
The Newton Method as a Short WEB Example

August 31, 1996
15:22

Abstract: This is written in John Krommes’ FWEB but with the output higher level language being C.
FWEB is the most supported of the dialects of literate programming.

This is an expository note about the WEB style of Literate Programming. We do not purport this to be
the best way of coding a solution of this problem. Some constructs are used to illustrate concepts of literate
programming.

Table of Contents

Contents

1 The Newton Method 1

6 A Newton method program 2
13 Convergence Strategies . 4

19 Index 6

i

§1–§4 The Newton Method as a Short WEB Example The Newton Method 1

1. The Newton Method

The Newton method is based on the Taylor’s Series:

f(x) =
+∞
∑

n=0

f (n)(a)
n!

(x− a)n = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + . . . +

f (n)(a)
n!

(x− a)n + . . .

In order to use the Newton method a number of conditions must be met: f(x) must be analytic and the
second derivative of f(x) must be monotone in the neighborhood of x. If these conditions are met, then the
Newton method will converge quadratically and monotonically (i.e. with each iteration the number of
significant digits will double).

2. This program is written to run on the CRAY, standard unix systems, and standard DOS systems
producing similar results. We will normally use the gcc compiler on SUN computers and xlc on RS-6000’s.

3. Precision dependence is controlled by the environment variable CRAY . It should be straightforward
to accomodate other environments, such as VMS.

The tangle command line to produce CRAY code is:
tangle Newton -m"CRAY"
The most significant difference we are concerned with is the use of 64-bit arithmetic for the floating point
numbers. We wish to use the same precision on both systems. We realize that there is a slight difference in
the two but it is not as significant as those between IEEE floating point and IBM 360’s.

4. Charles Karney of Princeton University furnished macros for machine dependencies as part of a large
body of code released with John Krommes’ FWEB system. The default is the IEEE floating point system
that is typical of unix and DOS systems.

"NewtonC.c" 4 ≡
@#if defined (CRAY)

@m CRAY 1
@#else

@m CRAY 0
@#endif

§5–§7 The Newton Method as a Short WEB Example The Newton Method 2

5. We introduce another macro to make it easy to run the tests with 64-bit precision in all the
environments. The Cray uses 64-bit precision for real variables by default. The other machines will use
this when real ∗8 is specified. However, the actual storage will may vary among machines.

Another macro is used to convert floating point constants by appending the “L” exponent on 32-bit
machines.

"NewtonC.c" 5 ≡
@f floating float

@#if CRAY
@m floating float
@m const (x) x

@#else
@m floating double
@m const (x) x##L

@#endif

6. A Newton method program

This program will use the Newton method to solve the equation cos(x) = 0. In C we have to #include
some files to get out standard input-output and also the mathematics functions. Later we must remember
to include the -lm switch for loading the library.

"NewtonC.c" 6 ≡

#include <stdio.h>
#include <math.h>

main () {

〈Declarations 7 〉

〈 Initialize Variables 9 〉

〈 Iterate on the answer 10 〉

〈Print Results 17 〉

}

7. We declare the following variables: x 0 will represent xk from the Taylor Series, x will correspond to
xk+1, and delta x will be calculated as the difference between xk+1 and xk. These will be defined as
floating which will be translated to the real type in the C source code for the machine specified in the
FTANGLE command line.

〈Declarations 7 〉 ≡
floating x 0 , x, delta x ;

See also sections 8 and 13.

This code is used in section 6.

§8–§10 The Newton Method as a Short WEB Example A Newton method program 3

8. We will also declare two int variables. These are an iteration index, k, and a limit for the number of
iterations.

〈Declarations 7 〉 +≡
int k, limit ;

9. The initial value of x is not quite arbitrary. This problem has an ∞ of solutions and the initial value
can cause convergence to roots that are not desired. In the case of x = 1.2, x will converge to π

2 . We will
also need to set delta x to any nonzero value. This is needed to allow the iteration loop to execute at least
once.

Of course, in most reasonable programs, this would not be hardcoded, there would be a dialog to
establish these values. The limit of 10 iterations and delta x max= 0.5 are based upon knowing the
problem and algorithm’s performance.

〈 Initialize Variables 9 〉 ≡
x 0 = const (1.2);
delta x = const (0.000001);
limit = 10; /∗ more than safe ∗/

See also section 14.

This code is used in section 6.

10. The following is the heart of the Newton method. We will continue calculating xk+1 until |∆x|
becomes sufficiently small. With each iteration of the loop, the number of significant digits in x will
double, approximately.

