
Minimalist Documentation of Frameworks
Kasper Østerbye

Norwegian Computing Center &
Department of Computer Science

Aalborg University
Kasper.Osterbye@nr.no

Abstract
Programmers are like most other humans - they prefer to act rather than read. In the
context of application frameworks, this means that a programmer is more inclined to
“try it out” than to read its manual. Rather than trying to instruct programmers to
stop this all too human habit, this paper examine ways in which documentation can
be organized so that a programmer is supported in learning through doing rather
than learning through reading. The programmer is most open to study documentation
during a breakdown of his understanding of the framework, and must in that case be
led to the appropriate pieces of documentation. In the context of a concrete frame-
work, the paper discusses how reference material, tutorial and run-time error mes-
sages and warnings are combined into a hypertext-based documentation of frame-
works.

Keywords: online documentation, frameworks, software documentation, and
hypertext.

The theme of the workshop is “Experiences in Object-Oriented Reengineering” with one of
the sub-themes being documentation. As will be clear in the paper, reengineering was not
in my mind when I originally wrote this. However, I believe the notion of tying code and
documentation together with runtime errors is also an interesting idea to pursue in the
situation where a legacy system is reengineered to become a framework. New documenta-
tion must be written at that point in time, and the code must be made more robust. The
points in the code in which to improve robustness are the same places where I tie run-time
checks to documentation.

1 Introduction
In The Nurnberg Funnel, John Carroll presents what he call the “paradox of sense-
making”:

To learn, they (the users) must interact meaningfully with the system, but to interact
with the system, they must first learn. [Carroll, 1990](page. 77).

Traditionally, this paradox has been attacked by ignoring it, and putting learning (read-
ing the manual) before interaction. This seems like a logical choice - we have a long tra-
dition of learning through studying. However, Carroll gives plenty of evidence that given a
choice, people prefer to interact before they learn.

In this paper, we will examine how framework documentation can be organized in a
manner that will allow the programmer to be active within minutes of starting with the
framework and its documentation. In addition, we will discuss how to apply Carroll’s
ideas of minimalist instruction in the context of framework documentation.

The main points in our approach are:

• Example based tutorial based on full running examples.

• A fairly traditional reference manual

• Extensive run-time checks in the framework, as a designer you must assume all rules
will be broken

• Hypertext linking between reference manual and examples, and from runtime errors
to manual and examples.

The main thesis behind this work is that breakdowns are an opportunity where the pro-
grammer is prepared to switch from doing to learning. This has led us to propose a way
out of the sense making paradox by integrating runtime error checks and documentation,
providing a concrete and goal directed entry into the documentation.

Software documentation can be divided into two broad categories, user documentation
and internal documentation. Here internal documentation is taken to mean all kinds of
documentation that is needed to maintain and further develop the software, whereas
end-user documentation concentrates on documenting how to use the software. User
documentation often consists of reference documentation as well as some kind of “intro-
duction” material, e.g. tutorials, guidelines, cookbooks or pattern languages. The prime
purpose of internal documentation is to capture the intention and solutions (why and
how) of a large piece of software.

The focus in this paper is on a special kind of end-user documentation, documentation of
object-oriented frameworks. This should not be confused with internal documentation
although the user in the case of frameworks is a programmer. Programmers who are us-
ing a framework need user documentation for that framework. This paper addresses how
to produce and organize such framework documentation.

This paper is organized as follows. Section 2 discusses our concrete framework, and its
documentation is organized. In section 3, we discuss tools and techniques to make it
easier to produce this kind of documentation. We then look on how we have attempted to
use Carroll’s ideas in our documentation, and we relate this style of documentation to
framework documentation using pattern languages in section 4.

2 The BetaSIM documentation
The BetaSIM framework [Østerbye and Kreutzer, 1996] is a framework for discrete event
simulation in the BETA programming language [Madsen et al., 1993]. The BetaSIM frame-
work differs from other such frameworks in that it provides a higher level of abstraction
with regard to synchronization than is normally found in discrete event simulation
frameworks [Kreutzer, 1996].

The main abstraction provided by the framework is the concept of an entity, which is
used to model real-world entities with their own life cycle. The framework provides
classes that realize resources with exclusive access, and most prominently, it provides
servers that allow rendezvous style synchronization, where a client and a server are syn-
chronized during calls to the server. The server abstraction also allows interrupts, and
servers can be grouped to allow several servers to cooperate in providing a common set of
services.

