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Abstract. This paper describes how to implement a documenta-
tion technique that helps readers to understand large programs or
collections of programs, by providing local indexes to all iden-
tifiers that are visible on every two-page spread. A detailed
example is given for a program that finds all Hamiltonian circuits
in an undirected graph.
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1. Introduction

Users of systems likeWEB [2], which provide support for
structured documentation and literate programming [5],
automatically get a printed index at the end of their
programs, showing where each identifier is defined and
used. Such indexes can be extremely helpful, but they
can also be cumbersome, especially when the program
is long. An extreme example is provided by the list-
ing of TEX [3], where the index contains 32 pages of
detailed entries in small print.

Readers of [3] can still find their way around the
program quickly, however, because

. . . the right-hand pages of this book contain
mini-indexes that will make it unnecessary for
you to look at the big index very often. Every
identifier that is used somewhere on a pair of
facing pages is listed in a footnote on the right-
hand page, unless it is explicitly defined or
declared somewhere on the left-hand or right-
hand page you are reading. These footnote
entries tell you whether the identifier is a pro-
cedure or a macro or a boolean, etc. [3]

A similar idea is sometimes used in editions of liter-
ary texts for foreign language students, where mini-
dictionaries of unusual words appear on each page [10];
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this saves the student from spending a lot of time search-
ing big dictionaries.

The idea of mini-indexes was first suggested to the
author by Joe Weening, who prepared a brief mockup
of what he thought might be possible [11]. His proposal
was immediately appealing, so the author decided to
implement it in a personal program calledTWILL—a
name suggested by the fact that it was a two-pass variant
of the standard program calledWEAVE. TWILL was used
in September, 1985, to produce [3] and a companion
book [4].

The original WEB system was a combination of
TEX and Pascal. But the author’s favorite program-
ming language nowadays isCWEB [6], which combines
TEX with C. (In fact, CWEB version 3.0 is fully com-
patible with C++, although the author usually restricts
himself to a personal subset that might be calledC--.)
One of the advantages ofCWEB is that it supports collec-
tions of small program modules and libraries that can
be combined in many ways. A singleCWEB source file
foo.w can generate several output files in addition to the
C programfoo.c; for example,foo.w might generate a
header filefoo.h for use by other modules that will be
loaded with the object codefoo.o, and it might generate
a test programtestfoo.c that helps verify portability.

CWEB was used to create the Stanford GraphBase, a
collection of about three dozen public-domain programs
useful for the study of combinatorial algorithms [9].
These programs have recently been published in book
form, again with mini-indexes [7]. The mini-indexes
in this case were prepared withCTWILL [8], a two-pass
variant ofCWEAVE.

The purpose of this paper is to explain the op-
erations ofTWILL and of its descendant,CTWILL. The
concepts are easiest to understand when they are related
to a detailed example, so a completeCWEB program has
been prepared for illustrative purposes. Section 2 of this
paper explains the example program; Sections 3 and 4
explain howCTWILL and TEX process it; and Section 5
contains concluding comments.
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2. An example

TheCWEB program for which sample mini-indexes have
been prepared especially for this paper is calledHAM .
It enumerates all Hamiltonian circuits of a graph, that
is, all undirected cycles that include each vertex exactly
once. For example, the program can determine that
there are exactly 9862 knight’s tours on a 6× 6 chess-
board, ignoring symmetries of the board, in about 2.3
seconds on a SPARCstation 2. SinceHAM may be in-
teresting in its own right, it is presented in its entirety
as sort of a “sideshow” in the right-hand columns of the
pages of this article and on the final (left-hand) page.

Please take a quick look atHAM now, before read-
ing further. The program appears in five columns, each
of which will be called aspreadbecause it is analogous
to the two-page spreads in [3] and [7]. This arrange-
ment gives us five mini-indexes to look at instead of just
two, so it makesHAM a decent example in spite of its
relatively small size. A shorter program wouldn’t need
much of an index at all; a longer program would take
too long to read.

