation CUNI(A,B).



Empirical Conditions of the Extensive Structure

Weak Order

Transitivity

P2 PnP1

P2P1

P1

P3

P2 P2 P1

Completeness

Ranking Order

.>= .>=

Figure 17: Weak order with transitivity and
completeness. The weak order leads to the ordinal
scale.



Empirical Conditions of the Extensive Structure

Weak Order / Ordinal Scale

<=>

P1

P10

P1

P10

u

Figure 18: We have an ordinal scale if the empirical
ranking order corresponds with the numerical ranking
order.Weak order.



Empirical Conditions of the Extensive Structure

Weak Positivity

P

Q

P

WPOS

>=P o Q P

Figure 19: Axiom of weak positivity.



Weak Positivity for Structure Charts

R

D2D1 D1.>=

Weak Positivity

Figure 20: Axiom of weak positivity.



Empirical Conditions of the Extensive Structure

Weak Associativity

P1

P2

P3

P1

P2

P3

.=

Figure 21: Axiom of weak associativity.



Empirical Conditions of the Extensive Structure

Weak Associativity for Structure Charts

R

D2D1 D3

R

D2D1 D3

.=

Weak Associativity

Figure 22: Axiom of weak associativity.



Empirical Conditions of the Extensive Structure

Weak Associativity

P2P1

Weak Associativity

P3 P3P2 P1

Figure 23: Axiom of weak associativity for the
Concatenation Operation BALT..



Empirical Conditions of the Extensive Structure

Weak Commutativity

P1

P2

P2

P1

.=

Weak Commutativity

Figure 24: Axiom of weak commutativity.



Empirical Conditions of the Extensive Structure

Weak Commutativity for Structure Charts

R

D1 D2

R

D2 D1

.=

Weak Commutativity

Figure 25: Axiom of weak commutativity.



Empirical Conditions of the Extensive Structure

Weak Monotonicity

P1

P

P2

P

P1 P2

Weak Monotonicity

=
>

.>=

.>=

Figure 27: Axiom of weak monotonicity.



Empirical Conditions of the Extensive Structure

Weak Monotonicity for Structure Charts

D1 D2

D1 D D2 D

R R

.>=

.>=
=>

Weak Monotonicity



Empirical Conditions of the Extensive Structure

P1

P2

P2'

Substitution Property

<=>
P2' .< P2

P1 o P2

Question: P1 o P2 .> P1 o P2' ?

Figure 28: Axiom of weak monotonicity - substitution
property.



Empirical Conditions of the Extensive Structure

Substitution Property for Structure Charts

A

B D

C

D2A

B D

C

D1

E

A
D2'

D2 .> D2'

Figure 29: Axiom of weak monotonicity - substitution
property.



Empirical Conditions of the Extensive Structure

Archimedian Axiom

P1 P2

P1 P2

P3 P4

=
>

.>

Archimedian Axiom

Figure 30: Archimedian Axiom.



Empirical Conditions of the Extensive Structure

Archimedian Axiom for Structure Charts

D3 D4

D1 D3 D2 D4

R R

.>

.>
=

>

Archimedian Axiom

Figure 31: Archimedian Axiom.



Extensive Structure

Every additive measure assumes an extensive structure.

Extensive
Structure

a .>= b <=> u(a) >= u(b)
and

u(a o b) = u(a) + u(b)

Figure 32: Every measure which is additive assumes an
extensive structure.



Extensive Structure for Flowgraphs

P2

P1

P2

P1P1

P3

P2

P1

P3

P1 P2

P2 P1

P1

P1

P3

P2

P2

P3

P2

P2

P1

P1

P3 P4

=
>

.>=
.=

=
>

.>=

.>=

>

.=

Weak Positivity Weak associativity

Weak
Commutativity

Weak Monotonicity
Archimedian axiom

Extensive Structure

Figure 33: Extensive structure for flowgraphs.



Extensive Structure for Structure Charts

R

D2D1 D2.>=

Weak Positivity

R

D2D1 D3

R

D2D1 D3

.=

Weak Associativity

R

D1 D2

R

D2 D1

.=

Weak Commutativity

D1 D2

D1 D D2 D

R R

.>=

.>=

=
>

Weak Monotonicity

D3 D4

D1 D3 D2 D4

R R

.>

.>

=>

Archimedian Axiom

Figure 34: Extensive structure for structure charts.