The documentation of the BetaSIM framework is online only (through WWW), and con-
sists of two different “documents”, the tutorial and the reference manual. The tutorial is
six pages, which through annotated examples take you through the main aspects of the
framework, and the reference manual is a rather traditional description of all classes and
methods of the framework. The rest of this section addresses these two documents in
detail, and concludes with how run-time checks are integrated into the overall docu-
mentation of the framework.

2.1 Tutorial
The main point of Carroll’s work is that users, in this case programmers do not want to
read documentation. The BetaSIM tutorial starts out with an example that can be com-
piled and run, and indicates what can be changed without the program breaking down.

Only then does the tutorial spend some time explaining what the program does. To keep
the tutorial terse, it does not give the exact meaning of all aspects of the framework, but
focuses on overall effects. This is deliberate - to support a more detailed understanding,

all usage of framework classes and methods are linked to the reference manual. This
makes it easy to seek more information, or not to do so if one understands the program
as it is.

As an example, consider the following extract from the tutorial:

The Gate is an EntitySource. This means that it will produce other entities.

<Gate declaration>=
Gate : @|EntitySource
 (# EntityType :: Dignitary;
 productionFrequency::Exponential
 (# init::(# do 5 -> mean #) #);
 #);

We specify that the EntityType to be produced is Dignitaries.
The production frequency is exponential with mean 5.

Here a component called a “Gate” is discussed. It is briefly said what it does. The impor-
tant thing, that it is an EntitySource, is stressed by making links to the reference manual
both in the code and in the running text. In a typical web browser, such links will stand
out as well. In order to guide the user to the important aspects first, there are no links
from say init or EntityType. To find out what these are, the user must follow the link to
EntitySource, and then go on from there.

The tutorial is build as a number of increasingly complex variations on the same simula-
tion scenario. That way we avoid having to spend time introducing the scenarios, and can
focus on the modeling issues involved.

2.2 Reference manual
A reference manual must satisfy several important criteria. It must be complete, correct,
up to date, and not the least, it must be well indexed.

The reference manual for BetaSIM is organized with one web page per class and has
separate entries for each method and local class (a BETA specific construct).

WaitQueue

Class
Origin:
 BetaSim
Super:
 NamedObject

Queue for suspending entities for later resumption.

While it is safe to use this queue directly at the simulation level, it is often
more preferable to use a resource than a Queue.

Attributes

init
 Further bound virtual Procedure. Inner: Voluntary HOOK.
 Initialize Queue
empty
 Procedure. Super: BooleanValue. Exit: Boolean.
 returns true if queue is empty
wait

 Procedure.
 Insert executing entity in queue.
start
 Procedure.
 Starts first element in the queue.

The above page illustrates the documentation page for a class named WaitQueue. In
BETA, there is no syntactical difference between a class and a method, both are de-
scribed using a construct called a pattern. One of the important aspects of the docu-
mentation is to clarify the intended usage of a given pattern, as class, procedure, process,
abstract class, etc. This is the second piece of information given.

Besides this classification, an entry will describe the input and output values for meth-
ods, and for virtual and abstract procedures1, a description of their intended specializa-
tion is given. Because WaitQueue is a class, such information is not given here, but when
available it will be in brief form together with the origin (link to outer block in the block
structure), and super class information.

All patterns have a one-line description, and many have a more elaborate description. If
the pattern (class, method, or process) has local public patterns, these are listed in a
short form as well. Each local pattern (or public variable) are listed with an abbreviated
description, listing the “tabular” facts, classification, parameters, super etc, and the one
line description. If the local pattern has local attributes it self, or more extensive docu-
mentation, it will be described on a page by itself, which is why wait and start are
linked, and init and empty are not. Under init, the phrase “Further bound virtual Proce-
dure” is underlined to indicate a hyperlink. As init is a virtual procedure, there might be
information relating to the semantics in the init procedure of the super pattern, which is
then made accessible through this link.

Besides linking to other pages to give the inheritance structure, links are also provided to
allow navigation in the block structure. Some classes have other classes declared local to
them, and this is reflected in providing a short description, and a link to a full-page de-
scription.