HAM is intended for use with the library of routines
that comes with the Stanford GraphBase, so§1 of the
program tells theC preprocessor to include header files
gb_graph.h andgb_save.h. These header files define
the external functions and data types needed from the
GraphBase library.

A brief introduction to GraphBase data structures
will suffice for the interested reader to understand the
full details ofHAM . A graph is represented by combin-
ing three kinds ofstruct records calledGraph, Vertex,
and Arc . If v points to aVertex record, v~name is
a string that names the vertex represented byv, and
v~arcs points to the representation of the first arc em-
anating from that vertex.1 If a points to anArc record
that represents an arc from some vertexv to another
vertexu, thena~ tip points to theVertex record that rep-
resentsu; alsoa~next points to the representation of the
next arc fromv, or a~next = Λ (i.e., NULL) if a is the
last arc fromv. Thus the following loop will print the
names of all vertices adjacent tov:

for (a = v~arcs ; a; a = a~next )
printf ("%s\n",a~ tip~name );

An undirected edge between verticesu andv is repre-
sented by two arcs, one fromu to v and one fromv to u.
Finally, if g points to aGraph record, theng~n is the
number of vertices in the associated graph, and theVer-
tex records representing those vertices are in locations
g~vertices + k, for 0≤ k < g~n.

1 ‘v~name ’ is actually typed ‘v->name’ in a C or
CWEB program; typographic sugar makes the program
easier to read in print.
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A Vertex record also contains “utility fields” that
can be exploited in different ways by different algo-
rithms. The actualC declarations of these fields, quoted
from §8 and§9 of the programGB GRAPH [7], are as
follows:

typedef union{
struct vertex struct ∗V ;

/∗ pointer toVertex ∗/
struct arc struct ∗A;

/∗ pointer toArc ∗/
struct graph struct ∗G;

/∗ pointer toGraph ∗/
char ∗S;

/∗ pointer to string∗/
long I;

/∗ integer∗/
} util ;

typedef struct vertex struct {
struct arc struct ∗arcs ;

/∗ linked list of arcs out of this vertex∗/
char ∗name ;

/∗ string identifying this vertex symbolically∗/
util u, v, w, x, y, z;

/∗ multipurpose fields∗/
} Vertex ;

ProgramHAM uses the first four utility fields in or-
der to do its word efficiently. Fieldu, for example, is
treated as along integer representing the degree of the
vertex. Notice the definition ofdeg as a macro in§2;
this makes it possible to refer to the degree ofv asv~deg
instead of the more cryptic ‘v~u.I ’ actually seen by the
C compiler. Similar macros for utility fieldsv, w, andx
can be found in§4 and§6.

The first mini-index ofHAM , which can be seen be-
low §2 in the first column of the program, gives cross-
references to all identifiers that appear in§1 or§2 but are
not defined there. For example,restore graph is men-
tioned in one of the comments of§1; the mini-index
tells us that it is a function, that it returns a value of type
Graph ∗, and that it is defined in§4 of anotherCWEB pro-
gram calledGB SAVE. The mini-index also mentions that
Vertex andarcs are defined in§9 of GB GRAPH (from
which we quoted the relevant definitions above), and
that fieldsnext and tip of Arc records are defined in
GB GRAPH§10, etc.

One subtlety of this first mini-index is the entry
for u, which tells us thatu is a utility field defined in
GB GRAPH§9. The identifieru actually appears twice in
§2, once in the definition ofdeg and once as a variable
of type Vertex ∗. The mini-index refers only to the
former, because the latter usage is defined in§2. Mini-
indexes don’t mention identifiers defined within their
own spread.
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The second mini-index, below§5 of HAM , is similar
to the first. Notice that it contains two separate entries
for v, because the identifierv is used in two senses—
both as a utility field (in the definition oftaken ) and
as a variable (elsewhere). TheC compiler will under-
stand how to deal with constructions like ‘v~v.I = 0’,
which theC preprocessor expands from ‘v~ taken = 0’,
but human readers are spared such trouble.

