Gradman - 1

Literate Programming
by Mike Gradman

| ntroduction

Computer programming has often seen its share of code that is hard to understand
and read due to poor documentation and style. Unfortunatdly, this not so straightforward
code isfound in mogt programs. Frequently, programmers write code that only they can
undergtand, not congdering others who may work with the code or read through it. Even
if the programmer triesto clearly explain what heis doing through writing commentsin
the code or uses good style, others may not be able to make sense out of the code. Nasty
bugs might pop up that would be hard to fix or a developer might need to know what is
going on indde a particular piece of code. He might have to nag the origina programmer
to clarify points about the program if heiseven reechable at dl. Also, in the software
devel opment process, either management, the designers, or programmers have to keep up
with many different kinds of documents, or artifacts throughout the lifecycle. For
example, something in the requirements for the gpplication might either be
misunderstood or totally overlooked in the code as the developers have to refer to a
separate document to see what needs to be implemented. Similar inconsistencies can
occur due to the myriad of documents that are produced in the software life cycle. Most
of these problems occur due to alack of proper understanding of the gpplication being
developed or used or the code written for that gpplication. A paradigm cdled “literate
programming” helps developers, teachers, and students in the process of solving various
problems and understanding their solutions, especidly if they have to build on or
otherwise comprehend other peopl€’ swork.

Programming L anquages: Conventional Attempts at Under ssanding Programs

Befor e Programming L anguages

In the early years of the Computer Age, programmers had to use machine
language to ingruct the computers what they wanted them to do, which involved
commeands such as moving vaues into regigters, manipulating memory, or handling
control flow in acomplicated manner. At that time, there was no essence of entities or
other abstractions that could give the layperson or even expert programmers atrue
understanding of the problem at hand.

FORTRAN

Then, inthe 1950's, the first attempts to develop high-leve programming
languages were made with the am to dlow the programmer to think more in terms of
what the program needed to do and how to do it. One of these first languages was
FORTRAN, with abstractions such as data types and control structures in the form of
ample English language (such as the DO-loop and the IF-THEN statement) which
represented common idioms that the programmer could grasp [Mac87]*. For example, if

! Using adocumentation style used in many |EEE journals ... take first three letters of last name of first
author listed concatenated with the year of publication ... article by Edward Jones and Robert Smith from
1998 would be listed as[Jon98]. References list uses this shorthand followed by the citationin MLA
format.

Gradman - 2

the programmer wanted to double the vaue of each dement of aten-dement array A, he
would write:

DO 100 1=1, 10
A =AQ)* 2
100 CONTINUE

Also, the | F-gtatement could clearly express limited forms of control such astaking the
absolute value of avariable named VALUE:

IF (VALUE.LT.0)
VALUE =-VALUE

Structures like these alowed the devel oper to state what he wanted to do in aclear and
concise fashion by 1950’ s standards.

Also, the devel oper could break up hiswork and design pieces of the application
at atime by using subroutines [Mac87] and either try to understand each smdl part of the
program and how it fits in the whole (bottom-up design) or get the generd idea of what
the program needs to do and then handle more specific matters as he devel ops the
goplication (top-down design). However, the control structuresin FORTRAN were
primitive and produced code that was hard to follow (thanksto GOTO's) dong with and
difficult to comprehend [Mac87].

COBOL

Another attempt in the late 1950's was COBOL. Thislanguage s main god was
to produce code that resembled the English language in a natura-seseming form.

COBOL was meant to be a self-documenting language, code that made it clear on its own
what was being done in the program and thus easy to understand. However, the syntax
was very verbose which made it hard to program in the first place, especidly dueto
certain divisons of the code.

An example of the verbosity of COBOL’s " naturd language’ is a program that
reads customer records and computes average saes, that is sdles per cal [Bel89]. Severd
pieces stand out. Firgt, about ten lines of code spdl out how the input file is formatted.
Thefileitsdf isasmple chart that has the customer information and total sdesand
number of sdles cals. More heinous though is the output file, which is another smple
chart. This chart summarizes the customer information and has the average sdes per cdl
liged. It looks something like:

CUSTOMER LIST

CUSTOMER CUST. NAME ADDRESS CITY STATE ZIP AVG. SALES/CALL
00001 John Doe 1 Here St Houston TX 77333 093111
00002 Mary Suarez 22" Ave. New York NY 01931 494332

However, even this easy output chart takes over thirty lines of code to describe. Hereis
just asmall snippet from the code that describes the format of the output chart:

Gradman - 3

01 DETAIL-LINE.

OS5 FILLER PIC X(2) VALUE SPACES.
05 CUSTOMER-NUMBER PIC 9(5) VALUE ZERQOS.
OS5 FILLER PIC X(3) VALUESPACES.

