
The PretzelBook

second edition

Felix Gärtner

June 11, 1998

2

Contents

1 Introduction 5
1.1 Do Prettyprinting the Pretzel Way 5
1.2 History . 6
1.3 Acknowledgements . 6
1.4 Changes to second Edition . 6

2 Using Pretzel 7
2.1 Getting Started . 7

2.1.1 A first Example . 7
2.1.2 Running Pretzel . 9
2.1.3 Using Pretzel Output . 9

2.2 Carrying On . 10
2.2.1 The Two Input Files . 10
2.2.2 Formatted Tokens . 10
2.2.3 Regular Expressions . 10
2.2.4 Formatted Grammar . 11
2.2.5 Prettyprinting with Format Instructions 12
2.2.6 Formatting Instructions . 13

2.3 Writing Prettyprinting Grammars 16
2.3.1 Modifying an existing grammar 17
2.3.2 Writing a new Grammar from Scratch 17
2.3.3 Context Free versus Context Sensitive 18
2.3.4 Available Grammars . 19
2.3.5 Debugging Prettyprinting Grammars 19
2.3.6 Experiences . 21

3 Pretzel Hacking 23
3.1 Adding C Code to the Rules . 23

3.1.1 Example for Tokens . 23
3.1.2 Example for Grammars . 24
3.1.3 Summary . 25
3.1.4 Tips and Tricks . 26

3.2 The Pretzel Interface . 26
3.2.1 The Prettyprinting Scanner 27
3.2.2 The Prettyprinting Parser . 28
3.2.3 Example . 29

3.3 Building a Pretzel prettyprinter by Hand 30
3.4 Obtaining a Pretzel Prettyprinting Module 30

3.4.1 The Prettyprinting Scanner 30
3.4.2 The Prettyprinting Parser . 31

3.5 Multiple Pretzel Modules in the same Program 31
3.6 Prettyprinting for non-LATEXians . 32

3

4 CONTENTS

3.6.1 Other Markup Formatters . 32
3.6.2 Going for HTML . 33

4 Pretzel meets noweb 35
4.1 Prettyprinting in noweb – How it works 35

4.1.1 A noweb Prettyprinter for C 36
4.1.2 A noweb Prettyprinter for Java 36
4.1.3 Writing Prettyprinting Grammars for noweb 37
4.1.4 Debugging . 38
4.1.5 Making the Best Use of It . 38
4.1.6 Some Naming Conventions 38

4.2 Problems . 39

5 On Prettyprinting 41
5.1 Prettyprinting with Format Commands 41
5.2 A Short History of Prettyprinting . 42

5.2.1 Historical Notes . 42
5.2.2 The Language Dependent Front End 44
5.2.3 The Language Independent Back End 45
5.2.4 The Set of Format Commands 45
5.2.5 Open Prettyprinting Problems 47

6 Future Work 49

7 Reference 51
7.1 The Concept of Pretzel . 51

7.1.1 The Input Files . 52
7.2 The Format of the Input Files . 52

7.2.1 The Formatted Token File . 53
7.2.2 The Formatted Grammar File 54
7.2.3 Comments and Code . 56

7.3 Synopsis of pretzel and pretzel-it 56
7.3.1 pretzel-it . 56
7.3.2 pretzel . 56

Bibliography 57

Index 62

Chapter 1

Introduction

“I do think however that it is important that you are given some control
over the basic prettyprinting style, as it can get very frustrating to see
your code systematically reformatted in a style that you dislike.”

Marc van Leeuwen [63]

1.1 Do Prettyprinting the Pretzel Way

What is Pretzel?

Welcome to Pretzel. Pretzel is a prettyprinter generator, i.e. a system hat builds
prettyprinters. The good thing about Pretzel is that it builds prettyprinters with full
user control. The new thing about Pretzel is that it doesn’t build standalone pret-
typrinting programs, but rather builds modules that can be turned into standalone
programs easiliy, but can also be incorporated into your own software systems.

What is this book about?

This book is the ultimate source of information about Pretzel. It explains nearly all
(known and unknown) facets of the Pretzel system and should be usefull to anybody
using the system.

How should I read this book?

First of all, I expect that you are aquainted with the issue of prettyprinting. Why
would you use a system like Pretzel if you weren’t?! (However, if you want to freshen
up your understanding of the subject matter, you should have a glance at chapter 5
at some pleasing time, which gives an overview over the area of prettyprinting and
the history of the concepts behind it.)

Essentially, you should start with the first chapter, that is the tutorial of Pretzel.
This might be the only part of this document that most people will read. Later
chapters deal with the more intricate parts of using Pretzel (like chapter 3, “Pretzel
hacking”) or with combining Pretzel with the popular programming tool noweb
(chapter 4, “Pretzel meets noweb”).

The final chapter is the reference manual of Pretzel. Consult this section only
in emergencies.

5

6 CHAPTER 1. INTRODUCTION

Where can I get Pretzel?

You can probably get Pretzel through the site or person through which you got
this document. Pretzel is free software, i.e. you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by the Free
Software Foundation (either version 2 of the License, or (at your option) any later
version).

You can get the latest version of the distribution by looking at the following
WWW address, which points to the Pretzel homepage:

http://www.iti.informatik.th-darmstadt.de/~gaertner/pretzel/

The latest distribution resides at:

http://www.iti.informatik.th-darmstadt.de/~gaertner/pretzel/code/

The current release number of Pretzel is 2.0. Look out for the latest information
on the Pretzel homepage, if you want to be up to date.

How do I install Pretzel?

The distribution contains a file called README that contains further instructions how
to install Pretzel. To date, Pretzel runs on UNIXisch like machines and has been
tested under HP-UX, AIX RS6000 platforms and under Linux. It uses the GNU
g++ compiler and the common UNIX tools flex and Bison.

1.2 History

The Pretzel system started off as a minor project at the Institut für Theoretische
Informatik at the Technical University of Darmstadt, Germany early 1993. It was
revised during a sabbatical at Trinity College, Dublin in late 1993 and version 1.1
was finished back in Darmstadt in the summer of 1994. In early 1996 encouragement
from the net led me to take up the project again and prepare release 2.0, which main
feature was the ability to interface with noweb. This release was out by christmas
1996. Work continues mostly on building new prettyprinting grammars for several
languages.

1.3 Acknowledgements

Pretzel is by far no finished system and a lot still needs to be done. However I have
to thank firstly Joachim Schrod for initiating this project and his encouragement to
hang on to it for so long. I also have to thank Lee Wittenberg and Norman Ramsey
for their help on release 2.0 and to Holger Uhr for pointing me to a bug. Thanks
also to Roger Kehr and all those other students whom I have discussed this topic
with (whether they wanted or not). I am very grateful to the Institut für Theo-
retische Informatik here in Darmstadt and to Professor Waldschmidt for providing
the computing resources for this project. Release 2.0 comes as a christmas present
for me and the people on the USENET comp.programming.literate newsgroup,
who — with their discussions — have helped to improve my understanding of this
subject and — with their citations — also have helped to impove this book by far.

1.4 Changes to second Edition

The second edition of the PretzelBook features a dramatically enhanced chapter on
interfacing with noweb and minor changes to the chapter on Pretzel hacking.

Chapter 2

Using Pretzel

“I’m using CWEB to write chapters for books, and really appreciate the
pretty-printing and automatic indexing and cross-referencing.”