Notice the entry fordeg in this second mini-index:
It uses an equals sign instead of a colon, indicating
that deg is a macro rather than a variable. A simi-
lar notation was used in the first mini-index for cross-
references to typedef’d identifiers likeVertex . See also
the entry fornot taken in the fourth mini-index: Here
‘not taken = macro ( )’ indicates thatnot taken is a
macro with arguments.

3. The operation of CTWILLCTWILL

It would be nice to report that the programCTWILL
produces the mini-indexes forHAM in a completely au-
tomatic fashion, just asCWEAVE automatically produces
ordinary indexes. But that would be a lie. The truth is
thatCTWILL only does about 99% of the work automat-
ically; the user has to help it with the hard parts.

Why is this so? Well, in the first place,CTWILL isn’t
smart enough to figure out that the ‘u’ in the definition
of deg in §2 is not the same as the ‘u’ declared to be
register Vertex ∗ in that same section. Indeed, a high
degree of artificial intelligence would be required before
CTWILL could deduce that.

In the second place,CTWILL has no idea what mini-
index entry to make for the identifierk that appears in
§6. No variablek is declared anywhere! Indeed, users
who write comments involving expressions like ‘f (x)’
might or might not be referring to identifiersf and/orx
in their programs; they must tellCTWILL when they
are making “throwaway” references that should not be
indexed. CWEAVE doesn’t have this problem because it
indexes only the definitions, not the uses, of single-letter
identifiers.

In the third place,CTWILL will not recognize au-
tomatically that thevert parameter in the definition of
not taken , §4, has no connection with thevert macro
defined in§6.

A fourth complication, which does not arise inHAM

but does occur in [3] and [7], is that sections of aWEB or
CWEB program can be used more than once. Therefore a
single identifier might actually refer to several different
variables simultaneously. (See, for example,§652 in
[3].)

In general, when an identifier is defined or de-
clared exactly once, and used only in connection with its
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unique definition,CTWILL will have no problems with
it. But when an identifier has more than one implicit or
explicit definition,CTWILL can only guess which defi-
nition was meant. Some identifiers—especially single-
letter ones likex andy—are too useful to be confined
to a single significance throughout a large collection of
programs. ThereforeCTWILL was designed to let users
provide hints easily when choices need to be made.

The most important aspect of this design was to
makeCTWILL’s default actions easily predictable. The
more “intelligence” we try to build into a system, the
harder it is for us to control it. ThereforeCTWILL has
very simple rules for deciding what to put in mini-
indexes.

Each identifier has a uniquecurrent meaning,
which consists of three parts: its type, and the pro-
gram name and section number where it was defined.
At the beginning of a run,CTWILL reads a number of files
that define the initial current meanings. Then, whenever
CTWILL sees aC construction that implies a change of
meaning—a macro definition, a variable declaration, a
typedef, a function declaration, or the appearance of
a label followed by a colon—it assigns a new current
meaning as specified by the semantics ofC. For ex-
ample, whenCTWILL sees ‘Graph ∗g’ in §2 of HAM ,
it changes the current meaning ofg to ‘Graph ∗, §2’.
These changes occur in the order of theCWEB source file,
not in the “tangled” order that is actually presented to
theC compiler. ThereforeCTWILL makes no attempt to
nest definitions according to block structure; everything
it does is purely sequential. A variable declared in§5
and§10 will be assumed to have the meaning of§5 in
§6, §7, §8, and§9.