Extensive Structure in the Object-Oriented Area

Weak Positivity

Archimedian
Axiom

Weak
Commutativity

Weak
Associativity

Weak
Monotonicity

Extensive Structure

Figure 35: Object-oriented measures mostly do not
assume an extensive structure.



Discussion of the Extensive Structure

1. We say, a measure assumes an extensive structure or
it does not assume an extensive structure.. This
includes that a measure assumes the weak order, the
axiom of weak positivity, etc., or not.

 
2. We cannot say that a Measure u is a ratio scale. For a

ratio scale we need a homomorphism. Saying, a
measure assumes an extensive structure assumes a
certain ranking order of objects and an empirical
binary / concatenation operation. We say, a measure
can be used as an ordinal, interval, ratio or absolute
scale. The term can be means here the case of a
homomorphism.

 
3. We can say that the Measure LOC can be used as an

ordinal scale, or the Measure of  McCabe can be used
as an ordinal scale. In this case both measures
assume a weak order, but the both weak orders are
differently.

 
4. Not every measure, which assumes an extensive

structure can be used as a ratio scale. Examples are
strictly monotonic transformations of an additive
measure. However, under certain conditions non-
additive ratio scales are possible.

 
Measures can assume an extensive structure, although
the Measure u is not additive.



Measures and Extensive Structure

=>

P1 P1

P2 P2

P2P1

BALT

Measures of McCabe 1976

MCC-V = ||E|| - ||N|| + 2:

• Assumes extensive structure
• Non-additive combination rule
• Combination rule: u(P1 o P2) = u(p1) + u(P2) -1
• Combination rule is not meaningful for the ratio scale

MCC-V2 = ||E|| - ||N|| + 1:

• Assumes extensive structure
• Additive combination rule
• Combination rule: u(P1 o P2) = u(p1) + u(P2)
• Combination is rule meaningful for the ratio scale
• Additive Ratio Scale

Strong Monotonic Functions

MCC-V2 = MCC-V - 1

or

MCC-V = MCC-V2 + 1



Independence Conditions

The independence conditions consider the following
question:

u(P1 o  P2)  = f (u(P1), u(P2))?

The question is whether a function f exists, what the
function f areand what the weakest condition for the
existence of f is.

The answer is given by the independence conditions C1
- C4.

C1:
a ≈ b => a o c ≈ b o c, and a ≈ b => c o a ≈ c o b.

C2:
a ≈ b <=> a o c ≈ b o c, and a ≈ b => c o a ≈ c o b.

C3:
a •≥  b => a o c •≥  b o c, and a •≥  b => c o a •≥  c o b.

C4:
a •≥  b <=> a o c •≥  b o c, and a •≥  b => c o a •≥  c o b.

The weakest condition for the existence of f is C1.



Independence Condition C1 and C2

P1

P

P2

P

P1 P2

C2

<
=

>

.=

.=

Figure 36: Independence Conditions C1-C2. For C1
holds => and for C2 holds <=>.



Independence Condition C3 and C4

P1

P

P2

P

P1 P2

C4

<
=

>

.>=

.>=

Figure 37: Independence Conditions C3-C4. For C3
holds => and for C4 holds <=>.



Hierarchy of Independece Conditions

C1

C2

C4

C3

Hierarchy of
Independence Conditions

Extensive Structure

Figure 38: Hierarchy of Independence Conditions C1-
C4.



Measure Defect-Density

DD = Defects / LOC

 VERSION1                      VERSION2
    #   DEFECT1      LOC1   D1/LOC1   DEFECT2      LOC2   D2/LOC2 REL-1-2
----------------------------------------------------------------------------
    1        12       777   0.01544         3        55   0.05455 <
    2         5       110   0.04545         6       110   0.05455 <
    3         2       110   0.01818         3       110   0.02727 <
    4         3       110   0.02727         4       110   0.03636 <
    5         6      1000   0.00600        70     10000   0.00700 <

    6        28      2107   0.01329        86     10385   0.00828 >

.
Figure 39: Consequences of violating the independence
condition C1 which implies a violation of the axiom of
weak monotonicity.



Substitution Property of the Measure Defect-Density

Figure 40: A hierarchical ordered software system. each
module has a certain Defect-Density.