05 CUSTOMER-NAME PIC X(30) VALUE ZEROS.
[some more code ... snipped for space]

05 CUSTOMER-SALES PIC 9999.99 VALUE ZEROS.
05 FILLER PIC X(11) VALUE SPACES.

[Bel8g).

This code describes the formatting for each row of the table and must be specified
correctly in order for the chart to properly appear. Also from this same example, the code
to populate aline of the table looks like:

FORMAT-DETAIL-LINE-MODULE
MOVE I-CUSTOMER-NUMBER TO CUSTOMER-NUMBER.
MOVE I-CUSTOMER-NAME TO CUSTOMER-NAME.
[samefor rest of fields of table]

DIVIDE I-TOTAL-SALESBY |I-SALES-CALLS
GIVING AVERAGE-SALES.
MOVE AVERAGE-SALESTO CUSTOMER-SALES.

MOVE DETAIL-LINE TO O-PRINTER-RECORD.
MOVE 1 TO LINE-SPACING.
PREFORM PRINTING-MODULE.

[Belgg).

Again, the syntax is very verbose and must be written exactly for the program to work.
In other languages, such as C or Pascd, this routine would be much clearer by the use of
mathematica notation and assgnment statements (In C, the divison would be done by a
satement like “average sdes=1_tota_sdes/i_sdes cdls’).

From the customer sdes example, one can seethat COBOL’s " natural language’
was redly hard to understand and use instead of the program being salf-documenting and
easy to comprehend. Thus, even though the ided s established for COBOL werein the
direction of making code easer to understand, the redlization of that god fell well short
of its expectations.

Procedural Programming

Over the next twenty to thirty years, other languages appeared which made code
easer to understand and work with. Algol provided more intuitive control structures
such as the FOR and WHILE loops and the IF-EL SE statement, diminating the need for
the GOTO’ s which would have made code harder to follow. Pasca and Ada added

Gradman - 4

facilities to declare abstract datatypes (ADT’s) [Mac87], adding yet another way to make
goplications easer to design and understand. For example, in Pasca a programmer can
declare new data types using the “type’ keyword:

{ Example taken from [Mac87] and modified with comments}

type
{ apersontype}
person =
record
name gring;
age: 16..100; {age can be from 16 to 100}
sdary: 10000..100000; {sdary indallars}
sx: (mde, femde); {an employeeisether mde or femde}
birthdete: date; {dateisalso an ADT}
hiredate: date;
end;

string = packed array [1..30] of char;

{ adatetype}
date = record

mon: month; {month isan ADT}
day: 1..31;
year: 1900..2000;

end;

{months of the year}
month = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec);

The programmer can declare variables of these types and give them vauesthey
undergtand like this.

var
newhire: person; {newhireisa person}

begin
{new person isafemale of age 25 and was hired on June 1, 2000}
{which is easy to see from the code below}
newhire.age = 25;
newhiresex = femae;
newhire.hiredate.mon = Jun;
newhire.hiredate.day = 1,
newhire hiredate.day = 2000;
end.

Gradman- 5

These languages are classified as “procedurd”, which encourages the use of procedures
and functions to implement common tasks which must be done repegtedly in the code.
Procedura programming also encourages both top-down and bottom-up design. Like
with COBOL, the aim was clear, sdlf-documenting code. However, with more complex
problems, the ability to comprehend the code declined sharply. Numerous procedure or
function cdls could make the code resemble FORTRAN to an extent as control would
jump dl over the place:

{thisis*pseudocode’, code that doesn't necessary follow the syntax of any }
{ programming language, but is used to convey ideas to the reader }

program jumps,
{A, B, C, and D are procedures}
procedure A;
begin
if (Some condition istrue) then
C; {procedure Ciscdled}
eseif (something dseistrue) then
B;
eseif (yet another thing istrue) then
D;
dse
writeln(“We re done!”);
end;

procedure B;
begin
if (propogtion istrue) then
D;
ese
C;
end;

procedure C;
begin
if (caseistrue) then
st values such no conditionsin procedure A will be stisfied;
A;
dse
D;
end;

Gradman - 6

procedure D;
begin
if (Some situation did occur) then

do some processing;

B; {thingsmay have changed ... so let’'scdl B again}
end;
{ main program }
begin

A;

end.

This program is hard to follow as the reader must congtantly jump from one procedure’ s
code to another in order to try to understand it. Following sequentidly in a piece of
program code is usudly clearer than hopping from place to place. Complex code might
actudly contain Stuations like this and could hinder the person’s understanding of any
part of the gpplication which tries to use this code or he otherwise must work with it.

