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Abstract

In this paper foundations of the properties
of object-oriented software measures are
presented. The criteria for the properties of
object-oriented software measures are
characterized with several binary
operations between objects, classes,
methods, etc. Binary operations can be used
as a tool to give numbers an interpretation
above the ordinal scale level. The result of
this investigation is that software measures
for object-oriented mostly do not assume an
extensive structure. In order to get
qualitative criteria for object-oriented
measures, the Dempster-Shafer Function of
Belief, the Kolmogoroff axioms and the
DeFinetti axioms are introduced. These
axioms give qualitative criteria for the use
of object-oriented software measures
between the weak order and the extensive
structure.

1 Introduction

In literature more than two hundred software
measures /FETC95/ for applications in the
area of object-oriented programming can be
found. This process of defining new measures
is not finished today. The reason for such a lot
of measures may be problems in
understanding and maintaining  object-
oriented programs.

In order to show properties of software
measures, we use measurement theory which
allows us to translate mathematical /
numerical properties of measures back to
empirical (intuitive) properties and vice versa.
We can do this under the assumption of a
homomorphism. In the past we used the
extensive structure and the independence
conditions /ZUSE92/  to characterize software
measures with empirical properties.  This
concept leads, among others, to the
characterization of scale types.
.
In the area of object-oriented software
measures the concept of the extensive
structure cannot be applied in the same way as
for imperative languages. The reason is that
the extensive structure is not assumed by
many measures in the object-oriented
environment. In order to have criteria for
properties of measures above the ordinal level
for object-oriented software measures, we
introduce weaker axioms than the axioms of
the extensive structure. We introduce the



Function of Belief, the Kolmogoroff axioms
and De Finetti axioms.

The paper is structured as follows: In Section
2 we introduce some aspects of measurement
theory, in Section 3 we discuss properties of
object-oriented measures with a new axiom
system derived from the function of belief, in
Section 4 we summarize the results, in Section
5 conclusions are given, in Section 6 follows
an attachment related to measurement theory,
and Section 7 contains the used references.

2 Measurement Theory

There exists a theory, called measurement
theory, which gives conditions how to
combine empirical conditions with numerical
conditions. Measurement theory is also a
proper theory to translate mathematical
properties of measures back to empirical
properties under the assumption of a
homomorphism. Readers who are interested to
get a deeper understanding of measurement
theory we refer to Roberts /ROBE79/, to
Krantz et al. /KRAN71/, Luce et al. /LUCE90/
and to some works of the author, like
/ZUSE91/, /ZUSE92/, /BOLL93/, /ZUSE94b/.
and the Attachment in Chapter 6.

In the past we investigated software measures
with measurement theory. We introduced
empirical relations •≥ and called them, among
others, as equally or more difficult to
maintain. Mainly, we used the Theorem of the
extensive structure to derive empirical
conditions from the additive property of a
measure. The theorem of the extensive
structure in measurement theory says: a
Measure u, which is additive related to a
binary / concatenation operation, assumes an
extensive structure. An extensive structure
consists of a set of empirical conditions also
called axioms. The extensive structure consists
of the following six axioms:

1. Weak order.
2. Axiom of weak positivity.
3. Axiom of weak associativity.
4. Axiom of weak commutativity.
5. Axiom of weak monotonicity.
6. Archimedian axiom.

These six necessary and sufficient empirical
conditions are, for example,  assumed by the
Measure LOC. We illustrate this with a
picture.
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Figure 2.1: Extensive structure for
flowgraphs and a sequential concatenation
operation.

Every Measure u, which is additive, assumes
an extensive structure. The approach of the
extensive structure also can be applied to cost
estimation models, design and maintainability
measures, etc.

2.1 Extensive Structure and Imperative
Languages

In the area of structured programming,
imperative languages, software design, etc.,
we can find many software measures, which
are defined as additive measures. Examples
are LOC= |N|, and the Measure of McCabe:
MCC-V2 = |E| -|N| + 1. From the extensive
structure we come easily to the additive ratio
scale, and with a modification of the
numerical relations system we also come to
the non-additive ratio scale.

Put in other words. Using the concept of the
extensive structure, the meaning of the
numbers of the measures could be interpreted
by the empirical conditions of the extensive
structure. The extensive structure is the
appropriate tool to characterize software
measures above the ordinal scale level.

2.2 Extensive Structure an Object-
Oriented Applications

However, in the area of object-oriented
applications, software measures mostly are not
additive related to a concatenation operation.
Mostly, the Archimedian axiom, and/or the
axiom of weak monotonicity are violated. We
illustrate this with a picture.
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Figure 2.2: No Extensive Structure for the
most object-oriented measures.

In order to discuss measurement structures in
the object-oriented area above the ordinal
scale level, we consider qualitative
probabilities, quantitative probabilities, and
belief structures or belief functions.

Ordinal Scale

Extensive Structure

Function of Belief

Ratio Scale

Figure 2.3: Ordinal scale, modified function
of belief, and extensive structure.

The picture above shows the goal of the new
axiom systems. Having only an ordinal scale
level, we have a simple level of measurement
structures. We are far away from the empirical
conditions of the extensive structure. The
modified axioms of the function of belief shall
help to get more empirical conditions for the
interpretation of measurement values in the
direction of the extensive structure.

3 Measurement Theory and Object-
Oriented Software Measures

In this section foundations of the properties of
object-oriented software measures are
presented.

3.1 Introduction

The criteria for the properties of object-
oriented software measures are characterized
with several concatenation operations between

objects, classes and methods. Concatenation
operations can be used as a tool to give
numbers an interpretation above the ordinal
scale level. The result of this investigation is
that software measures for object-oriented
techniques have completely other properties
than measures for imperative languages. It is
shown that many of the measures in the
object-oriented programming area follow the
Dempster-Shafer Function of Belief in
Artificial Intelligence and the DeFinetti
axioms.

3.2 Abstraction Levels

In order to discuss object-oriented software
measures, we have to discuss the abstraction
level which we use for measurement in the
object-oriented area. For example, the
Measure of McCabe is based on the
abstraction level of a flowgraph. We discuss
for our investigation four levels of abstraction
in the area of object-oriented measures.

3.2.1 Classes

The first level of abstraction is the class level.
A class describes the properties of objects with
attributes (often called instance variables) and
methods. A class has a set of attributes and a
set of methods defined in it. In Figure 3.1 the
abstraction of a class as a picture is presented.

3.2.1.1 Methods

The behavior of an object is characterized by
the methods defined in its class. A method
contains the code of an OO program. Methods
can be seen as being subroutines, which are
invoked by messages sent to an object. In
some OO-systems methods are constructed
similar as subroutines in structured
programming. The idea, in our case of
measurement, is therefore to treat methods as
procedures in software measurement.

A method in our view (measurement view)
consists of a sequence of statements with a
single entry point and a single exit point. The
sequence of statements is executed each time
the method is called. That means, we can
consider the control flow (flowgraph) of the
method.

Additionally, a method can be parameterized,
having a list of parameters. Parameters can be
input, output or both. So we can consider
some data flow, additionally. In Figure 3.1 the
abstraction of a class with methods is
presented.



3.3 Structures On Classes

Of course, classes are not the major structure
in OO-systems. Classes are related to each
other by two types of relationship: uses
relationships and inheritance relationships
/BOOC91/. Two other types of relationship
will not be considered here, namely meta
classes and generic classes. These constructs
are not under consideration by any proposed
software measure we found.

3.3.1 Inheritances Relationships

A class A inherits the properties / attributes of
class B. The properties of Class B become
additional properties of Class A without being
defined in Class A again. In turn, Class B is a
generalization of Class A.