Tim Kientzle [26]

This chapter explains how to use Pretzel in an everyday setting. It covers the things
you need to know if you want to build a Pretzel prettyprinter from an existing
set of Pretzel input files or if you want to modify an existing input or write a
totally new one from scratch. It assumes that the Pretzel system has already been
installed on your system so that you can invoke the pretzel-it command from
your command prompt. You don’t need any prior experience with Pretzel or LATEX
to start, maybe just a slight idea of what kind of things regular expressions and
context free grammars are, what prettyprinting is about and how your source code
looks best in a prettyprinted way.

2.1 Getting Started

This section will give a first introduction to using Pretzel. It will show how to
build a prettyprinter for a simple programming language, which will be a subset of
standard Pascal. After reading this section and doing the excercises, you will be
able to build arbitrary prettyprinters from the ready-to-go input files included in
the Pretzel distibution.

2.1.1 A first Example

The input to Pretzel will always be two files. Let’s start with these files first and
look at Pretzel in action. So you might startup your computer, invoke your favourite
text editor and create two files called simpas.ft and simpas.fg. The suffixes .ft
and .fg are the extensions that Pretzel expects for its input files. But before we
learn about what they stand for, fill in the files with the following information:1

/* simpas.ft -- a simple pretzel example */

%%

";" SEMI
"=" |

1You can spare yourself from typing the data if you look into the subdirectory
languages/examples of the Pretzel distribution.

7

8 CHAPTER 2. USING PRETZEL

"<" |
">" |
"<=" |
">=" |
":=" BINOP
"if" IF
"then" THEN
"else" ELSE
"begin" BEG
"end" END
[0-9]+ NUM

[a-zA-Z][a-zA-Z0-9]* ID

[\t\ \n] // eat up whitespace

Here’s the second file, which should be called simpas.fg:

/* simpas.fg -- a simple pretzel example */

%token SEMI BINOP IF THEN ELSE BEG END NUM ID

%%

stmt_list : stmt
| stmt_list SEMI stmt { $1 $2 force $3 }
;
stmt : IF exp THEN stmt { $1 " $" $2 "$ " $3 " " indent $4

outdent }
| IF exp THEN stmt ELSE stmt

{ $1 " $" $2 "$ " $3 indent force
$4 outdent force
$5 indent force $6 outdent force }

| BEG stmt_list END { $1 " " $2 " " $3 }
| exp { "$" $1 "$" }

;
exp : ID

| NUM
| exp BINOP exp

;

The language that is covered by these first Pretzel specifications is Pascal with
simple expressions of the form a ≤ b or a = b (you can see which operators are al-
lowed from the pascal.ft file). Also, the only statements allowed are assignments,
the if-then-construct and the compound statement (i.e. statements enclosed within
begin and end). So the following (not prettyprinted) code would be valid in these
terms:2

if a=1 then b:=1;
if a<=1 then begin b:=2 end else b:=a

2Of course you can’t do much with this “language”, but remember that it’s only an introductory
example. Once you’ve understood the basics of this section it’ll be easy to extend the specifications
to cover all of Pascal.

2.1. GETTING STARTED 9

2.1.2 Running Pretzel

Now we are ready to start: Having these files in one of your directories, simply type:

pretzel-it simpas simpaspp

This will cause your machine to rattle and hum and if all goes well, it will return say-
ing “done.” and leave an executable called simpaspp. This file is the prettyprinter
for the specified language!

By default, the prettyprinter reads text from the standard input and writes
formatted code to the standard output. So try to feed the small example to the
program and look what it returns:

simpaspp <small-example.simpas

This will result in a few lines that will have the name “pretzel” written everywhere
and look something like this:

if $a=1$ then \pretzelindent{}$b:=1$\pretzeloutdent{};
\pretzelforce{}if $a<=1$ then\pretzelindent{}
\pretzelforce{}begin $b:=2$ end\pretzeloutdent{}
\pretzelforce{}else\pretzelindent{}\pretzelforce{}$b:=a$\pretzeloutdent{}
\pretzelforce{}

In effect, this is LATEX code that you can use within your own documents.

2.1.3 Using Pretzel Output

There’s a small document prepared to demonstrate the use of Pretzel output in
your own documents. It’s the file example-frame.tex.

\documentclass{article}
\usepackage{pretzel-latex}
\begin{document}

This is a small example produced by Pretzel and formatted with \LaTeX{}.

\begin{ppcode}
\input{small-example.tex}

\end{ppcode}

\end{document}

If you save the output of the prettyprinter simpaspp in a file by redirecting
the standard output (let’s call this file small-example.tex) and run LATEX on the
frame, the resulting document will look something like this:

if a = 1 then b := 1;
if a <= 1 then

begin b := 2 end
else

b := a

Now what do you think of this? Is it what you expected? It is obvious that
this is the code that has been input to the prettyprinter. But it is not obvious,
how the output corresponds to the information written down in the two input files
to Pretzel. This will be the subject of the next subsection. But, alas, you have
worked your way through this first section and know now, how to use Pretzel in it’s
simplest way.

10 CHAPTER 2. USING PRETZEL

2.2 Carrying On

This section will show you how the basic prettyprinting method works that Pretzel
uses. After reading this section you will be able to understand roughly what the
contents of Pretzel input files mean and how to modify existing input files to go
with your wishes.

2.2.1 The Two Input Files

The prettyprinting method used by a Pretzel prettyprinter is quite simple. It reads
the input, which usually is the plain source code, cuts this text into small pieces
called tokens, and tries to rearrange them in such a fashion that the user will call
æsthetic. Of course, the relative order of the input tokens will (usually) not be
changed, but the amount of whitespace inbetween might be enlarged or reduced,
line breaks may be inserted at special places etc. All this is specified by rules that
the user writes. These rules describe, how tokens are to be put together and how
they in turn should be formatted.

The two input files of Pretzel reflect this separation of concerns. One file tells
the prettyprinter which small tokens to expect and the second file states, how they
should be put together again and how this should look. The first file is called the
formatted token file, because it contains token descriptions. The second file is called
the formatted grammar file, because that’s what you call a set of such rules: a
grammar.

2.2.2 Formatted Tokens

In the simple example from above the first file (simpas.ft) was the formatted token
file. Looking at it you’ll see that all the reserved words from our Pascal subset
appeared there together with all the bits that make up expressions (like the binary
operators <, ≤, and so on). Accompanying these strings were special words in
uppercase (like IF, ELSE) which are the symbolic names of these tokens. A vertical
line in place of such a name means, that the name of this token should be the same
as the one immediately following the current one. From now on, these tokens are
referenced only by their symbolic name.

Most of these token definitions are quite simple, except those from the last three
lines. If you already know, how a token looks like in the source code, you can just
write it down and assign a symbolic name to it. However, if you don’t know exactly
what it looks like (which is the case with normal identifiers or strings for example),
you’ll have to specify an input pattern that the prettyprinter must match in order
to find and name the token. This pattern is specified by using regular expressions.