Object-Oriented Programming

Ancther atempt which is till in progress for understandable code is the
object-oriented paradigm. Object-oriented programming gives a more concrete way of
thinking about entities and their relaionships. Unlike the procedura modd where
objects are just passive data, objects act on each other through methods. Object-oriented
programming explicitly provides more powerful facilities for understanding such as
polymorphism, inheritance, and abstract classes [Arn96]. Adherentsto the
object-oriented paradigm may aso see other relationships between classes such as
aggregation which aso ad in the design and programming process. It isthe power of
these facilities that attempts not just to integrate software development processinto a
sangle object modd that evolves with the project. But again, just like with any of these
other paradigms, complex projects are naturally hard to understand and document,
especidly those with many classes or complex inheritance hierarchies.

Style Conventions

With dl of the approaches described so far came the idea of style conventions.
These rules guide the programmer into writing code where others who read the code
should be able to understand it more. For example, commenting complex pieces of code
gives developers and maintainers agood clue to what the actual code does and how it
doesit. Also, giving variables meaningful names tells a person what a piece of data
represents and helps him or her make sense out of the calculations that are done and
appropriately coined functions that do what their name implies. Other conventions such
asindenting and spacing also aid the understanding process by laying out the codein
visua chunks [Dow93]. Unfortunately, many programmers just want to get their
application to work, not giving a care about whether anyone will be able to understand
the code at al. Others might just think making their code readable is not worth the extra
effort. Even those that follow these rules may follow them poorly or a best be
inconsgtent a their efforts. Clearly, another gpproach is needed in conjunction with the

Gradman - 7

conventional approaches discussed to make code clearer so that it may be understood by
programmers, maintainers, and even users.

Literate Programming 101

Literate programming solves many of the problems that occur by using
conventional means without taking away from the idedls of the ordinary approaches. But
firgt, acrash coursein literate programming will give the necessary background to
undergtand the advantages of this paradigm.

Definition and Rationale of Literate Programming
Literate programming is a paradigm of solving problems that combines
documentation with program code in such away that it is easy to read and understand by
human beings, often with the aid of automated tools. Don Knuth, famous for hiswork
inthefield, sees programming as awork of art and by looking at programs as books,
developers will better document their code and make it easy for themselves and othersto
understand. This approach encourages the programmer to use good practice and clear
explanations to get ideas across to the reader [Knu92]. The paradigm provides severd
magjor features:
- Integrated Feel for Design Strategies: Ability to program effectivey in
ether top-down or bottom-up fashion through the use of structured
pseudocode [Chi95].
Divide and Conquer: Code in smal pieces where most snippets of code
(induding both actud program source and documentation) are lessthan a
page long [Chi95)].
Cognitive Reinfor cement of Concepts: Typeset documentation in a pretty-
printed format where the congtructs of the programming language are clearly
displayed in good style [Chi95].
Think about Readability: A table of contents and index are generated along
with other reading aids [Chi95]. The typeset document is then effectively a
hardcopy hypertext with pointers to related sections.
Design Alternatives: The opportunity to discuss dternative solutions and
make suggestions regarding maintenance and possible extensons [Chi92)].
Problem Description and Solution: Include al visua ads and mathematics
to enhance communication of the problem and its understanding [Chi92].
Augment Programming L anguage: Provide enhanced features for the
underlying programming language.
Environments: Provide a near ided setting for literate programming through
user-friendly environments. Examples include Emacs web-mode [Mot90] and
Osterbye’ s Smalltalk browser [Ost95].

WEB Processfor Literate Programming

Most of these features become evident by looking at how the literate
programming processworks. A popular modd of literate programming is Don Knuth's
WEB [Knu92]. Piecesof code are salf-contained nodes that have relationshipsto each
other and can be navigated through aweb of such nodes. These nodes can have either
documentation notes, macro definitions, and/or code. Using aspecid syntax, the

Gradman - 8

programmer creates such sections and links them together in a WEB file, an example for
the “Hello, World” program, shown as Figure 1 in the Appendix. The WEB syntax is
rather smple. Commands can be used to create sections of code or documentation such
asthe oneslisted in Figure 2 of the Appendix. Code sections can have natura language
descriptions (or tags, denoted by pointy brackets such as“< tag >" within the typeset
documentation outputted for readers of the program code) of a part of the program, which
refer to a section named uniquely with that tag, which explains in more detail that piece
of code, dso through documentation, macros, or program source. The sections of code
may appear in any order in the WEB file. The programmer can aso specify typesetting
directives to guide the way the human readable documentation will appear. The
documentation includes the code in aform caled “ pretty-print”, a syle that reflects the
gyntectic structure of the language with keywords highlighted, identifiersitalicized, and
gpacing and indentation to clearly mark data, control, and other program structures. An
example of the pretty-printed documentation in Figure 3 of the Appendix. Thiskind of
typeset document is programmed using an underlying formatting language, such as TeX

in the case of WEB. Two applications process the WEB file, one to prepare the code for
the underlying programming language s compiler (Tangle, example output shown as
Figure 4 in Appendix) and the other to generate the pretty-printed typeset document
(Weave) [Knu92]. Many literate programming tools are based on the WEB modd!.
Anyone who uses the WEB in any way isa“reader” of that WEB, whether heisa
programmer, client, manager, student or user of the gpplication that the WEB implements
and documents.