In Figure 3.1 we have a class vehicle that is
able to move. Car and bicycle are
specialization’s of vehicle, both are able to
move too. The method move and the attribute
wheels are inherited along the thick arrow
from vehicle to its subclasses. These properties
are not denoted for the inheriting class.

bicycle

vehicle
wheels move

bell
car

horn honkring

Figure 3.1: Classes, methods, and
Inheritance.

We see, that we represent a class by a
rectangle. The inheritance is represented by a
thick arrow, which points to the class which
inherits. Methods are represented by a thin
line assigned to the rectangle and a name of
the method.  The specialized classes have
additional properties, i.e. a bike can ring it's
bell.  A class can inherit properties from more
than one class. This case is called multiple
inheritance and is shown in Figure 3.2

vehicle
wheels move

boat
motor swim

amphibian vehicle

Figure  3.2: Multiple inheritance.

Here, the class amphibian vehicle is a special
case of vehicle and of boat. So an amphibian
vehicle can move and swim.

3.3.2 Uses Relationships

A Class A uses class B, if Class A accesses
objects of Class B. Let us consider a Class
library with a method borrow a book to borrow
a book, where books is a class itself, then the
Class book uses the Class Books. The use of a
class can be hidden by the implementation, the
Class Library could use a Class List, without
the appearance in the interface of Class
Library. Booch divided these two cases into
uses for interface and uses for
implementation. We denote the uses
relationship with a thin arrow to the used class
and leave the kind of use unspecified.

Books

Library

Lists

Figure 3.3: Uses relationships.

3.4 OO-System Level

Taking classes and the two relationships on
classes (inheritance and uses relationship)
together we can speak of an OO system. That
is a set of classes and the uses and inheritance
relation on this set.

Typically, none of the two relations builds a
complete graph on the set of classes. In
contrast, both can build a couple of
unconnected subgraphs in one system. In
order to be able to cope with structures on
classes, we define two subsets of systems.
These are

a) inheritance hierarchies with one single
root. The graph has to be connected,
multiple inheritance is allowed.

b) uses hierarchies with one single main
class that is the only class that is not
used by any other class in that graph.
The graph must be acyclic and
connected.

A system can consist of several of such
subsystems. We discuss the properties of
measures related to the constructs as described



above. Both inheritance and uses hierarchies
contain the single class as a special case.

3.5 Concatenation Operations for Object-
oriented Programs and their Properties

We now consider for each level of abstraction
as described above, concatenation operations.
We extend the approach to classes. To be
applicable as operations in measurement
theory, these concatenation operations have to
be complete, which leads to some restrictions
on the set of empirical objects on system level.
Before discussing the operations themselves,
we shall speak of some properties of
operations in general.

3.5.1 Extensive Structure

Above, we defined the extensive structure
which consists of the axioms weak positivity,
weak associativity, weak commutativity, weak
monotonicity and the Archimedian axiom. For
our considerations of object-oriented measures
we need a further axioms called idempotency.

Idempotency

Idempotency is defined as:

Definition 3.1: (Idempotency)
A concatenation rule is called idempotency, if
for all objects a ∈  A holds:

a o a = a.
®
When ever a concatenation operation is
idempotent, there is no way that the
Archimedian axiom can be fulfilled. The
consequence is that we have no extensive
structure. Hence, having idempotency, we
cannot come to the ratio scale via a
concatenation operation. Some of the
concatenation operations discussed in the
following sections are in fact idempotent, so
that we have to consider other structures than
the extensive structure. These new structures
are belief structures and the De Finetti
axioms.

3.5.2 Concatenation Operations For
Methods

Since many OO programming languages are
imperative in their methods, it is possible to
apply traditional intra-modular metrics on
method level. More than ninety of such
measures based on flowgraphs were
investigated in /ZUSE91/ /ZUSE92/ together
with the sequential and alternative
concatenation operations BSEQ and BALT.

These concatenation operations were also
investigated in this Chapter. A minimal set of
software measures for methods is discussed in
/ZUSE91/.

3.5.3 Concatenation Operations on the
Class Level

Chidamber et. al. introduce in /CHID91/ and
/CHID94/ a concatenation operation for
classes. They use concatenation operations in
order to study the properties of their measures.
However, the authors base their investigation
not on the basis of the extensive structure in
order to see whether the measures assume a
ratio scale. They consider the Weyuker
/WEYU88/ properties. It should be mentioned
here, that the Weyuker are not compatible
/ZUSE91/, Chapter 6.

We will use the concatenation operations of
Chidamber et al. for our studies, too, and we
consider some additional concatenation
operations.

3.5.3.1 CUNI: Class Unification

The unification of two classes has no means of
expression in OO models. As necessary for
being an concatenation operation the result of
combining two classes is one single new class.
This new class combines all the properties the
two single classes. If we concatenate Classes
A and B to a new class C, we denote this with

C=CUNI(A,B).

Doing this, we unify the sets of properties of
the both Classes A and B to the set of
properties of the new Class C. Properties of a
class are it's attributes (or instance variables)
and methods. The sets of properties are
unified, so identical methods or attributes
occur only once. Considering the Classes A
and B in Figure 3.4 we see, that both classes
have the variable a and method M1 in
common. The new Class C has these variable
and method only once.
.

A B A©BCUNI
M1
M2

M1
M3

a
b

a a
b

M1
M2
M3

=

Figure 3.4: Class unification.

We now consider the implications of
concatenation operations on the inheritance
relation.



Inheritance Relationship

Within a class declaration we usually find
information on (direct) superclasses. We don't
find information on subclasses, as we can
freely define subclasses to existing classes. We
can consider subclasses to some extent to be a
form of a property of a class, as for example
for polymorphism. Furthermore, some
measures proposed in literature use subclasses
to characterize a class. For this reason, we
consider the inheritance relation in both
directions.

We require that the combined class inherits all
the properties which any of the two original
classes inherited. So any superclass of either A
or B or both must be a superclass of the
concatenation operation CUNI(A,B). This can
lead to multiple inheritance. Consistently, we
define all the direct subclasses of A and B to
be direct subclasses of the unified class. To
illustrate this definition, we consider some
cases including those discussed in /CHID94/
.
The first case discussed by Chidamber et. al.
assumes two Classes A and B having the same
direct superclass (father) V. The resulting
class has the same father V. The direct
subclasses (children) of A and B respectively
also are children of the unified class. Figure
3.5 illustrates this case.

V V

C D E FC D E F

A B
M
1
M
2

M
1
M
3

M
1M
2M
3

CUNI

A©B

Figure 3.5: Unification CUNI (A,B) of sibling
classes.

If Class B is a direct subclass of class A, these
will be combined as follows. The father V of
A also was an indirect superclass of B and is
now the father of CUNI(A,B). The children
are again all children of A and B, in this case
the children of B do not inherit more
properties as they inherited already the
properties of A via B (See Figure 3.6).

C D E

M1
M2
M3

V

D E

CUNI
A©BA

M1

M2

C

V

B
M4

M3

M4

Figure 3.6: Unification CUNI(A,B) with a
direct subclass

Classes that have separate fathers have to be
combined as shown in figure Figure 3.7. The
combined class inherits from both superclasses
via multiple inheritance. The children are
again all the children of A and B, here C
multiply inherits from A and B, of course it is
only once a child of CUNI(A,B).

V W

A

WV

C DC

CUNI(A,B)B

D

CUNI (A,B)

M1
M2

M1
M3

M1

M2
M3

Figure 3.7: Unification CUNI(A,B) of
unrelated classes.