Substitution Property of the Measure Defect-Density

Figure 41: A hierarchical ordered software system. each
module has a certain Defect-Density. A green module is
replaced by a grey one.



Modification of the Measure Defect-Density

Assume it holds in reality:

Defects = a LOCb, a>0, b>1.

with a>0, b> 1.

It follows by insertion:

DD’ = a LOCb-1

with a>0, b>1.

Results:

1. DD does not assume the weakest independence 
condition C1

 
2. DD cannot be used as a ratio scale.
 
3. The question is whether holds in reality: Defects = a

LOCb, a>0, b>1.
 
4. If yes:
 
5. DD’ is a proper measure:
 
6. DD assumes an extensive structure
 
7. DD assumes a non-additive ratio scale (see below).



3 Weyuker Conditions

In 1988 Weyuker proposed desirable properties for
software measures. We discuss some of them.

W5

Measure u

Weak Positivity

P

Q

P

WPOS

>=P o Q P

Figure 42: Weak positivity is an axiom of the (positive)
extensive structure.



Weyuker Conditions (cont.)

W6a,b

Measure u

Independence Condition C1

P1

P

P2

P

P1 P2

C1

.=

.=
=

>

Figure 43: The Independence Condition C1 is assumed
by the  extensive structure.



Weyuker Conditions (cont.)

W7

Measure u

Weak Commutativity

P1

P2

P2

P1

.=

Weak Commutativity

Figure 44: The axiom of weak commutativity is an
axiom of the extensive structure.



Weyuker Conditions (cont.)

W9

Measure u

Wholeness
u(P1 o P2) > u(P1) + u(P2)

P1

P2

P1

P2

Wholeness

>u

u

u

Figure 45: Wholeness requires a ratio scale.

Wholeness requires a ratio scale because the statement
above is meaningful for a ratio scale.



Weyuker Conditions (cont.)

P2

P1

P2

P1P1

P3

P2

P1

P3

P1 P2

P2 P1

P1

P1

P3

P2

P2

P3

P2

P2

P1

P1

P3 P4

=
>

.>=
.=

=
>

.>=

.>=

>

.=

Weak Positivity Weak associativity

Weak
Commutativity

Weak Monotonicity
Archimedian axiom

Extensive Structure

Figure 46: Wholeness requires a non-additive ratio
scale.

The question is what is a non-additive ratio scale.



Wholeness

u (P1 o P2) > u(P1) + u(P2).

Admissible transformation of the ratio scale: g(x) = ax,
a>0. It holds:

au (P1 o P2) > au(P1) + au(P2).

This statement is meaningful for a ratio scale.

We remember:

u (P1 o P2) = u(P1) + u(P2)

is an additive combination rule. It is also meaningful for
the ratio scale. It assumes an extensive structure.



Non-Additive Ratio Scale

In order to get a non-additive ratio scale, we have to
look for a non-additive combination rule, which is
meaningful for the admissible transformation of the ratio
scale.

Such a combination rule has the following structure:

u(P1 o P2) = (u(P1)1/b + u(P2)1/b)b.

It holds:

b = 1 Additive combination rule -> extensive 
structure

b > 1 Supra-additivity - Wholeness, non-additive
combination rule -> extensive structure

b < 1 Sub-additivity, non-additive  combination 
rule -> extensive structure



How does a Measure look like for a Non-additive
Combination Rule?

Measure u’ = ub, b ∈∈  ℜℜ >0.:

1. Measure u’ has a non-additive combination rule
 
2. Measure u’ has a combination rule, which is

meaningful for the ratio scale.
 
3. Measure u’ can be used as a non-additive ratio scale

measure.



Wholeness - Additive and Non-additive Ratio Scale

It holds:

1. Wholness requires a non-additive ratio scale.
 
2. If b=1, then we have an additive ratio scale.
 
3. The modification of b does not change the empirical

relational system, it is only a modification of the
numerical relational system.

 
4. Wholeness does not include new empirical properties

of the measure, it is a pseudo-property without any
empirical meaning.

 
5. It can be seen as a calibration of a measure.

Because wholeness requires an extensive structure,
the Weyuker conditions are not compatible.



Demonstration of Wholeness with the Measure IF4

IF4 = Number of Fan-in in a module.