Advantages of Literate Programming

Literate programming has many aspectsthat redly shine. The paradigm has
many genera strengths attributed mostly because Weave produces aform of the code that
is more readable and understandable for humans. Also, software engineers can find
literate programming to be useful in design and communication with other parties and
esch other. Furthermore, students can learn essentid programming and design skills by
using this paradigm by orienting themsdlves to solve the problem, rather than orienting
themsdves on just learning how to code. Literate programming helps readers understand
goplications and how they are implemented in these ways.

General Strengths
The Typeset Document

Mogt of the generd advantages of literate programming come from the Woven
document (an exampleis shown in Figure 3 of the Appendix), in that the codeinits
typeset form issimple to understand. Each section of codeis clearly explained in the
documentation that accompaniesit. The reader can digest small pieces of source and
through the help of the various reading aids navigate the WEB to get a better
understanding of the application. Pretty-printing in the form of indentation of code,
boldfacing of keywordsin the program, alowing the inclusion of captions, and other
enhancements provided by the text formatter used aso assstsin the reader’ s scanning of
the document by cognitively reinforcing the distinct concepts in the code.

Gradman - 9

Use of Natural Language

Another mgor strength of the WEB modd is the extensive use of naturd
language. People tend to understand information best that is presented to them in plain
English. The natura language description of pieces of code gives aclear overview of
what the section does, how it isimplemented in the accompanying code, or hints or
information to the user of the program. Literate programming encourages the use of
structured pseudocode as natura language through the use of tags within the code to
describe what the piece of source does; recdl that each tag is a pointer to another section
that elaborate on the action specified in the tag, establishing a concrete relationship
between two sections of code [Knu92]. A clear example of this aspect of literate
programming involves programming design languages (PDL’s). PDL’s are essertidly
pseudocode that express clear ideas about what is being done using natura language
[Bro90]. The example below shows how such pseudocode trandates easily into an
equivaent code snippet in the literate programming paradigm:

Pseudocode for Binary Search (fast algorithm to find an element in a sorted list):
DO WHILE firg isless than last and not found
find the middle dement
IF the middle dement isthe largest
THEN BEGIN
found the item, return it
ELSE
IF target is larger than the middle item
THEN reset the lower limit
EL SE reset the upper limit
ENDIF
ENDIF
ENDDO
[Bro9q].

Literate Equivalent for Binary Search:
begin
< Initidize binary search variables >
while < Not done and not found >
do begin
< Find the middle component >
if <Middle component istarget >
then < Found theitem >
else
if <Target islarger than middie >
then < Reset lower bound >
el se < Reset upper bound >
end
end
[Bro90].

Gradman - 10

Asyou can see, the trandation from pseudocode to literate programming code isfairly
graightforward. Thus, literate programs can be treated as a kind of pseudocode thet is
written in easy to understand naturd language. Effectively, literate programming gives a
smple way of programming and documenting mostly through the use of natura

language.

Flexible for Presentation
Also, WEB files can be used to generate documentation for various audiences or
purposes. All apresenter needsto do isfirst Weave atemplate typeset document from
the WEB file. Then, he just edits this template as appropriate for his Stuation:
A professor a a Univeraty might use the Woven template to put together a
journd article that has dll of the pertinent code, explanations, and graphics he
wishes to present.
A software project team could maintain atruly living design document
throughout the software life cycle, making necessary changes throughout the
process. The project group might use multiple copies of thetemplate as a
new verson is created. User documentation can come from one copy of the
template and project artifacts such as requirements, code, or test data can
derive from another.
A computer science teacher can explain key concepts through using literate
programs as handouts. The students would see these teaching aids as like
lecture nodes, gppearing as code with explanations accompanying each piece
of program that the teacher thinksisrelevant or sectionsthat explain genera
concepts and contain no code at all.

Literate Programming Can Be Fun

Don Knuth gtates one other rather important generd advantage of literate
programming: it can befun [Knu92]! An implementor getsto build aWEB, which is
likeawork of art. He seesthe program develop right before hiseyes. Literate
programming isarare breed that can both be fun and useful!

Softwar e Engineering Advantages

Besdesits generd advantages, software developersfind literate programming to
be very useful. Literate programming supports and encourages incrementa design
without forcing the developers to resort to a particular methodology. Also, the software
team can clearly communicate clearly with various readers of the literate program.
Software engineers can take full advantage of the plethora of language-independent tools
available online, thus freeing the team to use whatever programming language is best for
the project and whatever text formatter will make the documentation as clear and
understandable as possible.