We now consider the implications of CUNI for
uses relations. The behavior is very similar as
described above for inheritance. All the
classes used by either one ore both of the
classes combined will be used by the unified
class. This lies already in the unification of the
properties defined in the class. Analogously,
we define all classes that used any single or
both separate classes to use the combined
class. This won't cause problems as those
classes need not use the additional parts of the
new class but the original parts of that class
already used. The figures below illustrate this
case with two examples.

V V

A
M1

M2

C

M3

M4

D

B

C D

M1
M2
M3
M4

A©BCUNI

Figure 3.8: Concatenation operation
CUNI(A,B) with uses relationships.
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M1
M2
M3
M4

V V

A
M1

M2

C
M3

M4

D

B

WW

A©B

CUNI

Figure 3.9: CUNI with uses relationships

We now consider the properties of the
concatenation operation CUNI.

Properties of CUNI

Since the unification of the sets of attributes
and the sets of methods are independent of the
ordering in which these sets are unified, and
no order is defined neither for the uses nor
inheritance relation, CUNI is commutative
and it is also associative. Interesting is, that
CUNI is also idempotent: if A is a class it
holds:

A o A = A

Assuming idempotency by a concatenation
operation has the consequence, that the a
measure does not assume an extensive
structure which has the consequence that we
cannot come to the ratio scale via the
extensive structure.

Of course, this property of CUNI is not by an
accident. CUNI has been defined as a
unification and we know that unification of
sets is idempotent. This reflects an advantage
of object-oriented design. Similar classes
should be combined to one class with the
consequence of less maintenance effort.

Chidamber et. al. check, whether their
measures agree with the Weyuker properties.
If we keep in mind, that CUNI is idempotent,
it is not surprising that none of their six
measures agree with wholeness, which is
defined as:

u(A o B) ≥ u(A) + u(B),

for all A, B ∈  A. If idempotency is fulfilled,
we cannot have wholeness, as Weyuker
requires that. Wholeness requires an non-
additive ratio scale.  In fact, if A=B, we obtain
for any Measure µ

u(CUNI(A,A) = u(A).

As we mentioned above, this is due to CUNI is
a kind of an unification. Our suggestion is to
add a second combination operation that
corresponds to intersection of sets.

3.5.3.2 CINT: Class Intersection

We have seen, that the unification of classes
leads to a class which includes all the
properties, methods and attributes which are
common for the both single classes.

The result of an intersection of two classes is
that the common properties of both classes are
reduced to one property in the combined class.
We illustrate this with the following picture.
Assume two Classes A and B with variables
and methods. The new Class C, combined by
Classes A and B only consists of the variable a
and method M1.

A B A@BCINT
M 1
M2

M1
M3

a
b

a a
b

M1
=B

Figure  3.10: CINT: Intersection of classes.

As for CUNI, we now consider the
implications of CINT for the inheritance
relationship. It is important to say that CINT
is not a combination rule to build new stand
alone classes. We are discussing the
consequences for a concatenation operation
which is defined as CINT. Later we will
discuss generalization, then we will see an
application of CINT in reality.

CINT intersects the sets of properties of
classes. We now require that the intersected
class inherits all the properties that both
classes inherited. These properties are again
common to both classes. And we require that
every subclass that are common to both classes
will be subclasses of the intersection.

That leads to somewhat non-intuitive
situations as shown in Figure 3.11. Here, G is
an indirect superclass of A and B and so the
intersected class CINT (A,B) will inherit from
G but neither from V nor W. And the only
common subclass is E, which becomes a child
of the intersection.
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V

A

C

M2

M1

G

A@B

E

CINT

Figure 3.11: Class intersection and
inheritance relationships.

Again, for the uses relation our consideration
are very similar. Only those classes which use
both classes use the intersection and as an
implication of the intersection of properties.
Only those classes used by both classes will be
used by CINT(A,B). Unlike inheritance
indirect use does not propagate along the
vertices of the uses relation.

C D

A

E

B
CINT

V W X

D

A@B

W

Figure 3.12: Class intersection and uses
relationships.

We now have two combination operations
CUNI and CINT among classes and we find a
couple of measures including some of the
measures proposed by Chidamber et. al.
holding the following condition

C-NOM(CUNI (A,B)) = C-NOM(A) + C-
NOM(B) - C-NOM(CINT(A,B)),

where C-NOM is the number of methods in a
class. This equation is well known in
probability theory, describing a probabilistic

measure (Third Kolmogoroff axiom, see
below).

3.5.4 The Empty Class

We now define the empty Class ∅  to be a
class with no properties, i. e. empty sets of
attributes and methods. Furthermore, the
empty class may not inherit any property and
no class inherits from ∅ . It is also not used
by any class and of course does not use any
class.

Having defined an empty class we can say that
two classes A and B are disjunct, i. e. they
don't have any property in common. It holds

CINT(A,B) = ∅ 

Another axiom for measures is the following:

u( ∅ )=0,

which again corresponds to probability. The
correspondence shall not lead to the
assumption that software measures would in
any way be measures of uncertainty in OO. In
fact, one of the major properties of probability
functions, the limitation to the Interval [0,1] is
not adhered by the measures in general and is
not our intention, too.

But the observation that measures in
combination with the two operations described
here (partly) are similar to probability
measures, is useful.

With this support, we can derive additional
properties of the preference relations induced
by the measures. These conclusions can be
drawn, because probability theory has
examined the relations between qualitative
and quantitative probability. If these axiomatic
systems are considered carefully under the
circumstances of OO measurement, it comes
up that these axioms can be adapted to the
unlimited case.

3.6 Belief Structures

As we have shown above, measures which are
additive, assume an extensive structure. They
also can be used as an additive ratio scale.
Measures which are not additive, can assume
an extensive structure, too. Such measures are
a strong monotonic function of the additive
measures. Non-additive measures, which
assume an extensive structure, can be used -
under certain conditions- as a non-additive
ratio scale. It should be mentioned here that
measures can assume an extensive structure



but cannot be used as a ratio scale. This is the
case if the combination rule is not meaningful
for the admissible transformation of the ratio
scale. The Measure MCC-V = |E| - |N| + 2 is
such a case.

In the object-oriented environment the
behavior of measures related to concatenation
operations is different. Many measures do not
assume an extensive structure which has the
consequence that they cannot be used as an
(additive) ratio scale. Other measures assume
idempotency, which implies, that they do not
assume the Archimedian axiom, which
implies no extensive structure, either.

Weak Positivity

Archimedian
Axiom

Weak
Commutativity

Weak
Associativity

Weak
Monotonicity

Extensive Structure

Figure 3.13: No Extensive Structure for the
most object-oriented measures.

In order to discuss measurement structures in
the object-oriented area above the ordinal
scale level, we consider qualitative and
quantitative probabilities and belief structures
or belief functions.

3.6.1 Belief Functions

There exist a well known quantitative
approach, the theory of belief functions, which
has generated considerable interest in recent
years /SHAF76/, /SHAF87/. In this theory,
belief may be interpreted as a generalization of
probability. Also belief functions provide a
useful and effective tool for the quantification
of subjective, personal judgments. It is the
view of many researchers that humans
frequently reason in qualitative rather
quantitative terms /BHAT86/. A function of
belief describes the belief in a hypothesis and
the belief in combination of hypotheses. More
information’s about belief functions can be
found in /SHAF76/, /BUER87/ and /WONG91

Firstly, we consider the Kolmogoroff axioms
and then as a generalization, the function of
belief.

3.6.1.1 Kolmogoroff Axioms

It is important to mention that we treat the
Kolmogoroff axioms as (part) of a
representation theorem. Put in another way,
we shall attempt to treat the assignment of
probabilities to events as a measurement
problem of the same fundamental character as
the measurement of, e.g. mass or length.