WheneverCTWILL changes the current meaning of
a variable, it outputs a record of that current meaning
to an auxiliary file. For theCWEB programham.w, this
auxiliary file is calledham.aux. The first few entries of
ham.aux are

@$deg {ham}2 =macro@>
@$argc {ham}2 \&{int}@>
@$argv {ham}2 \&{char} ${*}[\,]$@>

and the last entry is

@$d {ham}8 \&{register} \&{int}@>

In general these entries have the form

@$ident {name}nn type@>

whereident is an identifier,name andnn are the pro-
gram name and section number whereident is defined,
and type is a string of TEX commands to indicate its
type. In place of ‘{name}nn ’ the entry might have the
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form"string" instead; then the program name and sec-
tion number are replaced by the string. (This mechanism
leads, for example, to the appearance of<stdio.h> in
HAM ’s mini-index entries forprintf .) Sometimes the
type field says ‘\zip’. This situation doesn’t arise in
HAM , nor does it arise very often in [7]; but it occurs, for
example, when a preprocessor macro name has been de-
fined externally as in aMakefile, or when a type is very
complicated, likeFILE in <stdio.h>. In such cases the
mini-index will simply say ‘FILE, <stdio.h>’, with no
colon or equals sign.

The user can explicitly change the current mean-
ing by specifying@$ident {name}nn type@> anywhere
in a CWEB program. This means thatCTWILL’s default
mechanism is easily overridden.

WhenCTWILL starts processing a programfoo.w, it
looks first for a file namedfoo.aux that might have been
produced on a previous run. Iffoo.aux is present, it
is read in, and the@$...@> commands offoo.aux give
current meanings to all identifiers defined infoo.w.
ThereforeCTWILL is able to know the meaning of an
identifier before that identifier has been declared—
assuming thatCTWILL has been run successfully on
foo.w at least once before, and assuming that the fi-
nal definition of the identifier is the one intended at the
beginning of the program.

CTWILL also looks for another auxiliary file called
foo.bux. This one is not overwritten on each run, so it
can be modified by the user. The purpose offoo.bux is
to give initial meanings to identifiers that are not defined
in foo.aux. For example,ham.bux is a file containing
the two lines

@i gb_graph.hux
@i gb_save.hux

which tell CTWILL to input the filesgb_graph.hux and
gb_save.hux. The latter files contain definitions of
identifiers that appear in the header filesgb_graph.h
andgb_save.h, which HAM includes in§1. For exam-
ple, one of the lines ofgb_graph.hux is

@$Vertex {GB\_GRAPH}9 =\&{struct}@>

This line appears also ingb_graph.aux; it was copied
by hand, using a text editor, intogb_graph.hux,
becauseVertex is one of the identifiers defined in
gb_graph.h.

CTWILL also reads a file calledsystem.bux, if it
is present; that file contains global information that is
always assumed to be in the background as part of the
current environment. One of the lines insystem.bux
is, for example,

@$printf "<stdio.h>" \&{int} (\,)@>

After system.bux, ham.aux, and ham.bux have
been input,CTWILL will know initial current mean-
ings of almost all identifiers that appear inHAM . The
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only exception isk, found in§6; its current meaning is
\uninitialized, and if the user does not take correc-
tive action its mini-index entry will come out as

k: ???,§0.

Notice thatd is declared in§4 of HAM and also
in §8. Both of these declarations produce entries in
ham.aux. SinceCTWILL readsham.aux before looking
at the source fileham.w, and sinceham.aux is read se-
quentially, the current meaning ofd will refer to§8 at the
beginning ofham.w. This causes no problem, because
d is never used inHAM except in the sections where it is
declared, hence it never appears in a mini-index.

WhenCTWILL processes each section of a program,
it makes a list of all identifiers used in that section, ex-
cept for reserved words. At the end of the section, it
mini-outputs (that is, it outputs to the mini-index) the
current meaning of each identifier on the list, unless
that current meaning refers to the current section of the
program, or unless the user intervenes.