Design Process

The software engineer might develop a program by cregting a WEB file with a
problem statement, add requirements at alater time, code at alater point, and maybe later
tegting information asis done incrementaly in the lawn service example in [Dun95).
Also within the coding process, literate programming supports both top-down and

Gradman - 11

bottom-up design through the alowing any ordering of sections of code in the WEB file
[Knu92]. Both of these styles of design have their uses as in the conventional approaches
to programming as they help ease the design processinto smaller pieces, ultimatey
resulting in the redization of the entire application. Literate programming dso
encourages work upsiream in the software life cycle. Developers can start off with a
WEB congsting of a problem statement and its congtituent parts. They can do the
requirements and high level andyssin there and then let the project grow in this WEB
right from project inception. This process would result in a better understanding of what
the application and its problem domain. As the software life cycle continues, a better
understanding of the project means a smoother ride downstream in the form of fewer
feature changes, more predictable testing, and smpler debugging work.

Communication with Others
The use of literate programming gives the parties involved in the software process
abetter understanding of the gpplication and itsinnards. The literate programming
paradigm encourages communication through clear and understandable documentation
accompanying the code which may contain natura language pseudocode in the form of
tags referring to other sections. Two main groups of readers can benefit from the WEB
for the project: those internd to the project and the clients. Internaly, developers can
explain what the code is supposed to do using literate programming so others who work
with the code should be able to understand it:
Other programmers. They need to see what particular pieces of code do,
what variables, types, or functions they need to use, or get agenerd fed for
the project if they are unfamiliar with the code.
Testers: Given clear-cut cases and key variables by the literate program,
these workers can develop more effective test data and try to figure out more
waysto breek the code. Thus, literate programming will help the testers
uncover more hard-to-find bugsin the code.
Maintenance Technicians. These are those people that may have to look at
the code years down the road. They will more likely never have looked at the
system before, especidly if they are maintaining avariety of applications.
Also, the system may have been handed to them by the developers and thus
have to get athorough idea of how this unfamiliar system works and is buiilt.
The dlear explanations and code in the WEB will tdll the maintenance
technicians what they need to know about the software.

Literate programming aso benefits the customers of the software project. The
developers can draft the documentation using the Woven output from the WEB file.
They can add documentation-only sections that contain ingtructions, explanations, and
tutorids that include text, charts, and graphics. The customer can then ask questions or
make clarifications during the development process based off of this clear documentation
from the developer. Changes resulting either from customer feedback or negative results
from usability testing may cause changes to need to be made to the documentation which
can be directly done in the WEB file. Literate programming reinforces and encourages
the need for communication between customer and developer through the Woven
documentation.

Gradman - 12

Language Independence

In the early days of literate programming, tools usudly assumed acertain
underlying programming language and a specific text formatting language, such as
Knuth' sSWEB [Knu92]. Thislimitation severely limited any software project that wanted
to use literate programming as it redtricted their choice of programming language to one
that might not be the most appropriate for their gpplication or leave the documentation in
an undesirable format. However, asliterate programming evolved, so did the tools, and
researchers redlized the need for language-independent tools. Soon came some tools
that supported a group of languages such as FWEB (could handle C/C++, Java, and
Fortran, but only supported TeX typesetting) and Noweb (only could typeset in HTML,
Tex, or LaTeX, but was programming language independent) [Tho97]. But now there are
tools out there that are truly language independent such as VAMP [Van92], AOPS
[Shu93], FunnelWeb [Leed4], and SPIDER [Ram95]. The use of alanguage-independent
tool now can free up software projects from any redtrictions caused by literate
programming while alowing them to fully regp the paradigm’ s benefits.

Literate Programmingin the Classroom
CY1 Experiment

In the conventiona introductory computer science course, a student learns how to
program, but not how to actudly solve programming problems. Most of the problems
experienced by novices are aresult of not understanding how to put the pieces together
for particular programs[Chi95]. At the introductory level, sudents are only interested in
getting code to work, not how to think out the problem they are trying to solve or
effective ways of documenting their programs. For them, the finished product isal that
matters[Chi95]. Studies show that an effective teacher presents concepts on how to
solve problems [Chi95]. Students need to be shown that the important lesson to be
learned in programming is design. Bart Childs performed an experiment with beginning
students, exposing them to literate programming and thus emphasizing the problem
solving skills rather than the program itsdlf, though they were responsible for learning the
gyntax and constructs of Pascd [Chi95]. The students were taught iterative design
techniques and were required to turn in labs twice to make sure they were understanding
the problem solving process and then able to convert it into code [Chi95] such asinthe
lawn service example from [Dun95).