Typically, probabilities are considered in an
interval [0,1]. The approach of Kolmogoroff
describes events as subsets in a probability
space /KRAN71/, p.200.

Definition 3.2: (Kolmogoroff Axioms (1933))
Suppose that X is a non-empty set, that ℑ  is
an algebra of sets on , and that P is a function
from ℑ  into the real numbers. The triple <X,
ℑ , P> is a (finitely additive) probability space
iff, for every A, B ∈  ℑ :

P(A) ≥ 0 (K2)
P(X) = 1 (K2)
If A ∩ B = Ø, => P (A ∪  B) = P(A) + P(B) (K3)

®
Krantz et al. writes: Our plan, instead, is to
treat Definition 3.2 as (part of) a
representation theorem; specifically, we
inquire into conditions under which an
ordering •≥ of ℑ  has an order-preserving
function P that satisfies Definition 3.2.
Obviously, the ordering is to be interpreted
empirically as meaning „qualitatively at least
as probable as“. Put another way, we shall
attempt to treat the assignment of
probabilities to events as a measurement
problem of the same fundamental character as
the measurement, e.g., mass or momentum.
From this point of view, the debates about the
meaning of probability are, in reality, about
acceptable empirical methods to determine
•≥. It is not evident why the measurement of
probability should have been the focus of
more philosophic controversy than the
measurement of mass, or length, or of any
other scientific significant attribute; but it has
been. We are not suggesting that the
controversies over probability have been
justified, but merely that other controversial
issues in the theory of measurement may have
been neglected to a degree.

On page 201, we find the following
statements: Ellis point out that the
development of a probability ordering is ..
analogous to that of finding a thermometric
property, which .. was the first step towards
devising a temperature scale.
The comparison between probability and
temperature may be illuminating in other



ways. The first thermometers were useful
mainly for comparing atmospheric
temperatures. The air thermometers of the
seventeenth century, for example, were not
acceptable for comparing or measuring the
temperatures of small solid objects.
Consequently, the early history of
thermometry, there were many things which
possessed temperature which could not be
fitted into an objective temperature order.
Similarly, then, we should not necessarily
expect to find any single objective procedure
capable of ordering all propositions in respect
of probability, even if we assume that all
propositions possesses probability. Rather, we
should expect here to be certain kinds of
propositions that are much easier to fit into an
objective probability order than others.

We will see that certain measures have a
similar behavior related to concatenation
operations as probabilities. It is important to
say that objects of software are not probability
events. We consider the definition above in
the context of mathematically axioms and as a
representation theorem. We consider the
assignment of probabilities to events as a
measurement problem. The relationships do
not base on probability events.

In the following, we give a generalization of
quantitative functions of probabilities, and that
is the function of belief and their relationship
to a qualitative belief. Then, these structure of
belief will be modified, that we can apply this
axiom system to object-oriented software
measures.

3.6.2 Belief Functions of Dempster and
Shafer

The functions of belief by Dempster and
Shafer /SHAF76/ are a tool for the description
of uncertain knowledge. An detailed
discussion of functions of belief can be found
in /BUER87/. The axiomatic of a function of
belief is manly different in the third axiom of
the Kolmogoroff axioms (KB3).

We now consider the function of belief.

Definition 3.3: (Function of Belief):
Suppose X is a finite set, then a belief function
Bel is a mapping from: 2X to the interval
[0,1]. Then a function Bel: 2X -> [0,1]. is a
function of belief iff the following axioms
hold:

Bel(∅ ) = 0 (B1)
Bel(X) = 1 (B2)

Bel(A1 ∪  A2 ∪  .. ∪  An)  ≥ 
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For two elements A, B ∈  2X means B3:

Bel (A ∪  B) ≥ Bel(A) + Bel(B) - Bel (A ∩ B). (B4)
®

Instead of the sign = with the Kolmogoroff
axioms we find here a greater or equal. The
belief in the unification of two disjunct events
A ∩ B = 0  can be greater than the sum of
belief of the single results. Important for us is
the part: - Bel (A ∩ B), which shows us
exactly the behavior of object-oriented
software measures.

The question is here what are the
consequences if we want to use such an object-
oriented measure to predict costs of
maintenance. The effort for maintenance
would be the sum of the maintenance of both
components minus the effort of maintenance
which is common in both components. We
should mention here that the Function-Point
Method shows the same behavior. The reason
is that combining two projects to one project,
we use, for example, input files only once.

3.6.3 Qualitative Belief

As we saw with the discussion of relational
systems in measurement theory, we considered
an empirical and a numerical relational
system. Both were connected by a
homomorphism. The empirical relational
system describes qualitative conditions.
Similar, we can formulate a qualitative
belief. We believe to an event A ∈  2X not less
than to an event B ∈  2X, if

A •≥  B.

Let us consider the relation •≥  more in detail.
Wong et al. /WONG91/, (See also: /BUER87/,
p.38ff) showed the following theorem: There
•> is defined as:

A •> B <=> A •≥  B ∧  ¬  (B •≥  A).

Theorem 3-1:
Let X be a set, •≥  a preference relation on 2x.
It exists a function of belief, which
corresponds completely with •≥ , that means

A •≥  B <=> Bel(a) ≥  Bel(B),

if the following axioms are satisfied



∀ A, B ∈  2X : A •≥ B ∨  B •≥ A, completeness (QB1)

∀ A, B, C ∈  2X : A •≥ B ∧  B •≥ C => A •≥ C,
transitivity (QB2)

∀ A, B ∈  2X: A ⊇  B => A •≥ B, 
dominance  (QB3)

∀  ( A ⊃  B, A ï C = 0): (A •> B => A ∪  C •> B ∪  C)
partial monotonicity (QB4)

X •> 0 prevent triviality (QB5)
®

It holds:

• Axiom QB1 is completeness, and
• Axiom QB2 is transitivity. Both

required by a weak order.
• Axiom QB3 is the dominance axiom,
• Axiom QB4 is the partial monotonic

axiom, and
• Axiom QB5 avoids triviality.

We illustrate this with some pictures.

3.6.3.1 Set of all Attributes and Methods

In order to illustrate the new axiom system,
we introduce the sets of methods and
attributes.
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Figure 3.14: Explanation of the sets X and
the set of classes.

The picture above shows the used sets for our
investigation. The left cloud shows the set of
all attributes and methods. The right cloud
shows the set of classes, which structure the
attributes and methods. The next picture
shows the axiom of partial monotonicity
(QB4).

3.6.3.2 Axiom of Partial  Monotonicty of
Qualitative Belief
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Figure 3.15: Partial monotonictiy QB4.

Assume we have a Class A consisting of
attributes and methods. Class consists of the
attributes a, b, c and the methods M1, M2, and
M3. Class B consists of the attributes b, c and
the methods M1 and M2. It follows that Class
B is a real subset of A. We write this as A ⊃
B.

Furthermore, we have a third Class C,
consisting of the attributes d, e, and the
methods M4 and M5. We see, that Class C
does not have any attributes or methods
common with Class A. The intersection of the
both Classes A and C is the empty set. We
write this as A ï C = Ø.

We now assume that we have an empirical
relation •≥. We denote this relation as equally
or more difficult to maintain. Assuming A •≥
B, what means Class A is equally or more
difficult to maintain than B, it follows that A
∪  C is also equally or more difficult to
maintain than B ∪  C. We write this as A •≥ B
=> A ∪  C •≥ B ∪  C. The Classes in Rows 2
and 3 show this behavior. If a user has this
view of maintenance of classes then he has to
look for a Measure u which fulfills his view.
We can write this as:

A •≥ B => A ∪  C •≥ B ∪  C <=>
u(A) •≥ u(B) => u(A ∪  C) •≥ u(B ∪  C).