The index contains all public identifiers2. If the same identifier is used in several classes,
it is listed several times, and the class name is appended. E.g., the identifier Finish is
used for three different procedures:

Finish; .BetaSIM
Finish; .BetaSIM.Entity
Finish; .BetaSIM.EntitySource

The first occurrence states that Finish is a procedure available in the framework itself,
and the next two that Finish is declared in Entity and EntitySource as well. The entries in
the index are hypertext links to the appropriate places in the reference manual.

2.3 Runtime errors
The main observation behind the paradox of sense making is that people prefer to act
rather than to study. In the context of frameworks, this means that programmers prefer
to “try things out” rather than reading a manual. This will most likely lead the program-
mers using a framework to violate some of its design decisions and assumptions. In the
BetaSIM framework, this situation has been seen as an opportunity to instruct the pro-
grammer as to what has gone wrong, and to suggest possible solutions.

This is done by performing extensive error checking in the framework. Two levels of error
message are given: a terse description of the problem, and an elaboration of the error,
together with a list of possible solutions and common misunderstandings.

1 Because procedures, like classes, are described using patterns, procedures can be spe-
cializes as well. This is a BETA only. See [Østerbye and Kreutzer, 1996] for how that is used
in the BetaSIM framework
2 BETA has no concept of public or private modifiers, encapsulation is handled using
other means. In the documentation, public identifiers refer to those documented.

The solutions and explanations are kept short, but with links to the reference manual
and to the tutorial where possible.

As an example, let us follow the error in the next piece of BETA program written using
the BetaSIM framework.

Friend: Entity
(#
do cycle(#

do Family.accept;
Mingle.HOLD

#)
#)

It is beyond the scope of this paper to explain the syntax of BETA. However, the “(#” and
“#)” can be read as “begin” and “end”. “do” is a BETA keyword.

The example is an erroneous declaration of a Friend entity. A friend is an element in a
simulation scenario of a garden party held by the royal family. A number of dignitaries
and personal friends compete for the attention of the royal. The error is that the Friend
tries to accept. The family is the server here, and friends are clients, only the members of
the royal family will be able to accept requests to either chat or shake hand.

When the program is run, it will produce an error message stating:

Simulation error - see file “BetaSIM-error.html”.

When the “BetaSIM-error.html” is loaded into a WWW browser, the user will see the mes-
sage below.

BetaSIM-error

Friend-1 tried to “accept” a call for Family.

Friend-1 is not a server, and only servers are allowed to accept calls.

More information

The error message is specific in that it uses names from the application rather than the
framework. It says that a friend — here friend-1 — has tried to accept a call for Family.
Emphasis has been given on providing concrete error messages, that is, we use the sce-
nario terms Friend and Family as opposed to entity and server, which are framework
level concepts.

The “More information” link leads to the following page:

Accept from non-server

Accept is part of rendezvous communication. The Bored Queen shows an example
of proper usage. If you got this error, it was because you tried to:

• Use remote access, as in “SomeServer.accept” which is not legal under any cir-
cumstances.

• You have declared an entity local to a server, and that entity does an “accept”.
That entity should most likely have been declared a local server. The Queens
family shows an example of local servers.

The problem is shortly described, and two common sources for the error is mentioned,
where the first one corresponds to our case. From this page, there are links to the tuto-
rial materiel as well as to the reference-manual entry for accept.

Both the brief tutorial and the runtime error messages encourage the programmer take
control of the learning process. The tutorial by being example driven, and it is highly un-

likely that the example will be directly applicable to any another scenario, but it does
show one way to use the framework. The error messages are concrete and at the level of
the scenario program, with terse error messages and links to only those part of the
documentation that the programmer is likely to have misunderstood.

3 Tools and techniques
This section will briefly discuss the techniques used to produce the documentation for
BetaSIM. The section does not contribute at the scientific level, but provides some insight
into practical and technical issues in producing this kind of documentation.