The results from this experiment confirmed that literate programming aids
beginning students in learning how to solve problems and ultimately to program better.
Most importantly, students problem solving skillsincreased. Those who were
unfamiliar with Pascal performed better than those were aready familiar with the
language because they were able to “[usg] the literate programming paradigm to capture
and document their problem solving process’ [Chi95]. Also, students were ableto learn
the three languages necessary to program in WEB, WEB itsdlf, Pascd, and LaTeX
[Chi95]. The students exposed to literate programming performed significantly better in
their subsequent data structures course than those who didn’t get taught using the literate
programming paradigm [Chi95]. Childs aso hypothesized thet this paradigm might
improve the software process [Chi95]. Overdl, the students were able to understand the
key concepts of problem solving and documenting their code through the design process
and using them for their own benefit.

Gradman - 13

Problem-Solving vs. Program-Oriented Approach

Literate programming emphasizes a problem-solving gpproach from the sart,
rather than a program-oriented one [Chi95]. The red emphasis on developing softwareis
understanding the problem and designing a solution for it, not the coding itsdf. Starting
with atop-down gpproach to get a high-level understanding of the problem and then
using bottom-up to fill in the details where pecific details may be needed to build bigger
piecesis how this thought process works in many cases. Emphasizing the importance of
the design process early on in a programmer’ s education would take him along way.
The student would spend more time thinking about the problem and how to solveit, then
implement it, asis actudly done in software projects. Also, by getting a core
undergtlanding of the design process early on, the student would learn and master the key
concepts to be agood programmer much sooner than on who does not have experience
with literate programming. A beginning sudent who only learns how to program, but not
how to solve problems will gradudly pick up the problem:solving approach, but probably
much later than the student who learned how to solve problems using literate
programming. The software development process stresses anadyzing and understanding
the problem and how to progressvely come up with asolution in the form of awell-
documented program. This new breed of programmers would view the whole software
life cycle asagngle unit and the living entity, the application being developed, grows
through the WEB and the people that develop it.

Furthermore, experience with the literate programming can help people gpproach
problems in whatever their filds may be. Literate programming encourages the
developer to get an understanding of the problem, get deeper into the design, and then
iteratively code the gpplication and document his path to that solution for both him and
readers of the WEB to understand. With each problem a person facesin hisfidd, he has
to be able to first understand what needs to be done. Next, he has to develop a blueprint
for how to solve the problem, smilar to the design phase of the software engineering
process. Finaly, he hasto implement his solution in away that people themselves will
understand how to use and maintain where applicable, including gppropriate
documentation where necessary. A course emphasizing literate programming would thus
also be agreat course to teach problem solving techniques that anyone can uselater in
their fidd of sudy.

Disadvantages of Literate Programming

Just aswith any other paradigm, literate programming does have its shortcomings.
For small programs (one or two pages worth of code) or programs that may be used once
and then thrown away, usng literate programming may be overkill. Having to writea
WEB file complete with textua descriptions for the documentation and redly short
sections for pieces of code might be too much of a hasde and take longer to get right than
just writing the gpplication in a conventionad manner. However, even for smal
aoplications, the programmer and other readers may have to understand and work with
the code at some point in the future. Thus, the work put into the documentation and
chunking of code into sectionswill pay off. Another problem with literate programming
isthat the developer hasto learn three languages in order to use the paradigm: the

underlying programming language, and the underlying typesetting language, and the

Gradman - 14

WEB syntax that ties them together. But with even beginning students in generd having
no trouble learning the three languages needed [Chi95], experienced programmers should
be able to pick up the literate programming paradigm easily. Also, WEB ties together the
features of the two languages and blends them together into “a combination of languages
[thet] proves to be much more than ether sSingle language by itsdf. WEB does not make
the other languages obsolete; on the contrary it enhances them” [Knu92]. One other
disadvantage of literate programming is merely afalacy: “it is difficult to find software

that istruly independent of programming language and typesetting language and thet is
aso easy to understand”. This statement is just a misconception as there are language
independent tools out there. Mot literate programmers are well-versed enough anyway
and should be able to learn these toals, especidly those like Spider that dlow the user to
customize how the WEB file is Woven and Tangled based on either underlying language
or other specid Stuations [Ram95]. The mgor hurdle for literate programming right now
isthat the paradigm is not awell-known concept. Fewer papers have been written than
there should be on the subject and most interest currently still seems to be restricted to the
academic community. Thislack of publicity may be occurring because few organizations
currently use literate programming and/or it just does not generate the hype that
object-oriented programming or the World Wide Web do. However, given time and
word of mouth, enough people can learn for themsalves how powerful and fun literate

programming is.

Concluson — The Future of Literate Programming?

With some more exposure to literate programming, developers, programmers,
students, and gpplication users can take advantage of this powerful and intuitive
paradigm that continues to evolve.