We call this a homomorphism related to the
axiom of partial monotonicty. It is important
to mention that the condition above only holds
in the direction of =>. The next picture
illustrates the dominance axiom QB3.



3.6.3.3 Dominance Axiom
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Figure   3.16: Dominance axiom.

The dominance axiom shows the following:
Assume Class B is a subset of Class A. Then it
follows that Class A is equally or more
difficult to maintain than Class B. We write
this as: A ⊇  B => A •≥ B. This is another
important criterion for an object-oriented
software measure. We now define the
DeFinetti axioms.

3.6.4 DeFinetti Axioms

The DeFinetti axioms /ROBE79/, /BUER87/,
/DEFI37/, /FETC95/, give necessary, but not
sufficient conditions for the existence of a
relation of belief. If these axioms are fulfilled,
then a function of belief exists, which
corresponds with the relation •≥  . It holds:

∀ A, B ∈  2X : A •≥ B ∨  B •≥ A,
completeness (F1)

∀ A, B, C ∈  2X : A •≥ B ∧  B •≥ C => A •≥ C,
transitivity (F2)

∀ A ∈  2 X : A •≥ 0 (F3)

∀  ( A ï C = B ï C = 0): (A •> B <=> A ∪  C
•> B ∪  C), monotonicity (F4)

X •> 0 prevents triviality (F5)
®

Here, we see that the De Finetti axiom of
monotonicity (F4) is stronger than partial
monotonicity (QB4) of the qualitative belief.
We illustrate this with a picture.
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Figure  3.17: Axiom of Monotonicity of the
DeFinetti axioms.

The axiom of partial monotonicity of
DeFinetti is stronger than the axiom of partial
monotonicity as discussed above. Assume, we
have three Classes A, B and C with attributes
and methods. We also assume it holds that the
Classes A and C, and B and C do not have
common attributes and methods. We write this
as: A ï C = Ø, and B ï C=Ø. Both together
we write as: A ï C = B ï C=Ø.

We assume that Class A is equally or more
difficult to maintain than B (A •≥ B). If holds
A •≥ B then we expect that also holds: A ∪  C
•≥ B ∪  C. We write the complete axiom as:

A •≥ B <=> A ∪  C •≥ B ∪  C.

This axiom holds for both directions. It is
illustrated in the picture above in Rows 2 and
3. We now apply the axiom systems above to
the object-oriented area.

3.7 Belief Function and De Finetti Axioms
in the Object-Oriented Environment

It should be made clear again, that software
measures in the object-oriented area are not
probability measures. We do not interpret the
measurement values as probabilities and we do
not limit the measurement values to [0, 1].
Nevertheless, we believe, that it makes sense
to describe the properties of some software
measures with the structures, as presented
above. Many measures in the object-oriented
area fulfill, with the exception of Bel(X)=1,
the axioms of belief structures.

We now modify the axioms that we can apply
them to object-oriented software measures.
Doing this, we get, without using the
extensive structure, statements of empirical
relations, which are more than the properties



of the ordinal scale. The axioms of the
modified function of belief u are the following:

Definition 3.4: (Modified Function of Belief)
Let X be a countable set and ℑ  the set of finite
subsets of X. A Measure u: ℑ  -> ℜ  is a
modified function of belief iff

u(0) = 0 (MFB1)

∀ A ∈  ℑ : u(A) ≥ 0 (MFB2)

u(A1 ∪  A2 ∪  .. ∪  An) ≥ 

I n≠ 〈 〉
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I

(MFB3)

®

In the object-oriented environment the set X
represents the set of properties of classes. A
class is then a finite subset of these properties.
That means, the classes are elements of ℑ . We
now modify the axioms for qualitative belief,
too.

Definition 3.5: (Modified Relation of
Belief):
Let •≥  a relation on ℑ , then •≥  is a modified
relation of belief iff,

∀  A, B ∈  ℑ : A •≥ B or B •≥ A 
(MRB1)

∀  A, B, C ∈  ℑ : A •≥ B and B •≥ C => A •≥ C, 
(MRB2)

∀  A ⊇  B => A •≥ B, dominance axiom 
(MRB3).

∀  (A ⊃  B, A |ï C = 0) => (A •> B => A ∪  C •> B ∪  C),
partial monotonicity (MRB4),

∀  A ∈  ℑ : A •≥ 0 , Positivity 
(MRB5).

®

We can take over Theorem 3.1 for the
modified structures of belief.

Theorem 3-2:
It exist a modified function of believe, which
fulfills (1), (2), (3) of the modified function of
belief (MFB1, MFB2, MFB3), such that

A •≥ B <=> u(A) ≥ u(B),

if •≥ fulfills the axioms of the modified
relation of belief (MRB1, MRB2, MRB3,
MRB4, MRB5).
®

We take over the proof from Wong et al.
/WONG91/. The modification has the
consequence that we have a no-upper

boundary of u. The normalization to the
Interval [0,1] is the last step in the proof.
Since X is countable infinite, it does not exist
a measurement value for X. We only consider
finite subsets of X, this holds for u and for •≥ .
For this reason the complement Ac = X \ A of
an object is no element of Γ. For this reason
we can not consider here a plausibility
function, which are additions for the function
of belief. The proof in /WONG91 does not use
the complement set.

Proof of the Theorem
In order to do not overload the paper, we refer
to the proof of the theorem to Fetcke
/FETC95/.

3.8 Investigations of some Object-Oriented
Measures

We now apply the discussed concepts above to
some measures in the object-oriented
environment. We describe them with the
axioms of the modified function of belief. We
consider whether a measure fulfills the axioms
MFB1-MFB3. In the most cases the measures
fulfill the stronger condition

u(A ∪  B) = u(A) + u(B) - u(A ∩ B),

which is a sufficient condition for MFB3. We
illustrate the statement above with the
following picture.
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Figure 3.18: Unification and Intersection of
Classes A and B.

The unification of Class A ∪  B and the
intersection of Classes A ï B are shown in the
picture above. The discussed conditions above
are implied by this condition. The condition
above says that a measure which follows the
condition above is only additive if no common
attributes and methods are existing. That is
mostly not the case in the object-oriented
environment.

On the class level we investigate the measures
in the table below. We investigate whether the
measures fulfill the axioms of the modified



function of belief. If this is not the case, the
axioms of the modified relation of belief are
investigated:

MRB1: Is always fulfilled by the properties of 
the real numbers

MRB2: Is always fulfilled by the properties of 
the real numbers

MRB3 is the Dominance Axiom,

MRB4 is the partial monotonicity axiom,

MRB5 is the Positivity axiom.

Following Theorem 3.2 a modified function of
belief fulfills the axioms MRB1-MRB5.

Measure CBO

We consider the following example of the
Measure CBO. IT is defined as:

C-CBO is the number of classes that are
coupled with the Class C. Two classes are
coupled to each other if methods of one class
methods or instance variables of other classes
use. We illustrate this with an example.

In the picture below Class A is coupled with
the four Classes V, W, C, and D. It holds C-
CBO(A) = 4.

V W

A

C D

Figure 3.19: Class A is coupled with four
other classes. Class A is used by the Classes V
and W and Class A uses itself the Classes C
and D. It holds CBO(A) = 4.

The behavior of this measure can be described
with the class intersection. The modified
axioms of the function of belief are fulfilled, it
holds for the Classes A and B.

CBO (Ø) = 0

For all A: CBO (A) ≥ 0

CBO (CUNI(A, B)) = CBO (A) + CBO (B) -
CBO (CINT(A , B))

For the third axiom we need a further
example.

V W X

A B

C D E

Figure  3.20: CBO related to the
concatenation operations CUNI and CINT.