2.2.3 Regular Expressions

A case in which you’ll need this feature of Pretzel crops up with any language using
identifiers for example. In Pascal, identifiers begin with a letter between ‘a’ and
‘z’ (in upper- or lowercase) followed by zero, one or more letters or digits. This is
expressed by the regular expression

[a-zA-Z][a-zA-Z0-9]*

Regular expressions are read from left to right. The squared brackets mean: “a
character from this set or range”. A star attached to such a range means: “zero,
one or more of these characters.” The regular expression for integer numbers looks
like this:

[0-9]+

2.2. CARRYING ON 11

The plus sign means “one or more of these characters”, which means one or more
consecutive digits in this context.

This might be enough for a first introduction into regular expressions. See the
manual pages flex(1) or flexdoc(1) for a complete reference on how to write
regular expressions that match more complex patterns. However, it might be im-
portant to note here that the order of the regular expressions in the input file is
important. When the prettyprinter reads its input it tries to match the regular
expressions starting from the top. If it finds one or more patterns that match the
input file, it will take the longest match (counting the characters matched). If there
are several matches with equal length it will take the one that comes first in the
file. Most notably, the pattern for identifiers is found at the very end of the file. If
it had stood right at the beginning, all reserved words like if and else would habe
been matched as ID tokens and not as IF or ELSE.

2.2.4 Formatted Grammar

The above explanations should be enough about the formatted token file. But
formatted tokens are only half the input to Pretzel. The other half is the formatted
grammar file. It specifies the rules by which these tokens are put together again.

The rules are specified in form of a context free grammar. A rule specifies what
tokens to look for, to put together and what the resulting ‘thing’ is. Actually, a
grammar specifies tokens too, only in a more complex way: it tells how complex
tokens are put together by adding zero, one or more simpler tokens. These simple
tokens may be the ones from the formatted token file, but also new ones specified
in the grammar.3 When such a rule is actually executed, we say that the simpler
tokens are reduced to a (more) complex token.

A rule contains a ‘resulting’ token, a colon followed by a series of tokens from
which the one preceding the colon is made. A rule is terminated by a semicolon.
Several rules reducing to the same token can be appended by using a vertical line.
The example above showed that an expression (token name is exp) can be built
from the simple tokens ID (an identifier) or a NUM token (a number), or in turn
can be made from two expressions that have a BINOP token inbetween. This is
really recursive! Similar things count for statements (token name stmt). There is
no restriction on the order of the rules as they appear in the formatted grammar
file, except that the prettyprinter will always want to end up with the token that
is mentioned first in the file. In our example, the prettyprinter will always end up
with a stmt list token. If this isn’t possible, it will be unhappy and fail.

There are only two more things to say about formatted grammars: firstly there
are these strange looking constructs amidst curling braces behind some of the rules,
and secondly, there are these funny %token things at the top.

The %token things on the top of the formatted grammar file are the token
declarations. Every simple token that is named within the formatted token file has
to be declared here. This is just a way of telling the prettyprinter which tokens
actually come directly from the input. They have to be there in order for the
prettyprinter to work.

The other things inside the curling brackets are a little more interesting: they
define how the major aspects of the output will look like. Major aspects are inden-
tation and line breaks. This gets more to the heart of the matter of prettyprinting
and we’ll see that the stuff inside the brackets is as important as the rules outside.
But this is so important that it deserves a subsection of its own.

3Token names can be chosen as you like. By convention, use lowercase for normal tokens and
all uppercase for tokens that appear in the formatted token file. Do not try to call a token error.
See section 2.3.5 to see why.

12 CHAPTER 2. USING PRETZEL

2.2.5 Prettyprinting with Format Instructions

This subsection introduces the way in which the user controls prettyprinter actions.
A lot of early prettyprinters were very simple: they read the programming lan-

guage source code and scanned it for special words (like begin). If they found one
of these patterns, they executed a special action. As most of the common output
devices at that time were dot matrix line printers or dumb ASCII terminals the
actions performed when a reserved word like begin were encountered were simple
too. If for example the writer of the prettyprinter wanted a line break before the
begin and a little indentation too, he would code this directly into his program. He
would keep a local count of the amount of indentation, increment and decrement it
when appropriate and indent to this amount when breaking lines.

Pretzel works in a similar but slightly more flexible way. We have seen that
the formatted token file contains patterns that the prettyprinter tries to match to
the input. This is exactly what the simple prettyprinters did, but nothing more.
To implement a simple prettyprinter, we would only need to specify the patterns
for the tokens and add some information, what the output device should do if this
pattern can be matched. An example will show, that this is not enough, if you
strive for full user control over prettyprinting.

For example look at the following Pascal code fragment.

if i > 1 then i := i− 1;
if b ≤ i then

b := b + 1
else b := b− 1;

Say the user wants the first statement (an else-less if) to be prettyprinted with-
out a forced line break behind the then keyword and the second statement (a simple
if-then-else) to have a line break behind the keywords and additional indentation
to the statements to enhance readability. This is hardly expressible in terms of “for-
matted tokens”, because it would be necessary to go back in the output and insert
a line break within material that might have already been output to the screen or
to paper.

To specify this distinction you have to tell the prettyprinter something about
what if-thens are in difference to if-then-elses. That’s where the formatted gram-
mar comes into action.

If you look at the simpas.fg example above, you’ll notice two rules that handle
these two different cases. Here are both rules again to look at:

stmt : IF exp THEN stmt { $1 " $" $2 "$ " $3 " " indent $4
outdent }

| IF exp THEN stmt ELSE stmt
{ $1 " $" $2 "$ " $3 indent force
$4 outdent force
$5 indent force $6 outdent force }

;

The second line is more interesting at the moment: it means that any IF token
followed by exp, THEN, stmt, ELSE and stmt tokens will be reduced again to a stmt
token. The attached description in curled braces tells the prettyprinter to insert
a forced line break (force) behind the THEN token if this rules fires. Additionally,
the statement following the THEN should have a little more indentation before it
(indent) which should be taken back afterwards (outdent). The same is specified
for the second statement following the ELSE token. What is done here is to specify

2.2. CARRYING ON 13

something like an attachment (or special attribute) of the token which this rule
reduces to (i.e. the stmt token on the left hand side). This attachment can use the
attachments of the tokens on the right hand side by referring to the sequence number
in which they appear there. This means that $1 references the attachment of the IF
token, $2 the attachment of the exp token and so on. All the attachments between
the curled braces are put together and form the attachment of the newly formed
token (the stmt token). Apart from referring to the attributes of existing tokens,
you can additionally insert special formatting instructions (like indent , outdent or
force) and strings (like the " $") into the sequence as “extra” attachments. All
these attachments together form the attribute of the new stmt token.

The special commands that have appeared above, e.g. the indent or force com-
mands, are called format commands or formatting instructions. Subsequently the
prettyprinting method used by Pretzel prettyprinters is called prettyprinting with
format commands. The main assumption is that we have a text formatter at hand
that uses control sequences (or tags) inside the actual text body for specifying all
different ways of formatting (such as fonts, indentation, spacing, alignment). An-
other term for this way of formatting is in-text procedural markup and systems
using this technique are commonly called document compilers4. The idea behind
the prettyprinting method presented here is to systematically insert special format-
ting instructions into the source code which are left to a typesetter to interpret.
The history behind this method and the details of the algorithm are explained in
the special chapter “On Prettyprinting” (chapter 5). From now on, simply think
of formatting instructions as actions that will be performed on the typeset output
before it appears on the screen or on paper.

2.2.6 Formatting Instructions

Now, we’ll have a look at the formatting instructions that Pretzel offers.