A

B D

C

E

D1

IF4 (D1) = IF4(A) + IF4(B) +
IF4(C) + IF4(D) + IF4(E)=

3 + 1 + 1 + 1 + 1 = 7

A

B D

C

D2

IF4 (D2) = IF4(A) + IF4(B) +
IF4(C) + IF4(D)=
2 + 1 + 1 + 1  = 5

Figure 47: Measure IF4.



Measure IF4’ = IF4 + 4

A

B D

C

D2A

B D

C

D1

E

A

IF4 (D1 o D2 ) = IF4(A) + IF4(B) + IF4(C) + IF4(D) +
IF4(E) +

IF4(A') + IUF4(B') + IF4(C') + IF4(D')=
(3 + 1 + 1 + 1 + 1) + (2 + 1 + 1 + 1 ) + 4 = 17

Figure 48: Measure IF4.

IF4: non-additive, extensive structure,
no ratio scale

IF4’ = IF4 + 4 => additive, extensive structure,
additive ratio Scale

The Measures IF4 and IF’ assume the same extensive
structure.



4 Validation of Software Measures and Prediction
Models

• Many software measures are described in literature.
Not only do these measures aim a wide range of
attributes but also there are often many irreconcilable
measures all claiming to measure or to predict the
same attribute such as cost, size or complexity.

• The reason for this state of affairs is commonly
attributed to a generally lack of validation of software
measures.

• While accepting that reason, we propose more
fundamentally that there is a lack of understanding of
the meaning of validation of software measures and
validation of software measures.



Two Separate Concepts of Validation

We should distinguish between two separate concepts
of validation:

• Measures which are defined on certain objects and
characterize numerically some specific attribute of
these objects.

• Prediction systems involving a mathematical model
and prediction procedures for it.

The fact, that people do not consider the differences
between measures and prediction, has the
consequence of the wrong interpretation of validation of
software measures.



Definition 1 (Validation)

Validation of a software measure is the process
ensuring that the measure is a proper numerical
characterization of the claimed attribute.

Example 1

• A valid measure of the attribute of coupling of designs
must not contradict to our intuitive notions about
coupling.

 
• Specifically it requires a formal model for designs and

a numerical mapping which preserves any relation
over the set of designs which may intuitively imposed
by the attribute of coupling.

 
• Thus the proposed measure of coupling should indeed

measure precisely that; in particular if it is generally
agreed that Design D1 has a greater level of coupling
than Design D2, then any measure of coupling must
satisfy

D1 •> D2 <=> u(D1) > u(D2).

This is the basic concept of measurement and validation
of a software measure.



Internal Validation

This type of validation is central.

• We can use the  empirical relational system of
measurement theory in order to validate a software
measure.

•  We also call this the internal validation of a software
measure.

•  Practitioners call this very often the ensuring of well-
definedness and consistency of the measure.



Example

Internal Validation of the Measure of McCabe
(Ranking Order)

MCC-V2 = E - N + 1

P2=>

Adding an Edge

P1 P2=>

Adding an Edge and a
Node

P1 P2=>

Transfering an Edge

P1

Figure 49: Internal Validation.

P1' results from P by adding an edge and a node.



Internal Validation of the Measure of McCabe
(Additivity)

For the internal validation of a measure the
characterization of the measure with

 u(a o b) = u(a) + u(b)

 is very helpful.

=>

P1 P1

P2 P2

Figure 50: Sequential Operation BSEQ.

MCC-V2(P1 o P2) = MCC-V2(P1) + MCC-V2(P2)



Extensive Structure (Ratio Scale)

P2

P1

P2

P1P1

P3

P2

P1

P3

P1 P2

P2 P1

P1

P1

P3

P2

P2

P3

P2

P2

P1

P1

P3 P4

=
>

.>=
.=

=
>

.>=

.>=

>

.=

Weak Positivity Weak associativity

Weak
Commutativity

Weak Monotonicity
Archimedian axiom

Extensive Structure

Figure 51: Extensive Structure.

A theorem of measurement theory says that it is
sufficient to validate the ranking order in order to
validate a measure as a ratio scale.



Definition 2 (Prediction System)

A prediction system consists of a mathematical model
together with a set of prediction procedures for
determining unknown variables and parameters.

Definition 3
(Validation of a Prediction System)

Validation of a prediction system is the usual empirical
process of establishing the accuracy of the prediction
system in a given environment by empirical means, i.e.,
by comparing model performance with known data
points in a given environment..