V W X

CUNI(A,B)

C D E

Figure 3.21: CBO related to the
concatenation operations CUNI and CINT.

W

CINT(A,B)

D

Figure 5.5: CBO related to the concatenation
operations CUNI and CINT.

It holds:

CBO (A) = 4
CBO (B) = 4
CBO (CINT(A,B)) = 2
CBO (CUNI(A,B)) = 4 + 4 - 2 = 6.

In /FETC95/ more examples are presented.
We now show an overview of the properties of
the Measures of Chidamber et al.

4 Results

We now present the results of our
investigation. The Measure CBO is Coupling
between Objects, LOC is the Measure lines-of-
code for methods, NOC is the Number Of
Children, WMC is the Weighted Method
Count, Response For a Class, and LCOMa and



LCOMb are the Measures Lack of Cohesion of
Methods  /CHID91/, CHID92/.

Measure  G MRB3 MRB4  MRB5
-------------------------------------------------------------------
CBO Y Y Y Y
LOC Y Y Y Y
NOC Y Y Y Y
WMC Y Y Y Y
RFC Y Y Y Y
LCOMa N Y N Y
LCOMb N N N Y

Figure 4.22: The table shows the properties of
some object-oriented measures related to the
properties of the modified Function of Belief
(G) and the modified relations of belief
(MRB3), (MRB4), and (MRB5).

The table of object-oriented measures above
shows very clearly, that most of the measures
do not assume an extensive structure. An
exception is the Measure LOC. However,
considering the modified function of belief
and the relations of belief, we can characterize
the measures above the level of the ordinal
scale. To characterize measures above the
ordinal scale level is very important because
we can do not very much with ordinal
numbers. It means especially here, that we
have more sophisticated properties of object-
oriented measures.

Other results of our investigation are the
following:

1. In order to get qualitative criteria for the
use of object-oriented measures, we
introduced qualitative conditions derived
from the function of belief.

 
2. In the area of object-oriented measures we

can define many concatenation operations,
like CUNI and CINT. Concatenation
operations are useful to get more
information of the meaning of the numbers
of measures above the ordinal scale level.

 
3. We demonstrated that object-oriented

measures mostly do not assume an
extensive structure which blocks the way to
the ratio scale via the extensive structure.
The reason is idempotency, which implies
that the Archimedian axiom is not
fulfilled.

 
4. We showed the consequences for object-

oriented techniques if the investigated
measures assume intersection and
unification properties.

 
5. Considering the modified function of belief

and the qualitative relation of belief, we

can characterize the measures above the
level of the ordinal scale. The partial
monotonicity axiom, the dominance
axiom, and the axioms of DeFinetti are
appropriate to give a qualitative
characterization of object-oriented software
measures.

 

5 Conclusion

Mostly, object-oriented measures do not
assume an extensive structure. We showed,
that in the area of object-oriented measures we
can find properties of idempotency in the
context of the binary operations unification
and intersection of sets. The function of belief,
qualitative belief, and the De Finetti axioms
are appropriate to give a qualitative
characterization of object-oriented software
measures above the ordinal scale level. This
paper should be seen as a first step to analyze
object-oriented measures by new measurement
structures.

6 Attachment: Foundations of Software 
Measurement

In this attachment we introduce basic concepts
of measurement theory and show the
application to software measures. We use the
text of Krantz et al. /KRAN71/, Luce et al.
/LUCE90/ and Roberts /ROBE79/. Proofs of
the theorems and a more detailed discussion of
measurement theory related to software
measures can be found in /ZUSE91/,
/ZUSE92/, /ZUSE92b/, /ZUSE94c/, and
/BOLL93/. An application of measurement
theory to more than ninety intra-modular
software complexity measures can also be
found in /ZUSE91/.

It should be mentioned here that it is a widely
spread misunderstanding that measurement
theory is only useful to determine the scales
like nominal, ordinal, interval and ratio scale.
This is more a side-effect of measurement
theory. The major advantage of measurement
theory lies in hypotheses about reality.

6.1 Basic Concepts of Measurement
Theory

First of all we want to introduce the notation
of an empirical, a numerical relational system
and a scale. Let

A = (A, •≥≥, o)



be an empirical relational system, where A is
a non-empty set of empirical objects, •> is an
empirical relations on A and o a binary
operation on A (Of course, there are more
than one relation and binary operation
possible).

According to Luce et al. /LUCE90/, p.270, we
assume for an empirical relational system A
that there is a well-established empirical
interpretation for the elements of A and for
each relation Si of A. We also assume the
same for the binary operations.

Let further

B = (ℜ , ≥≥, +)

be a formal relational system, where ℜ , are
the real numbers, ≥≥, a relation on B, and + a
closed binary operation on ℜ . (Of course,
there are more than one relation and binary
operations possible). We also include the case
that there are no relations or no operations.

The sign + means here the following: for a
concatenation of two Flowgraphs P1 o P2
holds the following formula:

u(P1 o P2) = u(P1) + u(P2) ,

where u is a software measure and P1, P2ε P

A measure is a mapping u: A -> B such that
the following holds for all P1, P2 ε A:

P1 •≥≥ P2 <=> u(P1) ≥≥ u(P2)
and

u(a o b) = u(a) + u(b)

Then the Triple (A, B, u) is called a scale.
According to this definition we see that
measurement assumes a homomorphism.

Given two relational system A and B we can
ask whether there exists a measure such that
(A, B, u) is a scale. This problem is called the
representation problem. If such a measure
exists we can ask how uniquely the measure is
defined. This problem is called the
uniqueness problem. The uniqueness
problem leads to the definition of scale types
such as ordinal or ratio scale.

Let g: X ->Y and h: Y -> Z be mappings.
Then hg denotes the composed mapping
hg(x)=h(g(x)) for x ε X.

Definition 6.1: (Admissible
Transformation):

Let (A, B, u ) be a scale. A mapping g: A -> B
is an admissible transformation iff (A, B, g )
is also a scale.

Real scales are classified according to the
admissible transformations.

Name of the Scale Transformation g

Nominal Scale Any one to one g
Ordinal Scale g: Strictly increasing 

function
Interval Scale g(x) = a x + b, a > 0
Ratio Scale g(x) = a x, a > 0
Absolute Scale g(x) = x

Figure 6.1: Scale types of real scales. It is a
hierarchy of scale types. The lowest one is the
nominal scale and the highest one is the
absolute scale.

Meaningfulness

However, the major question for the user is:
how does he know what scale type is assumed
and what are the conditions for the use of a
measure on a certain scale level. Or
equivalently, how does a measure and reality
look like which creates numbers which can be
transformed by a certain admissible
transformation of scales.

Admissible transformations also lead to the
definitions of meaningful statements
/ROBE79/, p.58. A statement with
measurement values is meaningful iff its truth
or falsity value is invariant to admissible
transformations. Meaningfulness guarantees
that the truth value of statements with
measurement values is invariant to scale
transformations. For example if we say that
the distance D1 is twice as long as distance
D2, then this statement is true or false no
matter whether length is measured in meters
or yards. These problems are existing in the
area of software measures too. This is the case
if we want to make statements with
measurement values for example after having
applied statistical methods. We want to
explain this problem by a statement which was
given by Pressman /PRES92/ (Relation >) and
similarly by Weyuker /WEYU88/.

Example 6.1 (Wholeness)

Let P1 and P2 be program bodies combined in
some way to P1 o P2. Let u  be a software
complexity measure. Then the requirement for
software complexity by Pressman is

u(P1 o P2) > u(P1) + u(P2).