Controlling Indentation

We have met three formatting instructions already: indent , outdent and force. They
in effect control the amount of indentation. The indent primitive increases the level
of indentation by one unit, outdent does the same in a decreasing fashion. However,
the new level of indentation only becomes visible after a forced line break, which
corresponds to the force command.

Let’s look at an example. Here we have a simple while loop in Pascal. If the
input sequence is

while (i<size) do indent begin i:=i+1; end; outdent

the output will simply look like this:

while (i < size) do begin i := i + 1; end;

However, if a force command is inserted behind the indent command, we’ll get the
expected output:

while (i < size) do
begin i := i + 1; end;

So the indent and outdent primitives cause only future lines to be in- or “out”den-
ted and have no effect on the present line that is just processed. The indentation
shows only if there is a forced line break after the amount of indentation has been
changed.

4Common examples of such typesetting systems are TEX and the UNIX tools Nroff/Troff.

14 CHAPTER 2. USING PRETZEL

Why do indent and outdent to behave in this way? To understand this, we
should consider the above example without the keywords begin and end surround-
ing the assignment. The result

while (i < size) do
i := i + 1;

really does look a bit stupid. In cases like this we would like the controlled statement
to stand on the same line as the header because the program structure doesn’t need
to be visualized in this simple case by indentation. The only thing one has to to
here is to remove the force command from the input sequence and we will get:

while (i < size) do i := i + 1;

The interesting fact is that this doesn’t change our global rule that the body of a
while-statement should be indented from it’s keyword. So the indent and outdent
commands can always be inserted before and after the controlled statement. The
only thing to worry about is whether or not to insert a force (which is always
recommended before a begin, since this nearly always starts a sequence of two or
more statements).

Controlling Line-breaks

Let’s see, how you can control line breaking. Consider for example a long block of
statements in Pascal that contain extremely long names for identifiers as in the
following example:

begin string_buffer[string_buffer_pointer]:=c;
string_buffer_pointer:=string_buffer_pointer + 1; end;

We don’t want line breaks to appear within identifiers and we don’t want things
like this to crop up when prettyprinting:

begin string buffer [string buffer pointer] := c; string buffer pointer
:= string buffer pointer + 1; end;

Here, a statement is broken across two lines, but we would prefer line breaks to
occur only between two adjacent statements (and usually also before the end) like
in:

begin string buffer [string buffer pointer] := c;
string buffer pointer := string buffer pointer + 1;
end;

So the conclusion is, that we have to tell the formatter, where it is possible to break
a line, if the current block of text should exceed the right margin. This is done
with the break space primitive. By inserting a break space amidst two statements
(and even after the begin and before the end) the above problem cannot happen
any more. A break space tells the typesetter, to break a line at this point, if he is
looking for a place to break somewhere near it.

But even now, a single statement might be too long to fit onto one line. Consider
for example a while-loop or an if-statement with a very long expression that governs
it, as in:

while (str buf[str buf ptr]<>c) and (str buf ptr<=buf size) do

Inserting break spaces before and after the “and” would seem to be a good solution
to this line-breaking problem. But breaking the line after the “and”, say, would
result in

2.2. CARRYING ON 15

while (str buf [str buf ptr] <> c) and
(str buf ptr ≤ buf size) do

what of course is intolerable. We want a long continuous line to be indented a little
if it is broken, but the amount of indentation for the continuing line must be more
as the “normal” indentation of controlled statements inf conditionals for example.
This distinction visually separates adjacent (and indented) statements from a single
statement that fills two lines. To this effect, there exists a new format command,
namely the optional line break command opt . There are ten different opts that
specify the badness of a line break at the point of it’s occurence. They are called
opt0 , opt1 ,. . . , opt9 . A smaller number encourages line breaking at this point more
than a higher number. So opt0 will nearly always lead to a line break whereas opt9
leads to a line break only if there is no opt0 ,. . . , opt8 primitive somewhere near
and the line has to be broken around this point.5 So the opt command denotes an
optional line break with the continuation line indented a little more with respect to
the normal indentation.

So in the example we therefore say:

while (str buf[str buf ptr]<>c) and opt4 (str buf ptr<=buf size) do
indent force begin ...force end

depending on whether we rather liked a line break before or after the “and”. This
would then yield the correct way of formatting, as in:

while (str buf [str buf ptr] <> c) and
(str buf ptr ≤ buf size) do

begin. . .
end

Note however that a break space is always a better place to break a line than an
optional line break denoted by opt .

Additional Commands

The list of format commands is not yet complete. There are still a few more prim-
itives to learn, but they are not as important as the other commands that were
presented up to this point. The following primitives were introduced to achieve
better formatting results in special situations.

The first one is called backup and denotes a little negative horizontal space. This
command must be preceded by a force, because it doesn’t make sense to backup
within a line if it’s beginning has already been output. So the two commands
“force, backup” appearing in a row can be seen as a short form for the sequence
“outdent , force, indent”. The backup command is used in cases where statements
are preceded by labels or simply where a line should stick out to the left a bit in
order to emphasize it.

The next additional command is called big force. As the name implies this
primitive acts like a force, but on a bigger scale. big force not only forces a line
break; it also inserts a little extra vertical space after the break. You can use the
big force primitive to separate two adjacent lines that semantically do not belong
together, like two function declarations.

If you are trying to typeset C or C++ programs, you will need a feature to
typeset so called preprocessor directives. These are commands beginning with a #
that can influence the source code before compilation. Normally these lines appear
beginning at the left margin so we want a command that can be used to typeset

5In TEX terms the digit n in the name of the opt command specifies the penalty associated
with this break point. The penalty in the default interpretation of opt is about 10 · n.

16 CHAPTER 2. USING PRETZEL

lines like this. This command is called no indent . It causes the current line to be
printed flushleft. So if you want to prettyprint a C or C++ preprocessor line, you
should say

force no indent #PREPROCESSOR DIRECTIVE force

and the line following this directive will be indented as much as the line before the
directive.

Finally the last command of the present command set is called cancel . To un-
derstand this command I have to mention a tricky detail of the presented algorithm
that I have omitted in the intoduction of this section: There I said that format
commands are simply output by the prettyprinter one by one just like strings, only
that they are “marked” as typesetting commands. Actually the prettyprinter also
does a little bit of interpretation in advance. But these exceptions from the rule
can be caught in two phrases. The first one is of global importance and the second
one is related to the cancel command:

1. A sequence of consecutive break space, force, and/or big force commands is
replaced by a single command (the maximum of the given ones).

2. The cancel command cancels any break space, opt , force or big force command
that immediatly precede or follow it and also cancels any backup command
that follows it.

So it seems that the cancel command is a command that mixes everything up
again after we have put everything into a neat and tidy form! But this only seems
so. The interpretation done by the prettyprinter according to the two rules stated
above, was introduced to be more generous and more flexible with the placement
of format primitives into the source code. Because, after all, the format commands
will not be inserted by hand (as the reader might think after viewing the examples
given above), but they will be inserted automatically by the prettyprinter according
to the prettyprinting grammar that we have been introduced to above.