M odifications to Existing Paradigm

Where might literate programming head? David Cordes and Marcus Brown
propose to modify the existing paradigm to make literate programming a more practical
methodology. One of their proposasisto provide amultileve table of contentsto alow
the programmer to layout his structure of sections more naturaly and clearly instead of
the current scheme which numbers dl sections astop-level [Cor91]. The reader of the
WEB can aso seethis hierarchicad display of the sections and thus understand more
about the code. Another of their proposasisto add a GUI interface to help the user
sdlect WEB commands more easily (new users would not even haveto learn the
commandsl) and traversing relationships between entitiesin the WEB [Cor91]. A
debugger would aso help developersin writing and maintaining the code [Cor91]. An
enhanced index would give the WEB reader clear information about the use of varigbles
in the code [Cor9l]. Besides these enhancements, Cordes and Brown also proposed
some regtrictions to the current paradigm to make code easier to understand and write
such aslimiting the structure of the code within a section and reducing the number of
WEB commands [Cor91]. These features would help literate programming on its way to
becoming more of a practica paradigm and as aresult may become more popular.

Gradman - 15

True Natural Language Systems

Literate programming would hit its peak when natural language processing (NLP)
makes some magjor breakthroughs, both in understanding (NLU) and generation (NLG).
Then, programmers and readers of the typeset documentation will be able to clearly
understand the code and what it should do. All would be in plain English and the code
itsdf would truly be salf-documenting though documentation for most sections would
gtill probably be recommended.

Natural Language Understanding

On the NLU front, a system might be feasible within a matter of yearsthat takes
natura language in the form of high leve ingtructions (maybe just a description of what
the program does would be enough in the far future), parsesit, and generates codein a
convertiona language that may be compiled and executed as well as the typeset
documentation. Recent progress has been made on the LogiMOO and NALIGE
projects. LogiMOO isavirtud world where the users may move around and perform
actions using aform of restricted naturd language that is then trandated into a diaect of
Prolog to execute [Tar99]. NALIGE isanaturad language interface to the underlying
operaing system. At the prompt, the user enters a naturd language command that which
NALIGE trandates into code that the operating system executes [Man94]. These projects
attempts are the first stepsto redizing atrue natura programming language to enhance
the literate programming paradigm.

Natural Language Generation

Work is proceeding on an intelligent system called “dynamic hypertext” that uses
NLG to produce online documents. The system bases the pages it builds on schemait
gathers from user responses and tendencies [Da98]. Literate programming can take
advantage of this gpproach in asmilar sysem using atechnique that may or may not
resemble WEB. The literate program file would contain source code and a basdine
documentation with some information about what the expected user might belike. The
source codeis Tangled asis done presently. For the “Weaving” process, the basdine
documentation and the expected user information then get sent to an NLG system which
congtructs and goresinitial schemathat is used to build theinitid documentation in an
online hypertext format. Then as the user navigates each page, the NLG system updates
its schema based on his responses and tendencies that it picksup. Findly, the NLG
system uses these schema to build the next page. The NLG system’s goa would beto
display the literate program in a clear fashion that is geared towards the characteristics of
the user and aid him in the understanding and problem solving process. Until natura
language work reaches this point however, literate programming should serve well as-is
to describe the work being donein the program in anatural and clear way for dl readers.

Closing Statement

How ever the paradigm of literate programming evolves, its goa will remain the same:
give everyone averson of the code that is well-documented, laid out, and presented, so
they may work with it and most importantly, under stand it!

Gradman - 16

Appendix

“Raw” Source Codefor “Hello, World” Program

#include <¢dio.h>
main()

printf(“hello world\n™);
}

Figure 1: WEB filetext for “Hello, World”

@* Hello World program.
This is a small demonstration of the tise of Web'in a program that prints the
famous Hello World greeting.

@ Main program.
This is the unnamed code mudul: to which all other modules connect.
@c
@<Include files@>
main()
{
@-<Print gmcting@}
} -
@ Include ﬁles
The only include file reanred is Istdio. hl
@ <Include files@> =
#include <stdio.h>

@ Issue the actual print mwmmt
@<Print greeting@> =
printf(*hello world\a™);

Source: Cordes, David, and Marcus Brown. “The Literate- Programming Paradigm.”
Computer 24.6 (1991): 54.

Gradman - 17

Figure 2: Basc WEB Command Set

@\ signals the start of a new module (U represents a space)

@* . signals the start of a new module that is a section header;
all section headers appear in the program listing’s table
of coitents :

@d signals the start of a definitions section

@c 4 gignals the start of code in an unnamed module

@< . signals the start of a module name

@> signals the end of a motdnle name

@<name@> = code associates code with the module specified

@<name@> + = code appends more code to the end of the module specified

lexprl " word processing cormmand, formats contents like code listing

Sour ce: Cordes, David, and Marcus Brown. “The Literate- Programming Paradigm.”
Computer 24.6 (1991): 54.