This statement is not meaningful for an
interval scale. If we apply the admissible
transformation of the interval scale g(x)=a
x+b, then we get:

a u(P1 o P2) + b > a u(P1) + b + a u(P2) + b,

for all a>0 and for all b ε ℜ . Hence, the truth
or falsity of the statement is not invariant to
this type of admissible transformation. Hence
the statement is meaningful for a ratio scale.

We see that meaningfulness depends on
admissible transformations. The admissible
transformations depend on the relational
systems under consideration. Hence it is
important to study the conditions which
should hold on the relational systems in order
to have a certain class of admissible
transformations or equivalently to have a
certain scale type.

In Bollmann and Zuse /BOLL93/ and Zuse
/ZUSE94a/ we showed that wholeness is a
pseudo property without any empirical
meaning. We also showed that wholeness
leads to non-additive ratio scales.

6.2 Ordinal and Ratio Scale

We now introduce the conditions for the use of
software measures as an ordinal and a ratio
scale. Firstly, we consider the conditions of
the ordinal scale.

6.2.1 Ordinal Scale

In order to describe a measure as an ordinal
scale we introduce the weak order which is a
binary relation that is transitive and complete:

P •≥≥ P', P' •≥≥ P'' => P •≥≥ P'' transitivity
P •≥≥ P' or P' •≥≥ P completeness
(connectedness),
for all P, P', P'' ε P, where P is the set of
flowgraphs (•≥≥ is a binary empirical relation,
like equal or more complex).

In /ROBE79/, p.110, we find the following
theorem which we can be applied directly to
flowgraphs.

Theorem 6.1:
Suppose (P, •≥≥) is an empirical relational
system, where P is a non-empty countable set
of flowgraphs and where •≥≥ is a binary
relation on P. Then there exists a function u: P
-> ℜ , with

P •≥≥ P' <=> u(P) ≥≥ u (P')

for all P, P' ε P, iff •≥≥ is a weak order. If such
a homomorphism exists, then

((P,•≥≥),(ℜ , ≥≥), u))

is an ordinal scale.

6.2.2 Ratio Scale

In order to come to the ratio scale the
relational system (P, •≥≥) has to be extended to
(P, •≥≥, o). We want to introduce the following
notation for P, P'ε P: P ≈ P' iff P •≥  P', and P' 
•≥  P, P •> P' iff P •≥  P', and not P' •≥  P,
where •≥  is the weak order and means equally
or more complex, •> means more complex,
and ≈ means equally complex.

Theorem 6.2 /KRAN71/, p.74:
Let P be a non empty set, •≥ is a binary
relation on P, and o a closed binary operation
on P. Then (P, •≥, o) is a closed extensive
structure iff there exists a real-valued function
on P such that for all a, b ε P

(1) a •≥≥ b <=> u(a) ≥≥ u (b)
and

(2) u(a o b) = u (a) + u (b)

Another function u' satisfies (1) and (2) iff
there exists >0 such that

u'(a) = u(a).

The statement u' (a) = u(a) gives the
admissible transformation for an additive ratio
scale. We see that Theorem 6.2 gives us
conditions for the additive ratio scale.

In Zuse /ZUSE91/, p.57 an extensive
structure, as proposed by Bollmann /BOLL84/,
is presented.

Definition 6.2: (Extensive Structure):
Let P be a non-empty set, •≥≥ binary relation
on P, and o a closed binary operation on P.
The relational system (P, •≥≥, o ) is an
extensive structure if and only if the
following axioms hold for all P1,.,P4 ε P.

A1': (P,•≥≥ ) is a weak order

A2': P1 o (P2 o P3 ) ≈ (P1 o P2 ) o P3,
axiom of weak associativity

A3': P1 o P2 ≈ P2 o P1, axiom of weak
commutativity



A4': P1 •≥≥ P2 => P1 o P3 •≥≥ P2 o P3
axiom of weak monotonicity

A5': If P1 •> P2 then for any P3,P4 there
exists a natural number n, such that nP1 o P3
•> nP2 o P4, Archimedian Axiom
®

The axioms of the extensive structure describe
empirical conditions related to concatenation
operations of objects. The axiom of positivity:
P o P’ •> P, is also an axiom of the extensive
structure.

6.3 Consequences of the Extensive
Structure

We summarize the consequences of an
extensive structure.

• An extensive structure is assumed by an
additive Measure u.

• An extensive structure is also assumed by
every Measure u’, that is a strictly
monotonic function f of an additive
Measure u. It holds: u’ = f u.

• An additive Measure u leads to the
additive ratio scale.

• A Measure u’, which is not additive, can
be used as a non-additive ratio scale, if the
combination rule is meaningful for the
ratio scale.

• If the empirical conditions A1’-A5’ are
fulfilled in reality, then the Theorem of the
extensive structure says, that an additive
measure exists.

• Because the condition of the extensive
structure are empirically, the extensive
structure gives an qualitative interpretation
of a measure.

6.4 Measurement Theory and Software
Measures

We now show very briefly how measurement
theory can be applied to software complexity
measures. We will illustrate this with the
Measures of McCabe. We specialize the
general measurement theory approach for
software complexity. We consider the
empirical relational system (P , •≥≥) for the
ordinal scale and (P , •≥≥, o) for the ratio scale,
where P is the set of flowgraphs, •≥≥ the binary
relation equal or more complex than, and o is
a binary operation.

In measurement theory a concatenation
operation is defined as:

A x A -> A.

where A is the set of flowgraphs. As binary
operations we consider here the sequential
combination BSEQ for flowgraphs.

=>

P1 P1

P2 P2

Figure6.2: The binary operation BSEQ=P1 o
P2 of two arbitrary flowgraphs P1 and P2, and
the sequential concatenation operation of a
structured chart.

6.4.1 Application of Measurement Theory
to the Measure of McCabe

Firstly, we choose the Measures of McCabe
/ZUSE91/, p.151, with

MCC-V=|E| - |N| + 2 , and

 MCC-V2=|E| - |N| + 1

to demonstrate our method. McCabe derived a
software complexity measure from graph
theory using the definition of the cyclomatic
number. McCabe interpreted the cyclomatic
number as the "minimum number of paths" in
the flowgraph. He argued that the minimum
number of paths determines the complexity
(Called by McCabe: cyclomatic complexity) of
the program: The overall strategy will be to
measure the complexity of a program by
computing the number of linearly independent
paths v(G), control the "size" of programs by
setting an upper limit to v(G) (instead of using
just physical size), and use the cyclomatic
complexity as the basis for a testing
methodology.

The cyclomatic number is only a value of a
mathematical function. Considering the Triple
(A, B, u) for a scale, only the part (B,) is used,
but measurement considers always the Triple
(A, B, u) which includes the empirical
relational system A. However, interpreting the
cyclomatic number as the complexity of a
flowgraph gives this number an empirical
interpretation. Having an empirical
interpretation of the numbers (cyclomatic
complexity) the use of measurement theory is
justified. We consider the empirical relational
system (P, •≥≥) for the ordinal scale and (P, •≥≥
,o) for the ratio scale, where P is the set of
flowgraphs, o is the sequential combination
BSEQ of flowgraphs as defined in Figure 6.1,



and MCC-V2: is the additive Measure MCC-
V2=|E| - |N| + 1 of McCabe with

MCC-V2(P1 o P2) =  MCC-V2(P1) + MCC-V2(P2).

This combination rule is meaningful for the
admissible transformation of a ratio scale.

6.4.1.1 The Measure of McCabe as an
Ordinal Scale

The Measure MCC-V2 can be used as an
ordinal scale if the empirical ranking order
corresponds with the ranking order of the
Measure of McCabe. The Measure MCC-
V=|E|-|N|+2 of McCabe is a strictly monotonic
transformation of the Measure MCC-V2. A
strictly monotonic function is the admissible
transformation of the ordinal scale, it does not
change the ranking order.