〈 Iterate on the answer 10 〉 ≡
for (k = 1; delta x > const (0.0) ∧ k ≤ limit ; k++) {

〈Calculate the Newton change 11 〉

〈Apply convergence strategies? 15 〉

〈Make the step 12 〉

}

This code is used in section 6.

§11–§14 The Newton Method as a Short WEB Example A Newton method program 4

11. In the vanilla Newton method, x 0 will receive the value of x from the previous iteration. To
calculate x, we use the Newton formula described in Module 1 by substituting x 0 for xk. Now, we will
calculate delta x to determine if the iteration loop should be terminated. The Newton method is an
iterative method using the first two terms of the aforementioned Taylor Series:

f(xk+1) = f(xk) + f ′(xk)(xk − xk+1)

Since f(xk+1) = 0, the formula is then transformed into the Newton Method:

xk+1 = xk −
f(xk)
f ′(xk)

〈Calculate the Newton change 11 〉 ≡
delta x = −(cos (x 0))/(−sin (x 0));
printf ("The Newton step is %g\n", delta x);

This code is used in section 10.

12. The step may have been adjusted. Regardless, we add the step and update the variables.

〈Make the step 12 〉 ≡
printf ("The step is %g\n", delta x);
x = delta x + x 0 ;
x 0 = x;
delta x previous = delta x ;

This code is used in section 10.

13. Convergence Strategies

It is well known that if certain conditions are met, then the convergence of the Newton method is
quadratic and monotone. This applies within the radius of convergence. In some cases, we can apply
strategies that will expand the radius of convergence and still allow rapid convergence in the immediate
proximity of the solution. The strategies will include constraining the step or change and noticing when
convergence is not monotone.

〈Declarations 7 〉 +≡
floating delta x max , delta x previous ;

14. These variables need initial values.

〈 Initialize Variables 9 〉 +≡
delta x previous = const (0.0);
delta x max = const (0.5);

§15–§18 The Newton Method as a Short WEB Example Convergence Strategies 5

15. When we solve practical problems, we will have some estimate of the answer, or at least its order of
magnitude. After calculating delta x , we do not let its magnitude exceed delta x max . We don’t check for
quadratic convergence.

〈Apply convergence strategies? 15 〉 ≡
if (delta x > delta x max)

delta x = delta x max ;
else if (delta x < (−delta x max))

delta x = −delta x max ;

See also section 16.

This code is used in section 10.

16. This problem is an example of those problems that do not exhibit monotone convergence. In this
case, the assumptions are not met because there is an inflection point at the solution. When we do not
have monotone convergence, we should note it. We find this by comparing the signs of consecutive changes.

We could have included some quite complicated strategies, but we are just illustrating WEB.

〈Apply convergence strategies? 15 〉 +≡
if ((delta x ∗delta x previous) < const (0.0))

printf ("Oscillating %d\n", k);

17. Finally, it’s time to let the world know the results we have calculated.

〈Print Results 17 〉 ≡
printf ("The solution to cos(x)=0 is %g\n", x);

This code is used in section 6.

18. The next page is intentionally blank.

§18–§19 The Newton Method as a Short WEB Example Convergence Strategies 6

19. Index

const: 5.
cos : 11.
CRAY : 3, 4, 5.

Damping: 15.
delta x : 7, 9, 10, 11, 12, 15, 16.
delta x max : 9, 13, 14, 15.
delta x previous : 12, 13, 14, 16.
DOS : 2, 4.

float: 5.
floating: 5.

gcc: 2.

include : 6.

k: 8.

limit : 8, 9, 10.

main : 6.
Monotone: 13, 16.

Oscillating: 16.

printf : 11, 12, 16, 17.

Quadratic: 15.

real : 5, 7.

sin : 11.

The solution ...: 17.

unix : 2, 4.

VMS: 3.

x: 7.
x 0 : 7, 9, 11, 12.

32-bit 64-bit: 3, 4, 5.

§19–§#0 The Newton Method as a Short WEB Example Index 7

〈Apply convergence strategies? 15, 16 〉 Used in section 10.
〈Calculate the Newton change 11 〉 Used in section 10.

〈Declarations 7, 8, 13 〉 Used in section 6.

〈 Initialize Variables 9, 14 〉 Used in section 6.

〈 Iterate on the answer 10 〉 Used in section 6.

〈Make the step 12 〉 Used in section 10.
〈Print Results 17 〉 Used in section 6.

COMMAND LINE: "fweave NewtonC".

WEB FILE: "NewtonC.web".
CHANGE FILE: (none).

GLOBAL LANGUAGE: C.