One issue to consider when producing documentation for any software artifact, is how to
keep the documentation and the artifact consistent. Donald Knuth has proposed literate
programming [Knuth, 1984] as a way to solve this problem. From the maintenance point if
view, literate programming is interesting because it builds on the proximity-principle,
that is, documentation and code are written together in a single file, an documentation is
kept textually together with the aspect is documents. Either a literate programming tool
can extract a program or produce a document containing both source code and docu-
mentation nicely typeset. Documentation extractors that extract documentation extracted
from comments in the source code itself to produce reference manuals is an other kind of
documentation tool that follows the proximity-principle. Examples of this include the
Eiffel short [Meyer, 1988](page 205 ff), JaveDoc [Friendly, 1995], and the George system
(See URL 1). Both literate programming and document extraction has been used in the
development of the BetaSIM documentation.

The reference manual is extracted from the source code of the framework by a document
extractor we have developed for the BETA programming language. Like most other docu-
ment extractors, it is able to extract documentation from special comments, and will ex-
tract some information from the framework itself, to reduce redundant entry of such
things as class and method names and super class relation ships.

To produce the tutorial we have used Norman Ramsey’s literate programming tool noweb
[Ramsey, 1994]. This tool is particularly well suited for our purpose as it is programming
language independent and can produce HTML output.

In using noweb to produce the tutorial, we have encountered two problems:

• The tutorial is made up by a single scenario, which is elaborated into an increasingly
complicated synchronization scenario. We would therefore like to be able to extract
several different programs from the tutorial, without having to state each in full. We
have found no good method of doing this in noweb, and have in the tutorial a full ex-
ample program for each variant. This is not satisfactory, and we believe that a spe-
cialized literate tool is necessary to produce tutorials and other example based in-
struction material.

• To allow links from the example code to the reference manual, it is necessary to place
HTML anchors inlined in the BETA source code which makes the BETA compiler
choke quite allot. To address this problem, we do not use HTML anchors directly, but
uses macros which are expanded to anchors when documentation is generated, and
to empty strings when BETA source code is generated.

Birtwistle has produced one of the first example based introduction to an object oriented
discrete event simulation framework [Birtwistle, 1979]. In his book, variations are used a
lot as well, but no attempt at using literate programming is done, as literate program-
ming was not developed at the time.

It is important to use identifier names from the application program when reporting er-
rors. We have here exploited a special BETA idiosyncrasy, which enables us to find the
application name of objects and procedure invocations so we do not need to resort to us-
ing framework terms. Notice that if no error checks were done, error messages would
neither be in application nor framework terms, but in terms of the underlying imple-
mentation language BETA.

The framework does substantial amounts of runtime checking, to capture situations that
should not arise in a debugged simulation program. For reasons of efficiency, it must be
possible to disable such checking later in the development process.

4 Discussion and related work
This paper has focused on the documentation the external interface for an object-
oriented framework. According to [Sametinger and Stritzinger, 1993] such documentation
must have four parts --- overview and interface each addressing both static and dynamic
aspects. However, their distinction between documentation of static and dynamic is un-
convincing. The paper calls the dynamic interface description “the task interface descrip-
tion”, and the accompanying discussion focuses on cookbooks as a documentation tech-
nique. This leads us to believe that the fundamental distinction is not between static and
dynamic aspects, but between Aristotelian and prototypical descriptions.

At a very fundamental level, there are two schools for how to describe concepts, e.g. an
elephant. Elephants can be defined as being huge, with thick legs, a trunk, big husks
and large ears. Alternatively, you can define elephants as being all those that are similar
to Dumbo. Defining a concept by its properties is sometimes called the Aristotelian per-
spective and defining a concept through examples is called the prototypical perspective.

In relation to documentation of frameworks, we believe that a framework must be docu-
mented from both perspectives. The Aristotelian perspective will result in a reference
manual, where all properties of the framework are documented. The prototypical per-
spective gives examples of what concrete examples look like, i.e. show at least one whole
elephant, or how to go about solving concrete problems, i.e. how to understand your par-
ticular problem as a trunk or a leg. The reference manual for BetaSIM satisfies the Aris-
totelian perspective, while our example based tutorial is prototypical. The runtime error
messages relate the users example to both the reference manual and the tutorial, en-
couraging the programmer to investigate both aspects to seek a solution.