This type of prediction is well accepted in the software
measures community.

When people talk about an attempt to validate, for
example, the COCOMO-Model or particular software
reliability model, they would certainly be attempting the
kind of validation described in the definition although
they would not know that these  are actually prediction
systems.



Confusion Between both Types of Validation

There is a confusion between these two separate
concepts of validation. What is the reason for it:

It is because of a basic and poorly articulated
misconception that a software measure must always be
part of a prediction system.



Misconception of Validation

The misconception is normally presented in something
like the following manner:

A measure is only valid if it can be shown to be an
accurate predictor of some software attribute of general
interest, like costs or reliability.

• Suppose that we have some good measure of internal
attributes, like size, structuredness, modularity,
functionality, coupling, and cohesion.

• Then it is apparently not enough that these measures
accurately characterize the stated attributes because
these are not considered to be of general interest.

• Since there is generally no specific hypothesis about
the predictive capabilities of such measures they are
shown to be valid by correlation against any
interesting measures which happen to be available as
data.

Example

For example, a measure of coupling might be claimed to
be valid or invalid on the basis of a comparison with
know development costs if the latter is the only data
available.

This would be done even though no claims were ever
made about a relationship between coupling and
development costs.



External Validation

• It is conceivable that a measure could be shown to be
valid in the sense of it being a component of a valid
prediction system even though no hypothesis existed.

• For this to happen the data happens to be available
would have to be shown to be consistently related via
a formula determined initially by regression analysis.

• If such validation does occur let us call it external
validation of the measure to distinguish it from internal
validation which should initially take place to show
that it actually measures some attribute.



Definition 3 (External Validation )

External validation of a software measure u is the
process of establishing a consistent relationship
between u and some available empirical data purporting
to measure some useful attributes.

Given our poor understanding of the relationship
between various software products and processes,
external validation seems highly unreliable.

And yet we are expected to accept that this as the
major approach to validate.

It may be of some comfort to the many software
researchers who have taken the above approach to
validation of software measures, to note that they have
not been alone in making the same mistakes. And
speaking quit generally about measurement validation.



External Validation

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA

Measure:
u: A -> B

External
Variable V

Internal
Variable I

?
V = f(I)

Figure 52: Internal and External Variables.

Internal Variable: Measure u

External Variable: Costs of maintenance, etc.

Function f Function, which has to be 
validated.

Questions:

1. What is the function f?
 
2. What properties of an external variable can be

predicted?



Function f

Assume it holds:

1. Measure u assumes a ratio scale.
 
2. External variable V assumes a ratio scale

Function f which has to be validated:

V(P) = a LOC(P)b,

with a,b>0. =

Surprising Result

Having two ratio scales the formula of the basic
COCOMO-Model has to be validated.



LOC as a Ratio Scale

LOC as a Ratio Scale can be used as a ratio scale
because it assumes an additive combination rule which
implies the assumption of an extensive structure.



External Variable V as a Ratio Scale

An external variable assumes can be used as a non-
additive or additive ratio scale if it assumes the following
combination rule: an Such a combination rule has the
following structure:

u(P1 o P2) = (u(P1)1/b + u(P2)1/b)b.

It holds:

b = 1 Additive combination rule -> extensive
structure

b > 1 Supra-additivity - Wholeness, non-additive
combination rule -> extensive structure

b < 1 Sub-additivity, non-additive  combination
rule -> extensive structure



Calibration

The factor b of the COCOMO-Model is a calibration
factor.

Definition (Calibration)



Citation of Krantz et al. /KRAN71/:

A recurrent temptation when we need to measure an
attribute of interest is to try to avoid the difficult
theoretical and empirical issues posed by fundamental
measurement by substituting some easily measured
physical quantity that is believed to be strongly
correlated with the attribute in question: hours of
deprivation in lieu of hunger, skin resistance in lieu of
anxiety, milliamperes of current in lieu of aversiveness,
etc. Doubtless this is a sensible thing to do when no
deep analysis is available, and in all likelihood some
such indirect measures will one day serve very
effectively when the basic attributes are well
understood, but to treat them now as objective
definitions of unanalyzed concepts is a form of
misplaced operalism.

It must be stressed that we (and we are sure Krantz) are
not claiming that measurement and prediction are
completely separate issues. On the contrary we fully
support the observations of Kyburg:

Citation of Kyburg /KYBU84/.