Summary of Format Commands

Table 2.1 shows a complete list of all the format command primitives introduced
in this part of the book. The only command that wasn’t mentioned up to now is
the null primitive that serves as a neutral (or empty) command. Now, with the
knowledge of all the intrinsic and extrinsiv features of the prettyprinting method
of Pretzel prettyprinters, you are ready to read, write or modify prettyprinting
grammars at your will. Now, you have total control over the prettyprinting style;
fully user controlled prettyprinting is in your grasp.

2.3 Writing Prettyprinting Grammars

“Knowing CWEB and its sources, it is clear to me that doing a good job
(or even a fairly good job) about prettyprinting is not a simple task.”

Marc van Leeuwen [64]

Yes, this is true. In terms of Pretzel, “doing a good job about prettyprinting” is
writing a good prettyprinting grammar. For simple languages you might spend a
day or two preparing a good grammar, but for more complex languages (and more
complex wishes to the look of the output) you might spend weeks and still not be
happy.

2.3. WRITING PRETTYPRINTING GRAMMARS 17

null empty command
indent indents the next line a little more
outdent takes back the last indentation (de-indent)
force forces a line break
break space denotes a possible space for a line break
optn, n ∈ {0, . . . , 9} denotes an optional line break with the con-

tinuation line indented a litte with respect to
the normal starting position. This line break
will score a penalty of 10n.

backup denotes a small backspace
big force forces a line break and inserts a little extra

space
no indent causes the current line to be output flushleft
cancel obliterates any break space, opt , force or

big force command that immediatly precedes
or follows it and also cancels any backup com-
mand that follows it.

Figure 2.1: List of format command primitives

2.3.1 Modifying an existing grammar

If you’re lucky, somebody else had done the work already for you. In such cases,
simply grab a copy of the two Pretzel input files, run pretzel-it and off you
go. The Pretzel homepage [14] should be a good starting point for the quest for a
prettyprinting grammar for your language.

But what if this grammar doesn’t suit your preferences? What if it prettyprints
ugly code? Well, then you have to plunge into the files and modify them. Making
small changes that will work is quite easy. For example, if you only dislike the way
certain symbols come out of the prettyprinter, look in the formatted token file and
try to figure out, where you can change it. Or if you dislike forced line breaks at
certain places, just go into the grammar and remove the force from the attribute
definition.

If your wishes cover more major aspects of the layout, then you should make a
copy of the file and rename it to something that reflects the change. Also, you might
put a new comment at the beginning of the file that describes who you are and what
this new grammar does differently than the grammar you started from. Now you
can start to experiment. The good thing about this is that you can always fall
back to the original copy and start from there again. If you get your new grammar
working, contact the Pretzel home page [14] so it can be added to the list of files
for certain languages. Other people can then use your grammar and don’t have to
go through the same work again.

For similar languages (like Java and C) you could try to take a grammar for
the first one and try to modify it that it fits the second one. In any case, studying
existing grammars is always very helpful if you don’t have much experience.

2.3.2 Writing a new Grammar from Scratch

If you’re unlucky, and you can’t find a suitable grammar then you will have to start
from scratch. If you’re in this situation, there are two possible ways of continuing:

1. Most programming languages are context free and so there should be a con-
text free grammar for your language available either in the reference works
(i.e. the books) that “define” the language, or somewhere in the internet,

18 CHAPTER 2. USING PRETZEL

where there could be compilers for your language available in the source, and
if so, a context free grammar for the parser of that compiler is almost al-
ways included there. You could start with such a grammar and simply add
formatting instructions to the rules as you wish.

2. You could start entirely from scratch, look at the language and start writing
a prettyprinting grammar that works with the code you are working on. This
might seem more work than the first alternative, but sometimes is still feasible.

To go with the first alternative, you will have to have a full blown language
grammar available. But these grammars (as for example with C or C++) tend to
be rather large and ugly, resulting in prettyprinting grammars, that are difficult
to understand and difficult to modify. However, a prettyprinting grammar doesn’t
have to be a full blown language grammar after all. The fact that such a grammar
will solemnly be used to create a “prettyprinted” translation of a bit of source code it
doesn’t necesserily have to have any resemblence to a language grammar. In Pascal
for instance, for-, while- and elseless if-statements are normally formatted in a
very similar way; so the grammar mustn’t distinguish between the three constructs.
This results in prettyprinting grammars that can be quite different from the normal
grammars of the programming languages. In most cases they are much smaller.

However, if you start from scratch and don’t want to use an existing reference
grammar, you could still consult it once and again if you are stuck with your own
one. Like the language grammar, the prettyprinting grammar must be able to
parse every construct that will appear in the input. But it’s no problem if the
prettyprinting grammar might swallow code that isn’t syntactically correct. We’re
talking Prettyprinters here and not Compilers. Sections 2.3.3 and 2.3.5 will elab-
orate more on the issue of “grammar correctness.” In any case, having a look at
available prettyprinting grammars in advance helps a lot.

2.3.3 Context Free versus Context Sensitive

Looking at the history of the prettyprinting method that Pretzel employs (see chap-
ter 5), we can see that the grammars that the first systems started with were context
sensitive. This means that there actually are ready to use context sensitive pret-
typrinting grammars around for many languages such as Pascal [29] and C/C++
[33]. There is even a system similar to Pretzel but with a more complete approach
called SPIDER [49] that amoung other things created a prettyprinter from a con-
text sensitive prettyprinting grammar.

So why does Pretzel use context free grammars anyway? The answer to this
problem lies in the tools that Pretzel relies on. The prettyprinters that Pretzel
generates are actually parsers, and instead of writing a whole new parser generator,
Pretzel relies on the well known UNIX tool Bison, that does just the work we need.
But, in effect, Bison input is context free! Hmmm.

Now context free grammars are a little more restrictive than context free ones,
and so it is not possible to transform any context sensitive grammar of your choice
into a context free one. This is unfortunate, but this is a fact we have to live with.
My knowledge of formal language theory is not very deep, but I suspect that parsing
with context sensitive grammars is not trivial and that this is the reason why no
generators like Bison exist in a context sensitive flavour.

So context free is what we have to live with. From studying existing prettyprint-
ing systems (again see chapter 5 for details) it seems that context sensitive is the
way to go in prettyprinting, and this seems bad for Pretzel.6 But Pretzel is a pro-

6I actually is a quite severe restriction and will probably be the reason why Pretzel will not
be widely used in practice. The extension of being able to add C code to the attribute definition
only partially eases the situation (see section 3.1 for details).

2.3. WRITING PRETTYPRINTING GRAMMARS 19

totype and (at the moment) the best you can get as a prettyprinter generator and
a context sensitive implementation of Pretzel is left for a following student genera-
tion to pursue. The good thing about context free grammars however is that every
context free grammar is also a context sensitive grammar, and so — if a context
sensitive version of Pretzel is ever built — every existing and working prettyprinting
grammar can be used with the new system without a single change. At least this
is good news. For more information on this topic, also see chapter 6 on “Future
Work.”

2.3.4 Available Grammars

All those prettyprinting grammars that are available in Pretzel format are contained
in the latest distributions of Pretzel (at least all that I know of). If you have a good
grammar for your favourite programming language at hand, let me know and I’ll
include it in the distribution too.

All these input files are available individually from the Pretzel homepage [14].
So if your Pretzel installation is rather old, then surf to that URL and look if there’s
something new on the page.