The drawing editor framework HotDraw is documented using a pattern language in
[Johnson, 1992]. Pattern languages focus on a set of problems usually encountered during
a development in some particular area, in this case Smalltalk programs that uses a
drawing editor. The pattern language starts with general problems and point out solu-
tions using the framework and then states what are the typical issues to be addressed
once this problem has been solved. Typically, pattern languages do not include full ex-
amples, though they might include example fragments. Compared to our approach, it is
worth noticing that neither our tutorial nor Johnson’s pattern languages are meant to
stand by themselves. Where we depend on the reference manual, Johnson depend on the
programmer having access to the source code of the HotDraw framework, allowing docu-
mentation of the classes and methods that make up the framework to be browsed on-
line. Where we have chosen an example-based approach to providing prototypical docu-
mentation, Johnson has chosen pattern languages. Pattern languages are broader than
an example based documentation, and can cover more aspects. However, this makes the
pattern language harder to grasp if one does not have a good overall understanding first.

Continuing with the elephant metaphor - if we have a “build your own animal kit”, with
bodies, legs, etc. An example-based tutorial might say, here is an elephant, and this is
how it is made. The pattern language will say that all animals have a body, here are the
different kinds of body, and we have to choose one. Then proceed with how to put legs
on a body, etc. The example-based approach is good if you have no clue as to what an
animal is in the first place, but seeing an elephant might not help you build a giraffe.

To address this issue, we have included run-time errors as part of the documentation. If
you build an animal with tail at both ends, you get an error message that tells you why
that will not work.

An interesting aspect of documentation that has become more popular with the spread-
ing of the Internet is documentation through FAQ (Frequently asked questions). Almost
all aspects of programming now have a FAQ available somewhere on the Internet. The
typical FAQ are organized as a question answer pair, with the question being a real

problem faced by some person, and the answer the actual piece of information that
helped to solve the problem. As there are more and more problems arising, the FAQ can
evolve from shorter FAQ like that of Grant’s CGI Framework (See URL 2) into rather large
documents like the FAQ for visual basic (See URL 3).

One fundamental issue is that it can be very hard to predict what documentation is
needed. It is all too easy to over-document a framework, writing lots and lots of docu-
mentation nobody will read. From a practical point of view, it is not possible to write a
good FAQ before the framework has been used by real users. The same is true for a pat-
tern language approach, if the patterns are to be fully useful, they must be based on ex-
perience of what problems arises in a real work situation. It is easier to develop an exam-
ple based documentation, but it might fail because it off target. However, an example-
based documentation can be devised based on the designers feeling for what the frame-
work is supposed to do. As real users start to use the system, the example-based docu-
mentation can be supplemented by a FAQ. The use of runtime checks in BetaSIM can be
seen as an attempt to make a build-in basic FAQ.

In his book on object-oriented software construction [Meyer, 1988], Bertrand Meyer makes
a strong case for the usage of contracts in the form of pre- and post-conditions and class
invariants. His argument is that proper usage of these semantic mechanisms will prevent
extensive tests to see if parameters are as expected. If you develop a real valued square
root function, is it the function or the user of the function that must check to ensure that
the argument is not negative? If both do, the program becomes inefficient.

From a learning perspective, however, it is a good idea to have a way to inform the novice
programmer that the framework will not do any checking for negative arguments once
runtime checking is turned off.

In Carroll’s work on minimalist documentation [Carroll, 1990], he present several ideas
that we have adopted or which are similar to what we have done. The similarities include
the focus on error recovery, getting started fast, encouragement of self-exploration,
training on real tasks, and on attempting to coordinate between messages and training.
Therefore, it is our feeling that there is indeed things that can carry over from his work,
although most of it focuses on documenting an application where we are focussing on
documenting a framework. Some differences do arise though. In our framework we have
not been able to divide the functions into novice and advanced, which is a prerequisite to
using the blocking technique Carroll discuss in connection with the “training wheel”
system. In the BetaSIM framework, the users must suffer their errors before the frame-
work can provide any help. Despite Carroll’s recommendations, the error-checking mes-
sages do try to be intelligent, in that they include common reasons for the error to occur.
Carroll emphasizes the technique of exploiting prior knowledge. This has most likely been
taken a step to far in our documentation, in that we expect the user to be both familiar
with the programming language (BETA) and with discrete event simulation. Perhaps it is
a property of all frameworks, that the documentation will assume either knowledge of the
programming language, or of the application domain of the framework, but asking both is
most likely wrong.