The user has two ways to change the mini-outputs,
either by suppressing the default entries or by inserting
replacement entries. First, the explicit command

@-ident@>

tellsCTWILL not to produce the standard mini-output for
ident in the current section. Second, the user can spec-
ify one or moretemporary meaningsfor an identifier, all
of which will be mini-output at the end of the section.
Temporary meanings do not affect an identifier’s current
meaning. Whenever at least one temporary meaning is
mini-output, the current meaning will be suppressed just
as if the@-...@> command had been given. Tempo-
rary meanings are specified by means of the operation
@%, which toggles a state switch affecting the@$...@>
command: At the beginning of a section, the switch
is in “permanent” state, and@$...@> will change an
identifier’s current meaning as described earlier. Each
occurrence of@% changes the state from “permanent”
to “temporary” or back again; in “temporary” state the
@$...@> command specifies a temporary meaning that
will be mini-output with no effect on the identifier’s
permanent (current) meaning.

Examples of these conventions will be given mo-
mentarily, but first we should note one further interac-
tion betweenCTWILL’s @- and@$ commands: IfCTWILL
would normally assign a new current meaning toident
because of the semantics ofC, and if the command
@-ident@> has already appeared in the current sec-
tion, CTWILL will not override the present meaning, but
CTWILL will output the present meaning to the.aux file.
In particular, the user may have specified the present
meaning with@$ident...@>; this allows user control
over what gets into the.aux file.
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For example, here is a complete list of all com-
mands inserted by the author in order to correct or en-
hanceCTWILL’s default mini-indexes forHAM :

• At the beginning of§2,

@-deg@>
@$deg {ham}2 =\|u.\|I@>
@%@$u {GB\_GRAPH}9 \&{util}@>

to make the definition ofdeg read ‘u.I ’ instead of
just ‘macro’ and to make the mini-index refer tou
as a utility field.

• At the beginning of§4,

@-taken@> @-vert@>
@$taken {ham}4 =\|v.\|I@>
@%@$v {GB\_GRAPH}9 \&{util}@>
@$v {ham}2 \&{register} \&{Vertex} $*$@>

for similar reasons, and to suppress indexing of
vert . Here the mini-index gets two “temporary”
meanings forv, one of which happens to coincide
with its permanent meaning.

• At the beginning of§6,

@-k@> @-t@> @-vert@> @-ark@>
@$vert {ham}6 =\|w.\|V@>
@$ark {ham}6 =\|x.\|A@>
@%@$w {GB\_GRAPH}9 \&{util}@>
@$x {GB\_GRAPH}9 \&{util}@>

for similar reasons. That’s all.

These commands were not inserted into the program file
ham.w; they were put into another file calledham.ch and
introduced viaCWEB’s “change file” feature [6]. Change
files make it easy to modify the effective contents of a
master file without tampering with that file directly.

4. Processing by TEX

CTWILL writes a TEX file that includes mini-output at
the end of each section. For example, the mini-output
after§10 of HAM is

\]{GB\_GRAPH}10 \\{next} \&{Arc} $*$
\[7 \\{advance} label
\[6 \\{ark} =\|x.\|A
\[2 \|{t} \&{register} \&{Vertex} $*$
\[4 \\{not\_taken} =macro (\,)
\]{GB\_GRAPH}10 \\{tip} \&{Vertex} $*$
\[2 \|{v} \&{register} \&{Vertex} $*$
\[2 \|{a} \&{register} \&{Arc} $*$
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Here\[ introduces an internal reference to another sec-
tion of HAM ; \] introduces an external reference to some
other program;\\ typesets an identifier in text italics;
\| typesets an identifier in math italics;\& typesets in
boldface.

A special debugging mode is available in which
TEX will simply typeset all the mini-output at the end
of each section, instead of making actual mini-indexes.
This makes it easy for users to check thatCTWILL is
in fact producing the information they really want. No-
tice that mistakes inCTWILL’s output need not neces-
sarily lead to mistakes in mini-indexes; for example,
a spurious reference in§6 to an identifier defined in§5
will not appear in a mini-index for a spread that includes
§5. It is best to make sure thatCTWILL’s output is correct
before looking at actual mini-indexes. Then unpleasant
surprises won’t occur when sections of the program are
moved from one spread to another.