To date (July 9, 1997) I am aware of:

• C (by Felix Gärtner)
Directory: languages/cee
Files: cee.ft and cee.fg

• Pascal (by Felix Gärtner)
Directory: languages/pascal
Files: pascal.ft and pascal.fg

• Java (for noweb by Lee Wittenberg)
Directory: contrib/leew
Files: java.ft and java.fg

• Java (for noweb by Felix Gärtner)
Directory: contrib/noweb/java.latex
Files: javafx.ft and javafx.fg
Comments: Based on the grammar by Lee Wittenberg with slight changes,
but enhanced to do indexing.

• Java (for noweb by Holger Uhr)
Directory: contrib/huhr
File: javahu.fg
Comments: Replaces java.fg from Lee Wittenbergs version in contrib/leew.

Always see the README files in the directories for details.

2.3.5 Debugging Prettyprinting Grammars

“Rather, it [the need to type ‘@;’ after each refinement] is caused by an
error made in converting WEB to CWEB that was never corrected, namely
a failure to recognise the fundamentally different roles of semicolons
in Pascal and C. In Pascal semicolons separate statements, whether
simple (e.g., assignments) or compound, so if any such statement is
followed sequentially by another one, a semicolon is required after the
first; the requirement still holds if the first statement is a refinement.
In other words, in Pascal one has ‘refinement → statement’ always,
without having to consider LINE_END, and without having to use ‘@;’

20 CHAPTER 2. USING PRETZEL

(either a real semicolon is required after it, or nothing is, e.g., when
ELSE follows). In C however, no symbol separates successive statements,
but things like assignments are expressions rather that statements, and
they only become statements by incorporating a following semicolon.
Since refinements almost always stand for (compound) statements, they
should be given that category; however in (Levy/Knuth) CWEB they are
given the same category as assignments, which is ‘expression’. This
forces one to write a semicolon after each refinement, even though that
really becomes a spurious empty statement; if such an empty statement
would mess up the real syntax (the compiler would fail) then one has to
write ‘@;’ instead.”

Marc van Leeuwen [62]

Almost certainly, the first experiences with your own (or other’s) prettyprinting
grammars will lead to situations where source code is not prettyprinted the way
you wanted and you don’t know why. The insight that follows from this situation
is very frustrating: nothing comes for free! Searching for bugs in prettyprinting
grammars is as necessary as in normal programs.

The error Token

If a Pretzel prettyprinter can’t handle a sequence of input code, it will output
nothing, not even an error message. But there is still a way to notice this fact.
There is a special error token that may be used in such circumstances. You can
place it into your grammar at any place, and it will match a sequence of tokens not
covered by the other rules in question.

A handy place to put an error token is right at the beginning of the grammar.
Say, a final token is the token that everything reduces to in your grammar. To
notice a parse error, you can for example write

final : exp
| stmt

// check for parse errors:
| error { "syntax error" }

;

and so the text “syntax error” appears in the output everywhere Pretzel wasn’t
able to parse the input.

You may place the error token in any place you like, as long as it is on the right
hand side of the colon. Using the error token in other places than at the end, you
may produce grammars that are more robust and can handle unforseen constructs
more flexibly.

Watching the Parse

The pretzel-it program offers a -d option that produces a prettyprinter which
is in “debugging mode” by default. This means that during prettyprinting, the
program will output a lot of debugging information to the standard error stream
(usually the screen). This information displays what kind of token has been read
from the input (and how it looks) and what rule of the prettyprinting grammar has
been chosen. Additionally, the -d option produces a file that contains an analysis
of your prettyprinting grammar. If your input name is, say, foo, then this file will
be called foo.output.

Here’s an example of the debugging output (taken from a run on the small-example.simpas
example):

2.3. WRITING PRETTYPRINTING GRAMMARS 21

Starting parse
Entering state 0
Reading a token: Next token is 260 (IFif)
Shifting token 260 (IF), Entering state 1
Reading a token: Next token is 266 (IDa)
Shifting token 266 (ID), Entering state 4
Reducing via rule 7 (line 195), ID -> exp
state stack now 0 1
Entering state 8
Reading a token: Next token is 259 (BINOP=)
Shifting token 259 (BINOP), Entering state 11
Reading a token: Next token is 265 (NUM1)
Shifting token 265 (NUM), Entering state 3
Reducing via rule 8 (line 196), NUM -> exp
state stack now 0 1 8 11
Entering state 15
Reading a token: Next token is 261 (THENthen)
Reducing via rule 9 (line 197), exp BINOP exp -> exp
[...]
Entering state 14
Reducing via rule 2 (line 102), stmt_list SEMI stmt -> stmt_list
state stack now 0
Entering state 5
Now at end of input.
Shifting token 0 ($), Entering state 19
Now at end of input.

Every time, the scanner reads a token, the token code (like IF or ID) is printed which
is followed by the actual contents of the token (like “a” in case of the identifier).
Every time the parser reduces a token, it prints the rule that it uses. The number
of the rules and also the state information will become clear if you look at the
simpas.output file and learn about the internals of the Pretzel parsing mechanism
(by looking at the manual page bison(1)).

Context Free again

As described above, context free grammars are pretty restrictive, sometimes even
more restrictive than we like. Note that rules like

decl_head id : int_like id
;

to turn an int like token into the head of a declaration if it is followed by an
identifier are context senstive and therefore forbidden.

See also the next chapter, especially section 3.1.4 for a few more tips and tricks
for writing and debugging prettyprinting grammars.

2.3.6 Experiences

“With CWEB, there’ll always be something someone wants and can’t have,
because it tries to do too much in its kernel. Witness the recent com-
plaint in this newsgroup from someone trying to put makefiles in the
CWEB sources. CWEAVE tries to be the perfect C programming tool right
out of the box, and so comes up completely unable to handle makefiles.”

Barry Schwartz [58]

22 CHAPTER 2. USING PRETZEL

Remember, writing good prettyprinting grammars is difficult. So don’t overdo it.
It’s pretty difficult (if not impossible) to come out with a “complete” grammar that
will handle all cases brilliantly. So if you’re happy with the way your code looks,
that’s fine. If something turns out wrongly, ask yourself, what actually is wrong
here?

Chapter 3

Pretzel Hacking

In this chapter we’ll have a look into the guts of Pretzel. We’ll see how the internals
of pretzel-it work and what other nice things you can do with the system. This
chapter is aimed at programmers who want to produce simple, efficient and elegant
prettyprinters for their language. However, I recommend reading at least the first
subsection about adding C code to the rules, even when you dislike hacking.

3.1 Adding C Code to the Rules

Yes, you cann add your own C code to the attribute definition parts of the formatted
grammar and formatted token files. A typical application of this feature is to
dynamically typeset constructed type names (as typedefs in C or classes in Java)
correctly.

The problem with Pretzel is, that we would like to perform different actions
depending on the context of the token that the prettyprinter finds. For example, in
C normal identifiers should be typeset in italics, but identifiers that are the names
of typedefs should be typeset in bold. Pretzel can’t handle this situation without
tricky manipulations of the attribute definitions, because the type of grammar that
Pretzel uses is essentially context free (see section 2.3.3 for a discussion of related
problems).