Finally, the usage of a framework is a very open ended task, and in Simulation, the diffi-
cult aspect is often to model rather than to program. Though we have not discussed this
aspect in this paper, key parts of the reference manual have links to a set of discrete
event simulation patterns which specifically addresses the issues of modeling for simula-
tion [Kreutzer, 1996]. In [Carroll, 1994] Carroll discusses the usage of end user scenarios as
a means for guiding design. As mentioned in the above discussion on using FAQ’s for
documentation, one particular documentation problem is to anticipate what the users
will find difficult. The usage of scenarios can help to point out what is often done, and
should therefore be easy to do. We see the example-based tutorial as going one step fur-
ther and actually using scenarios/examples as part of the documentation.

The paper [Østerbye, 1995] addressed how hypertext could be used for internal documen-
tation, and showed how hypertext was an especially useful tool in documenting solutions
that involved more than one class. The main difference between that work, and the work
reported here is that the present work addresses issues relating to user documentation of

frameworks, where the [Østerbye, 1995] paper focussed on using hypertext for internal
documentation.

5 Conclusion and Further work
The main outstanding issue is to perform a validation test on this approach to docu-
mentation, in particular how runtime errors are perceived and used by programmers. We
have argued that the documentation follows almost all the principles of minimalist in-
struction, a principle which reportedly does improve learning time as well as under-
standing [Carroll, 1990].

Our documentation has been created using a language specific tool for the reference
manual part, and a general literate programming tool for the tutorial part [Ramsey, 1994].
The BETA language [Madsen et al., 1993] is hardly mainstream. Can the approach be gen-
eralized to other languages and tools. As already said, the technique of extracting refer-
ence manual from the source code is well known. To fully use literate programming for
example based tutorials, a specialized literate tool is needed that has better support for
variations. In summary, there is nothing particularly specific about the way our docu-
mentation we have created that will make it impossible to do in other languages. The ref-
erence manual layout and structure is specific to the individual programming language,
but that is all.

6 References
[Birtwistle, 1979] G. M. Birtwistle. A System for Discrete Event Modeling on Simula. Macmillian

Press, 1979.

[Carroll, 1990] J. M. Carroll. The Nurnberg Funnel: Designing Minimalist Instruction for Practical
Computer Skill. The MIT Press, 1990.

[Carroll, 1994] J. M. Carroll. Making Use a design representation. Communications of the ACM,
37(12):29-35, December 1994.

[Friendly, 1995] Lisa Friendly. The design of distributed hyperlinked programming documentation.
In International Workshop on Hypermedia Design, 1995, page 159, June 1995. Proceedings to
be republished summer 95 by Springer Verlag.

[Johnson, 1992] R. E. Johnson. Documenting frameworks using patterns. In OOPSLA'92 Proceed-
ings, 1992.

[Knuth, 1984] Donald E. Knuth. Literate programming. The Computer Journal, 27(2):97-111, May
1984.

[Kreutzer and Østerbye, 1996] Wolfgang Kreutzer and Kasper Østerbye. BetaSIM - a framework for
discrete event modeling & simulation. Under review.

[Kreutzer, 1996] W. Kreutzer. Foundations and patterns in discrete event modeling and simulation.
In Proceedings of PLOP workshop, September 1996.

[Madsen et al., 1993] Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Nygaard. Object
Oriented Programming in the BETA Programming Language. Addison Wesley, 1993.

[Meyer, 1988] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall International,
Inc., 1988.

[Ramsey, 1994] Norman Ramsey. Literate programming simplified. IEEE Software, 11(5):97-105,
1994.

[Sametinger and Stritzinger, 1993] J. Sametinger and A. Stritzinger. A documentation scheme for
object-oriented software systems. OOPS Messenger, 4(3):6-17, July 1993.

[Østerbye, 1995] Kasper Østerbye. Literate Smalltalk Programming Using Hypertext. IEEE Transac-
tions on software engineering 21(2):138-145, February 1995.

[Østerbye and Kreutzer, 1996] Kasper Østerbye and Wolfgang Kreutzer. Synchronization abstraction
in the BETA programming language. Under review.

7 Referenced URLs
1. George - Automatic Source Code Documentation

http://www.k2.co.uk/products/George/George.html
2. Grant's CGI Framework

http://arpp1.carleton.ca/cgi/framework/faq.html
3. Visual Basic

http://puta.gurunet.org/vb/