When TEX is finally asked to typeset the real mini-
indexes, however, it has plenty of work to do. That’s
when the fun begins. TEX’s main task, after format-
ting the commentary andC code of each section, is to
figure out whether the current section fits into the cur-
rent spread, and (if it does) to update the mini-index by
merging together all entries for that spread.

Consider, for example, what happens when TEX
typesets§10 of HAM . This spread begins with§8, and
TEX has already determined that§8 and§9 will fit to-
gether in a single column. After typesetting the body
of §10, TEX looks at the mini-index entries. If any of
them refer to§8 or§9, TEX will tentatively ignore them,
because those sections are already part of the current
spread. (In this case that situation doesn’t arise; but
when TEX processed§7, it did suppress entries forvert
andark , since they referred to§6.) TEX also tentatively
discards mini-index entries that match other entries al-
ready scheduled for the current spread. (In this case,
everything is discarded except the entries foradvance
andark ; the others—next , t, not taken , v, anda—are
duplicates of entries in the mini-output of§8 or §9.)
Finally, TEX tentatively discards previously scheduled
entries that refer to the current section. (In this case
nothing happens, because no entries from§8 or§9 refer
to §10.)

After this calculation, TEX knows the numbern of
mini-index entries that would be needed if§10 were to
join the spread with§8 and§9. TEX divides n by the
number of columns in the mini-index (here 2, but 3 in
[3] and [7]), multiplies by the distance between mini-
baselines (here 9 points), and adds the result to the total
height of the typeset text for the current spread (here the
height of§8 + §9 + §10). With a few minor refinements
for spacing between sections and for the ruled line that
separates the mini-index from the rest of the text, TEX

10



is able to estimate the total space requirement. In our
example, everything fits in a single column, so TEX ap-
pends§10 to the spread containing§8 and§9. Then,
after§11 has been processed in the same fashion, TEX
sees that there isn’t room for§§8–11 all together; so it
decides to begin a new spread with§11.

The processing just described is not built in to TEX,
of course. It is all under the control of a set of macros
calledctwimac.tex [8]. The first thingCTWILL tells
TEX is to input those macros.

TEX was designed for typesetting, not for program-
ming; so it is at best “weird” when considered as a
programming language. But the job of mini-indexing
does turn out to be programmable. The full details of
ctwimac are too complex to exhibit here, but TEX hack-
ers will appreciate some of the less obvious ideas that
are used. (Non-TEXnicians, please skip the rest of this
long paragraph.) TEX reads the mini-outputs ofCTWILL
twice, with different definitions of\[ and\] each time.
Suppose we are processing sections, and suppose that
the current spread begins with sectionr. Then TEX’s
token registers 200, 201,. . . , 219 contain all mini-index
entries from sectionsr, r + 1, . . . , s − 1 for identifiers
defined respectively in sectionsr, r + 1, . . . , r + 19 of
the CWEB program. (We need not keep separate tables
for more than 20 consecutive sections starting with the
baser of the current spread, because no spread can con-
tain more than 20 sections.) Token register 199 contains,
similarly, entries that refer to sections precedingr, and
token register 220 contains entries that refer to sections
r + 20 and higher. Token register 221 contains entries
for identifiers defined in other programs. Count register
k contains the number of entries in token registerk, for
199≤ k ≤ 221. When count registerk equalsj, the
actual content of token registerk is a sequence of 2j
tokens,

\lmda\cs1\lmda\cs2 . . . \lmda\csj

where each\csi is a control sequence defined via
\csname...\endcsname that uniquely characterizes a
mini-index entry. TEX can tell if a new mini-index en-
try agrees with another already in the current spread by
simply testing if the corresponding control sequence is
defined. The replacement text for\csi is the associated
mini-index entry, while the definition of\lmda is

\def\lmda#1{#1\global\let#1\relax}

Therefore when TEX “executes” the contents of a token
register, it typesets all the associated mini-index entries
and undefines all the associated control sequences. Al-
ternatively, we can say

\def\lmda#1{\global\let#1\relax}
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if we merely want to erase all entries represented in a
token register. At the end of a spread containingp sec-
tions, we generate the mini-index by executing token
registers 199 and 200+p thru 221 using the former defi-
nition of\lmda, and we also execute token registers 200
thru 200 +p − 1 using the latter definition. Everything
works like magic.