3.1.1 Example for Tokens

How handle this situation? Pretzel allows you to add C code to your attribute
definitions. Here is a small example, how this could be used in formatted token
files:

[a-zA-Z][a-zA-Z0-9_]* ID { "{\\it " [escaped_underlines(yytext)] "}" }

The purpose of this line is to scan tokens that are identifier names and return
“ID” type tokens to the prettyprinting parser, but also to modify the appearance
of the matched text before returning. In this example there is C code inside the
attribute definition. This code is encircled in angled brackets “[” and “]” and
can be any sequence of C statements with one central property: The code part
must reduce to the Attribute∗ class, i.e. the return type must me a pointer to an
Attribute object. The Attribute class is a special C++ class that belongs to the
Pretzel system and is contained in the runtime library.1

To this effect, the escaped underlines function called above must have the syonpsis:
1A description of how to use objects of this class and related functions can be found in the

noweb file attr.nw in the directory attr of the Pretzel distribution.

23

24 CHAPTER 3. PRETZEL HACKING

Attribute∗ escaped underlines(char∗ s);

The matched text is accessible via a string (i.e. a char∗ variable) called yytext . The
delimiters of code are angled brackets as explained above. If angled brackets appear
in the C code itself, any closing bracket must be escaped by a backslash in order
for Pretzel to recognize it correctly.

To help simplify the synopsis of the escaped underlines function, we may use
special functions in the runtime library that belong to the Attribute class. These
are the two functions create and join. The create function takes a string (i.e a
char∗) and turns it into an attribute. So, if you have written a function, say
esc ul , that turns a string into the same string with escaped underlines, then an
implementation of the function above could look like this:

Attribute∗ escaped underlines(char∗ s)
{

return create(esc ul(s));
}

The join function simply joins two or more (up to ten) attributes together into an
new one.

3.1.2 Example for Grammars

But you can do more with this feature. Here’s an example code fragment that
handles the “correct” formatting of typedefs in C. In C you can construct your
own shorthands for types by using the typedef construct, thus making normal
identifiers like Length to type names. Here’s an example, if you’re not aquainted
with C:

typedef int Length;
Length l ;

The identifier Length has the status of a type name and this should be reflected in
the typesetting style. So the way we want it would be like this:

typedef int Length;
Length l ;

The idea behind a simple solution to this problem is to use a simple lookup
table to keep track of all identifiers that have been typedefed. Then, if we have to
prettyprint an identifier, we simply look into the table and from the result we know
whether we can use boldface or italics.

A prettyprinter for C2 might have rules like these to handle typedef statements:

typedef : TYPEDEF_LIKE INT_LIKE ID [install($3);]
{ $1 "\\ " $2 "\\ {\\bf " $3 "}" }

;

(We assume that install is a function that installs an identifier in the lookup table
and that lookup is a function that tells us if an identifier is in the table.)

What we see here is called starting code. Starting code is code in angled brackets
that is placed before the attribute definition. It can contain any sequence of C code

2Like the one in the languages/cee subdirectory of the Pretzel distribution.

3.1. ADDING C CODE TO THE RULES 25

that you like and will be executed before the attribute of the reduced token is even
touched. You can use it to place declarations of variables or any other actions that
should take place before the attribute is pieced together.

So here, in this rule, we install an identifier that is typedefed into the table.
The identifier is typeset in bold already (but you could put it into any font you
like). Now, every time we handle an identifier within declarations or expressions,
we lookup it’s name in the table. A rule like this does the job:

id : ID { [lookup($1) ? create("{\\bf ") :
create("{\\it ")] $1 "}" }

;

Note that we are making use of the conditional expression of C. Remember that
the code within the attribute definition has to turn out as type Attribute∗ and so
we use the create function again to turn a string into an attribute. So here again
we use code within attribute definitions and all in all, we can use identifiers as id
tokens in the grammar and know that they are typeset correctly.

Apart from code before the attribute definition and code within attribute defi-
nitions, there can also be code after the attribute definition which is called ending
code. Ending code can be any kind of sequence of C statements. They will be
executed after the attribute definition has been put together and before the final
token identifier id returned. So in effect you yourself may play God and return a
token identifier yourself. The following extract from a formatted token file is an
example:

[a-zA-Z][a-zA-Z0-9]* ID { ** } [return(ID);]

Here, the return statement is executed just before the prettyprinting scanner itself
returns the ID token, so here you could leave the ending code away and nothing
would be changed. But of course, you could put an if statement there and return
something else as you wish. The symbolic names of all the tokens may be accessed
with the code parts simply by their names you gave them.

Now you might wonder, what the sequence

[a-zA-Z][a-zA-Z0-9]* ID [return(ID);]

would mean. Tricky you! Is this starting or ending code? Well, Pretzel doesn’t
want to care about these kind of questions, and so it simply declares them illegal.
If you want to use either starting code, ending code or both, you need an attribute
definition.

3.1.3 Summary

This is how Pretzel expects you to write code inside your Pretzel input files:

• Code fragments are bracketed within angled brackets. Any angled brackets
that appear within the C code must be escaped with a backslash.

• Starting code and ending code are written outside of the attribute definition.
Both are totally optional, but if you want to specify either or, you need an
attribute definition.

• Code parts within attribute definitions must return a pointer to an Attribute
class object.

• Within the formatted token file, the matched text is visible to you in form of a
char∗ variable called yytext . The symbolic names of the tokens are available
by the same name that Pretzel gives them.

26 CHAPTER 3. PRETZEL HACKING

• Starting code, code within attribute definitions and ending code is totally
optional. But at any place where they are allowed, only one bracketed code
bit may be placed.

Common routines to escape identifiers, to build and manage lookup tables, to con-
vert to and from Attribute∗ or to output debug information can be found in the
files belonging to the C prettyprinter in the directory languages/cee of the Pretzel
distribution.

3.1.4 Tips and Tricks

One thing I have found usefull is to slip debug output into the Pretzel input files via
C code added to the attribute definitions. For example, I have written a function
called debug print that takes a string and an Attribute∗ and outputs the contents
of the attribute to stderr . Here is what it could look like:

static void debug print(char∗ this is, Attribute∗ stuff)
{

cerr ¿ "***Ã" ¿ this is ¿ ":" ¿ endl;
Latex cweb output os(cerr);
stuff→print(os);

}

This will use a Latex cweb output object (see the file output.nw in the output
directory of the Pretzel distribution or section 3.6 for details) to output the contents
of an attribute to the standard error stream. The idea now is to insert a code
fragment that outputs the contents of an attribute at special places in the grammar,
like for example before the prettyprinter returns:

final : exp { "$" $1 "$" } [debug_print("Final exp", $1);]

This will output the contents of the expression exp to the standard error stream
before reducing it to a final token and exiting.

Also, Pretzel prettyprinters do not insert newlines into the output if they are
not told to. So, if no special care is taken, most prettyprinters will output one
single long line of prettyprinted code. This might upset some typesetting systems
that have restricted input buffers and are used to handle one line at a time. This
problem may be avoided by manually inserting newline characters from time to time
into the output, as for example after every statement:

stmt : exp semi { $1 $2 force "\n" }

This will lead to better readable input and will make a lot of formatting programs
happier.

There are a couple of handy functions available that do stuff like escaping un-
derlines and turning an attribute into a string. Look at the files javafx.ft and
javafx.fg in the contrib/noweb/java.latex directory of the Pretzel distribution
for details. They are self-contained Pretzel input files that have a hash table built
into them and do all converting by themselves.