If you have no viable theory (prediction system) into
which X enters, you have very little motivation to
generate a measure of X.



Summary of Validation and Prediction

In order to develop guidelines for designing useful
software measures we recommend the following:

• We need guidelines for defining software measures.
Here the empirical and numerical relational systems
of measurement theory are very helpful.

• Guidelines for validating a software measure
externally and internally. Here measurement theory is
very helpful.

• It is no question that there is of course still much do in
the understanding of how to routinely develop reliable
and understandable software measures.



• We are sure that measurement theory can help to
give theoretical and foundation issues  in actually
defining and standardizing  software measures.

• The real world never seems to work exactly as it
should according to theory. In light of this axiom, one
of the perhaps unexpected benefits of moving from
philosophy to practice is that it forces us to
understand the philosophy and theory more clearly.

• When a theory says that a certain phenomenon
should (or should not) happen but it does not (it does),
then we must re-evaluate our theory.

• Thus, one  of the future tasks in this process of
moving to practice is the continual testing and the fine
tuning of theory.



5 Object-Oriented Environment



6 Results

Ordinal Scale

C2

C1

C4

C3

Extensive Structure

Weak
Positivity

Weak
Commutativity

Weak
Monotonicity

Archimedian
Axiom

BSEQ / DSEQ

Ratio Scale

Positivity

AdditiveNon-Additive

Interval Scale

Weak
Associativity

No Ratio Scale
-> Ratio Scale

Independence Condition

Non-Additive
Ratio Scale

Figure 53: Framework of Software Measurement.



Ordinal Scale

C2

C1

C4

C3

Extensive Structure

Weak
Positivity

Weak
Commutativity

Weak
Monotonicity

Archimedian
Axiom

BSEQ

Ratio Scale

Positivity

Absolute Scale

AdditiveNon-Additive

Interval Scale

Weak
Associativity

BALT

Ratio Scale

Additive Non-Additive

No Ratio
Scale

No Ratio
Scale

Ratio Scale
(BSEQ + BALT)

Independence Condition

Figure 54: Framework of Software Measurement.



Results (Cont.)

1. Measurement theory gives a clear definition of a
measure by a homomorphism between the empirical
world and the world of numbers.

 
2. Measurement theory explains the meaning of numbers

by the empirical and numerical relational systems.
 
3. Measurement theory allows a translation of numerical

properties of measures back to empirical properties
and vice versa  under the assumption of a
homomorphism. This helps to understand the
properties of measures much easier.

 
4. Measurement theory shows that the extensive

structure  plays a central role in software
measurement. Measures which assume an extensive
structure or not have completely different properties.

 
5. The independence conditions characterize essential

properties of measures related to teamwork and
substitution operations.

 
6. Measurement theory gives conditions for the use of

measures on certain scale levels, like nominal, ordinal,
interval, ratio and absolute scale. This is important for
the proper use of statistics.  It also shows, that
counting is not an absolute or ratio scale per se.

 
7. Measurement theory gives conditions for the internal

and external validation of software measures. It shows
the limits of validation of software measures.

 



8. Measurement theory gives conditions for prediction
models. Here the independence conditions play an
important role. They discuss the question whether a
software quality attribute of a whole software system
can be determined by the components of the system.

 
9. Measurement theory shows, that we can have additive

and non-additive ratio scales.
 
10. Measurement theory discusses combination rules

between concatenated objects. These combination
rules give a deeper  understanding of the meaning of
numbers and give criteria for normalization rules of
measurement values.

 
11. Measurement theory gives clear conditions for

verbally formulated (desirable) properties of software
measures and shows contradictions. Put in other
words: not every combination of conditions is
measurable.

 
12. Measurement theory shows, that the basic

COCOMO-Model is the only one which can be used in
the case of prediction if we assume ratio scales.

 
13. Measurement theory derives hypotheses about

reality. This is essential, because hypotheses about
reality is one of the major goals in science.

 
14. Measurement theory explains the idea of size

measurement behind the Function-Point Method.
 
15. Measurement theory gives conditions for hybrid

measures.
 



16. Measurement theory shows that wholeness (The
whole is greater than the sum of the parts) is only a
numerical modification without changing the empirical
evidence of a measure.

 
17. Measurement theory  gives a clear definition of

calibration of software measures.



Results (Cont.)



Results (Cont.)