A bug in the original TEX macros forTWILL led
to an embarrassing error in the first (1986) printings
of [3] and [4]: Control sequences in token registers
corresponding to sections of the current spread were
not erased; in other words, the contents of those token
registers were simply discarded, not executed with the
second definition of\lmda. The effect was to make TEX
think that certain control sequences were still defined,
hence the macros would think that the mini-index entries
were still present; such entries were therefore omitted
by mistake. Only about 3% of the entries were actually
affected, so this error was not outrageous enough to be
noticed until after the books were printed and people
started to read them. The only bright spot in this part of
the story was the fact that it proved how effective mini-
indexes are: The missing entries were sorely missed,
because their presence would have been really helpful.

The longest-fit method by whichCTWILL’s TEX
macros allocate sections to pages tends to minimize the
total number of pages, but this is not guaranteed. For
example, it’s possible to imagine unusual scenarios in
which sections§100 and§101, say, do not fit on a sin-
gle spread, while the three sections§100, §101, §102
actually do fit. This might happen if§100 and§101
have lots of references to variables declared in§102.
Similarly, we might be able to fit§100 with§101 if §99
had been held over from the previous spread. But such
situations are extremely unlikely, and there is no reason
to worry about them. The one-spread-at-a-time strat-
egy adopted byctwimac is optimum, spacewise, for all
practical purposes.

On the other hand, experience shows that unfortu-
nate page breaks between spreads do sometimes occur
unless the user does a bit more fine tuning. For example,
suppose the text of§7 in HAM had been one line longer.
Then§7 would not have fit with§6, and we would have
been left with a spread containing just tiny little§6 and
lots of wasted white space. It would look awful. And
in fact, that’s the reason the three statements

t~ark = Λ; v = y; gotoadvance ;

now appear on a single line of the program instead of on
three separate lines: A bad break between spreads was
avoided by manually grouping those statements, using
CWEB’s @+ command.

One further problem needs to be addressed—the
mini-indexes must be sorted alphabetically. TEX is es-
sential for determining the breaks between spreads (and
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consequently for determining the actual contents of the
mini-indexes), but TEX is not a good vehicle for sort-
ing. The solution to this problem is to run the output
of CTWILL twice through TEX, interposing a sorting
program between the two runs. When TEX processes
ham.tex, the macros ofctwimac tell it to look first for
a file calledham.sref. If no such file is present, a file
calledham.ref will be written, containing all the (un-
sorted) mini-index entries for each spread. TEX will
also typeset the pages as usual, with all mini-indexes
in their proper places but unsorted; the user can there-
fore make adjustments to fix bad page breaks, if neces-
sary. Once the page breaks are satisfactory, a separate
program calledREFSORTis invoked; REFSORTconverts
ham.ref into a sorted version,ham.sref. Then when
TEX seesham.sref, it can use the sorted data to make
the glorious final copy.

For example, the fileham.ref looks like this:

!1
+ \]{GB\_SAVE}4 \\{restore\_graph} \&{Graph}

$*(\,)$
+ \]{GB\_GRAPH}9 \|{u} \&{util}

...
+ \]{GB\_GRAPH}8 \|{I} \&{long}
!2

...
+ \]"<stdio.h>" \\{printf} \&{int} (\,)

And the fileham.sref looks like this:

\]{GB\_GRAPH}10 \&{Arc} =\&{struct}
...