Gradman - 18

Figure 3: Woven document for “Hello, World”

Table of Contents

Hello World program..........c..o.o.-c38Ction 1, Page |

Source Code

1. Hello World program. This is a small demonstration of the use of Web in a
program that prints the famous Hello World greeting.

2. Main program. This is the unnamed module to which all other modules
connect.
{Include files 3)
main{)
i
{Print greeting 4 }
t
3. Include files. The only include file required is sedio.h.

{ Include files 1) =
#imclude <snidio. k>

Thie code is nged in seciion 2,

4, Tgsue the actual print statement.
{ Print greeting +)
printfl | “hello worldin™);

Thiis coxle i ssed in sectioms 2.

Variable Index

main : 2.
prinif : 4,
stdio : 3.

Section Index

{ Include Files 3) Used in seciion 2.
{ Print Grecting 4) Used in sectios 2.

Sour ce: Cordes, David, and Marcus Brown. “The Literate- Programming Paradigm.”
Computer 24.6 (1991): 55.

Gradman - 19

Figure 4: C Program Generated from Tanglefor “Hello, World”

o S |

#line 11 “hello.web™
e3>

#line 23 “hello.web”
#include-zsidio h>
3%

#line 12 “hello.web™
maing)

{

4%

#line 27 "hello. web”
printf(“hello worlda™);
%

#ine 16 “hello. web"”
i

1* 2%

Sour ce: Cordes, David, and Marcus Brown. “The Literate-Programming Paradigm.”

Computer 24.6 (1991): 55.

Gradman - 20

Refer ences

[Arn96] Arnold, Ken, and James Goding. The Java Programming Language. Reading,
MA: Addison-Wesley, 1996.

[Bel89] Belcher, LindaK. The COBOL Handbook: A Modular Approach. Belmont,
CA: Wadsworth, 19809.

[Bro90] Brown, Marcus, and David Cordes. “A Literate Programming Design
Language.” Proceedings, CompEuro (1990): 548-549.

[Chi92] Childs, Bart. “Literate Programming, A Practitioner’s View.” TUGboat 13.3
(1992): 261-268.

[Chi95] Childs, Bart, Deborah Dunn, and William Lively. “Teaching CS/1 Coursesina
Literate Manner.” Proceedings. TUGboat 16.3 (1995): 300-309.

[Cor91] Cordes, David, and Marcus Brown. “The Literate-Programming Paradigm.”
Computer 24.6 (1991): 52-61.

[DA98] Dde, Robert, et. d. “Integrating Naturd Language Generation and Hypertext to
Produce Dynamic Documents.” Interacting with Computers 11 (1998): 109-135.

[Dow93] Dowd, Kevin. High Performance Computing. Sebastopol, CA: O'Rellly &
Associates, 1993.

[Dun95] Dunn, Deborah Lynn. “Literate Programming as a Mechanism for Improving
Problem Solving Skills” Diss. Texas A&M Universty, 1995.

[Knu92] Knuth, Donald E. Literate Programming. CSLI, 1992.

[Leed4] Lee, Christopher. “Literate Progranming — Propaganda and Tools.” Web page.
http:/Aww.cs.cmu.edu/~vaschel p/Programming/Literatelliterate. html.
October 17, 1994.

[Mac87] MacLennan, Bruce J. Principles of Programming Languages. 2"% ed. New
York: Oxford UP, 1987.

[Man94] Manaris, Bill Z., Robert Glanville, and Timothy E. Gillis. “Developing Naturd
Language Interfaces through NALIGE.” Proceedings. Sixth Internationd
Conference on Tools with Artificid Intelligence (1994): 260-266.

[Mot90] Matl, Mark Bentley. “A Literate Programming Environment Based on an
Extensble Editor.” Texas A&M Univergty, 1990.

Gradman - 21

[Os95] Odterbye, Kasper. “Literate Smaltak Programming Using Hypertext.” |EEE
Transactions on Software Engineering 21.2 (1995): 138-145.

[Ram95] Ramsey, Norman. “Weaving a Language Independent WEB.” 1995 version of
paper origindly published in Communications of the Association for
Computing Machinery 32 (1989): 1051-1055.

[Shu93] Shum, Stephen, and Curtis Cook. “AOPS: An Abstraction-Oriented
Programming System for Literate Programming.” Software Engineering Journa
8.3 (1993): 113-120.

[Tar99] Tarau, Paul. “LogiMOO: An Extensble Multi-User Virtud World with Natura
Language Control.” The Journd of Logic Programming 38 (1999): 331-353.

[Tho97] Thompson, David B.. “The Literate Programming FAQ.” Newsgroup posting:
comp.programming.literate. August 15, 1997.

[Van92] Van Ammers, Eric W., and Mark R. Kramer. “VAMP: A Tool for Literate
Programming Independent of Programming Language and Formetter.”
Proceedings. CompEuro (1992): 371-376.