6.4.1.2 The Measures of McCabe as a
Ratio scale

In order to give the conditions for the use of
the Measure MCC-V2 as a ratio scale we use
Theorem 6.2. If o is the sequential
combination BSEQ of flowgraphs, if
complexity is transitive and complete and if
the Measure MCC-V2 is an ordinal scale then

(P, •≥≥, o)

is a closed extensive structure. In this case

((P, •≥≥, o), (ℜ , ≥≥, +), MCC-V2),

where MCC-V2=|E| - |N| + 1, is an additive
ratio scale. The Measure MCC-V2 is a strictly
monotonic transformation of: MCC-V. Put in
other words: the Measure MCC-V2=|E| - |N| +
1can be used as a ratio scale because it is
additive related to the concatenation operation
BSEQ.

6.4.1.3 The Measure of McCabe as an
Absolute Scale

There is a confusing situation in literature
about the absolute scale. It is not true that the
absolute scale is described by counting. We
now show the conditions for the use of the
Measure of McCabe as an absolute scale. Very
often people say that the Measure of McCabe
measures the cyclomatic number and that is an
absolute scale. That is wrong, because we can
transform the cyclomatic number by an
admissible transformation. We can say that we

have twelve independent path, but we also can
say that we have one dozen independent paths.

In order to characterize the Measure of
McCabe as an absolute scale, we have to
introduce an additional concatenation
operation BALT. Above, we introduced the
sequential concatenation operation BSEQ,
additionally we introduce the concatenation
operation BALT, which is defined as:
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Concatenation Operations BSEQ and BALT
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Figure 6.3: Concatenation operations BSEQ
and BALT, where two Flowgraphs P1 and P2
are combined to a new Flowgraph BSEQ = P1
o P2 or BALT = P1 • P2, with P1, P2 ∈  P.

In order to come to the absolute scale we
consider the following empirical relational
system:

A = (P, •≥, o, •),

where P is the set of flowgraphs, •≥ an
empirical relation, like equally or more
difficult to maintain, o is the sequential
concatenation operation BSEQ and • the
concatenation operation BALT. We consider
the Measure MCC-V2 of McCabe which is
defined as:

MCC-V2 (P) = |E|- |N| + 1.

For the sequential concatenation operation
BSEQ = P1 o P2 the combination rule is:

MCC-V2 (P1 o P2) =
MCC-V2 (P1) + MCC-V2(P2).

It is easy to see that the Measure MCC-V2 is
additive related to the concatenation operation
BSEQ. The combination rule for the
concatenation operation BALT = P1 •  P2 is:

MCC-V2 (P1 • P2) =
MCC-V2(P1) + MCC-V2 (P2) + 1.

We now consider whether both combination
rules are meaningful related to admissible
transformation the ratio scale. It is easy to see
that the combination rule for the
concatenation operation BSEQ is meaningful



related to the admissible transformation of the
ratio scale. We illustrate this here:

a MCC-V2 (P1 o P2) = a MCC-V2 (P1) + a
MCC-V2(P2).

We transform each measurement value with
the admissible transformation of the ratio
scale (a>0). It is easy to see that the
combination rule is invariant to the admissible
transformation of the ratio scale.

We now consider the combination rule for the
concatenation operation BALT and apply the
admissible transformation of the ratio scale.:

a MCC-V2 (P1 • P2) = a MCC-V2(P1) + a
MCC-V2 (P2) + 1.

It is easy to see that the statement above is not
invariant to the admissible transformation of
the ratio scale (a>0). The statement above is
invariant for a=1, and that is the admissible
transformation of the absolute scale.

This shows that the Measure MCC-V2 can be
used as an absolute scale if we consider the
following empirical (A) and numerical (B)
relational systems:

A = (P,.•≥, o, •), and
 B= (R, ≥, +, MCC-V2(P1) + a MCC-V2 (P2))

and the Measure MCC-V2 To use a measure
as an absolute scale depends on the behavior
of the concatenation operations related to the
admissible transformations of the ratio scale.
If one of the both combination rules are not
invariant to the admissible transformation of
the ratio scale, then we have an absolute scale
(without any proof).

6.5 Concatenation Rules and Independence
Conditions

Another important criteria for software
measures are the independence conditions
which are based on concatenation rules
/ZUSE92/. Let us assume that ((A, •≥≥),(ℜ , ≥≥),
u) is an ordinal scale. We want to discuss the
question whether there exists a binary
operation • such that

 u(P1 o P2) = u(P1) • u(P2)

for all P1, P2 ε A. We denote • as a
combination rule. The formula above is
identical with the formula

µ(P1 o P2) = f (µ(P1), µ(P2)).

The answer is given in the following
theorems.

Theorem C1: There exists such a • iff P1≈ P2
=> P1 o P ≈ P2 o P, and P1 ≈ P2 => P o P1 ≈
P o P2, for all P1, P2, P ε P

Theorem C2:
There exists such a • iff P1 ≈ P2 <=> P1 o P ≈
P2 o P, and P1 ≈ P2 <=> P o P1 ≈ P o P2, for
all P1, P2, P ε P

Theorem C3: There exists such a • iff P1 •≥
P2 => P1 o P •≥ P2 o P, and P1 •≥ P2 => P o
P1 •≥  P o P2, for all P1, P2, P ε P

Theorem C4: There exists such a • iff P1 •≥
P2 <=> P1 o P •≥ P2 o P, and P1 •≥ P2 <=> P
o P1 •≥ P o P2, for all P1, P2, P ε P

The condition C1-C4 are hierarchical ordered,
that means C4 implies C3, C2, and C3, C2
imply C1. The independence conditions are
very important in the context of prediction and
validation of measures. For more information
see  /ZUSE92/, and /ZUSE94a/.

6.6 Non-Additive Ratio Scales

Above, it was shown that the extensive
structure leads to the additive ratio scale. The
question is whether non-additive ratio scales
are also possible. Remember, that wholeness
was defined as:

u(P1 o P2) > u(P1) + u(P2),

where P1, P2 ∈  P. We also showed that the
statement of wholeness is meaningful for the
admissible transformation of the ratio scale.
The question is what type of Measure is
assumed a non-additive combination rule
which is meaningful for the non-additive ratio
scale. Such a measure is of the type

u’ = ub,

with b>0. An additive Measure u has the
following combination rule:

u(P1 o P2) = u(P1) + u(P2),

where P1, P2 ∈  P. It also holds u = u’1/b. If we
insert this function in the additive
combination rule, we get:

u’(P1 o P2) = (u’(P1)1/b + u’(P2)1/b)b,



with b>0. This combination rule is meaningful
for the ratio scale. Put in other words: A
Measure u’ = ub, where Measure u assumes an
extensive structure and is additive, can be used
as a non-additive ratio scale. The basic
COCOMO-Model has such a combination
rule. Taking the Measure MCC-V2= |E| - |N| +
1, which is additive related to the
concatenation operation BSEQ, the Measure
MCC-V2’ = MCC-V2b, with b>0, creates a
non-additive ratio scale.

6.7 Validation and Prediction

If we have two ratio scales, one of the measure
M and the other one of the external variable
V, then the only one function which is
possible between two ratio scales is the
following formula:

V(P) = a Mb.

with a,b>0. This formula has to be validated if
we want to use a measure, which assumes a
ratio scale, as a predictor for an external
variable C, which can be also used as a ratio
scale.  The formula above is known as the
basic COCOMO-Model /BOEH81/. For more
information’s see Bollmann et al. /BOLL93/
and  Zuse /ZUSE94a/.
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