\]{GB\_GRAPH}9 \|{u} \&{util}
\]{GB\_GRAPH}9 \&{Vertex} =\&{struct}
\donewithpage1
\[2 \|{a} \&{register} \&{Arc} $*$

...
\]{GB\_GRAPH}20 \\{vertices} \&{Vertex} $*$
\donewithpage5

Each file contains one line for each mini-index entry
and one line to mark the beginning (inham.ref) or end
(in ham.sref) of each spread.

5. Conclusions

Although CTWILL is not fully automatic, it dramati-
cally improves the readability of large collections of
programs. Therefore an author who has spent a year
writing programs for publication won’t mind spending
an additional week improving the indexes. Indeed, a
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little extra time spent on indexing generally leads to
significant improvements in the text of any book that is
being indexed by its author, who has a chance to see the
book in a new light.

Some manual intervention is unavoidable, because
a computer cannot know the proper reference for ev-
ery identifier that appears in program comments. But
experience withCTWILL’s change file mechanism indi-
cates that correct mini-indexes for large and complex
programs can be obtained at the rate of about 100 book
pages per day. For example, the construction of change
files for the 460 pages of programs in [7] took 5 days,
during which timeCTWILL was itself being debugged
and refined.

Mini-indexes are wonderful additions to printed
books, but we can expect hypertext-like objects to re-
place books in the long run. It’s easy to imagine a system
for viewing CWEB programs in which you can find the
meaning of any identifier just by clicking on it. Future
systems will perhaps present “fish-eye” views of pro-
grams, allowing easy navigation through complicated
webs of code. (See [1] for some steps in that direction.)

Such future systems will, however, confront the
same issues that are faced byCTWILL as it constructs
mini-indexes today. An author who wants to create use-
ful program hypertexts for others to read will want to
give hints about the significance of identifiers whose
roles are impossible or difficult to deduce mechanically.
Some of the lessons taught byCTWILL will therefore
most likely be relevant to everyone who tries to design
literate programming systems that replace books as we
now know them.

References

1. Brown M, Czejdo B (1990) A hypertext for liter-
ate programming. In: Lecture Notes in Computer
Science, Vol. 468, 250–259

2. Knuth DE (1984) Literate programming. In: The
Computer Journal, Vol. 27, No. 2, 97–111

3. Knuth DE (1986) Computers & Typesetting,
Vol. B, TEX: The Program. Addison-Wesley,
Reading, Massachusetts

4. Knuth DE (1986) Computers & Typesetting,
Vol. D, METAFONT : The Program. Addison-Wes-
ley, Reading, Massachusetts

5. Knuth DE (1992) Literate Programming. CSLI
Lecture Notes, No. 27, distributed by the Univer-
sity of Chicago Press, Chicago

6. Knuth DE, Levy S (1990)CWEB User Manual:
The CWEB System of Structured Documentation.
Computer Science Department ReportSTAN-CS-
90-1336, Stanford University, Stanford, Califor-
nia; revised version available on the Internet via

14



anonymous ftp fromlabrea.stanford.edu in
file ~ftp/pub/cweb/cwebman.tex

7. Knuth DE (1993) The Stanford GraphBase: A Plat-
form for Combinatorial Computing. ACM Press,
New York

8. Knuth DE (1993)CTWILL. Available via anony-
mous ftp fromlabrea.stanford.edu in directory
~ftp/pub/ctwill

9. Stanford University Computer Science Department
(1993) The Stanford GraphBase. Available via
anonymous ftp fromlabrea.stanford.edu in di-
rectory~ftp/pub/sgb

10. Pharr C (1930) Virgil’s Æneid, Books I–VI. D. C.
Heath, Boston

11. Weening JS (1983) Personal communication. Pre-
served in the archives of the TEX project in Stan-
ford University Library’s Department of Special
Collections, SC 97, series II, box 18, folder 7.6

15