3.2 The Pretzel Interface

The actual Pretzel program (called pretzel) does only half the job of pretzel-it.
It simply builds ready to use source code for the specified prettyprinter in terms
of input files to the two standard UNIX tools flex and Bison. Using these tools

3.2. THE PRETZEL INTERFACE 27

will result in compilable C++ source code that contains the actual prettyprinting
module.

Pretzel prettyprinters consist of two parts:

1. a prettyprinting scanner that cuts the input into small pieces (called tokens),
and

2. a prettyprinting parser that joins the tokens returned by the scanner together
and does the actual prettyprinting.

Both, the scanner and the parser, are seperate modules with a well defined interface.
In this section I will present this interface.

3.2.1 The Prettyprinting Scanner

The prettyprinting scanner is a C++ prettyprinting scanner class. Every pret-
typrinting scanner produced by Pretzel is a subclass of an abstract scanner class
that looks like this:

#include<iostream.h>
#include"attr.h"

class Pscan {
public:

Pscan(istream*) {};
~Pscan() {};
virtual int scan(Attribute**) = 0;

};

A Pretzel scanner must be associated with an C++ input stream object that is
passed to the constructor of the class. The scanner will read characters from this
input stream when scanning. The actual scanning if performed inside the scan
member function. It’s return codes are integers and identify the token that it has
just scanned. If the input is empty, it returns 0.

The subclass that Pretzel produces will always be a subclass of the above class.
It’s interface is similar:

class PSCAN_NAME : public Pscan {
public:

PSCAN_NAME(istream*);
~PSCAN_NAME();
int scan(Attribute**);

};

The name of the generated class is PSCAN NAME by default and has to be redefined
using preprocessor macros, such as for example

#define PSCAN_NAME Pscan_for_pascal

By default the name of the derived subclass will be Ppscan. A header file containing
the derived scanner class could look like this (by default the header file is called
Ppscan.h). Note that there is no precaution against double inclusion.

/* header file for a prettyprinting scanner */

/* NB: This file is NOT protected against double inclusion! */

#include "Pscan.h" // include abstract base class

28 CHAPTER 3. PRETZEL HACKING

#ifndef PSCAN_NAME
#define PSCAN_NAME Ppscan
#endif

class PSCAN_NAME : public Pscan {
public:
PSCAN_NAME(istream*);
~PSCAN_NAME();
int scan(Attribute**);

};

This is exactly the default header file that you can find in the include directory
of the Pretzel distribution. If Pretzel is installed on your system, you should find
this file (and the header file for the abstract base class) in the global Pretzel include
directory too.3

3.2.2 The Prettyprinting Parser

The interface to the prettyprinting parser is similar in structure to the prettyprinting
scanner. We have an abstract base class called Pparse that has this interface:

#include<iostream.h>
#include"attr.h"
#include"output.h"

class Pparse {
public:
Pparse() {};
~Pparse() {};
virtual int prettyprint(istream*, ostream*) = 0;
virtual int prettyprint(istream*, Output*) = 0;

};

There are the usual functions to create and destroy a prettyprinting parser plus
an overloaded virtual member function prettyprint . The normal use of prettyprint
uses C++ input and output streams. It reads from an input streams and writes
prettyprinted code to the output stream.

The second version of this member has an Output class pointer as second argu-
ment. This is a version for experts. See section 3.6 for an example how to utilize
this.

The prettyprinting parser class which is actually generated is again a subclass of
this abstract base class. It’s name may be redefined using C preprocessor macros.

class PPARSE_NAME : public Pparse {
public:
PPARSE_NAME();
~PPARSE_NAME();
int prettyprint(istream*, ostream*);
int prettyprint(istream*, Output*);

void debug_on();
void debug_off();

};

3This directory will usually be called /usr/local/lib/pretzel/include or something alike.

3.2. THE PRETZEL INTERFACE 29

The two extra functions debug on and debug off enable and disable debugging out-
put. Debugging output gives an indication what the scanner returns and what kind
of rules the parser is reducing. It is really a lot of information.4

As you can see, the name of the generated class is PPARSE NAME by default and
has to be redefined using preprocessor macros, such as for example

#define PPARSE_NAME Prettyprinter_for_pascal

By default the name of the derived subclass will be defined as Ppparse (note the
three ‘p’s). This is the default header file for the generated parser:

/* header file for a prettyprinting parser */

/* NB: This file is NOT protected against double inclusion! */

#include "Pparse.h" // include abstract base class

#ifndef PPARSE_NAME
#define PPARSE_NAME Ppparse
#endif

class PPARSE_NAME : public Pparse {
public:

PPARSE_NAME();
~PPARSE_NAME();
int prettyprint(istream*, ostream*);
int prettyprint(istream*, Output*);

void debug_on();
void debug_off();

};

This file resides in the include directory of the Pretzel distribution and together
with the header of the abstract base class is also is found in the Pretzel include
directory of the system (if Pretzel is installed).

3.2.3 Example

A minimal file that utilizes a Pretzel prettyprinter could look like this:

#include <iostream.h>
#include "Ppparse.h"

int main () {
Ppparse prettyprinter;
prettyprinter.prettyprint(&cin,&cout);
return(0);

}

Firstly, the actual prettyprinter class is included. Then we declare a simple pret-
typrinter and simply call prettyprint . Here, the input and output streams are con-
nected to the standard input and the standard output. If this main routine is
compiled and linked with the objects produced from the output of Pretzel, the
prettyprinter will work as specified in the two input files. The prettyprinting parser
internally calls the prettyprinting scanner by its default interface.

4The information provided using the -d option of pretzel-it program comes from using these
functions (see section 2.3.5).

30 CHAPTER 3. PRETZEL HACKING

3.3 Building a Pretzel prettyprinter by Hand

If you need to produce a prettyprinting module by hand you’ll have to directly
invoke Pretzel, flex, Bison and your C++ compiler in the right order. To ease
this, you can use the Makefile in the Pascal subdirectory of the distribution
(languages/pascal).

To produce (only) the prettyprinting parser from the file pascal.fg for example,
you could type the following:

$ pretzel -g pascal
This is pretzel, version 2.0.
Processing the formatted grammar file (pascal.fg -> pascal.y).
No errors found.
$ bison -d pascal.y
pascal.y contains 21 shift/reduce conflicts.
$ mv pascal.tab.h ptokdefs.h
$ g++ -c -I$PRETZEL_INCLUDE -g pascal.lex.c

We assume that the PRETZEL INCLUDE environment variable points to the Pretzel
include directory. The -d option of Bison will produce a token header file that
the scanner expects (the scanner must know, which tokens the parser awaits and
which token codes they have). The scanner expects these definitions under the
name ptokdefs.h.

The above sequence of commands should leave a pascal.tab.o file in your
directory. This is the object code of the prettyprinting parser with the default
interface (i.e. the generated class’ name is Ppparse and is declared in the include
file Ppparse.h). You can now use this prettyprinter in your own programs: by
including the header file the prettyprinter class will become visible; by linking the
object with your own program you’ll get your executable. (Note that you’ll need to
provide a prettyprinting scanner youself in this case or simply produce a suitable
one in a similar way using Pretzel.)

3.4 Obtaining a Pretzel Prettyprinting Module

In the preceding section I have explained how to produce a Pretzel prettyprinter
by hand. Now we’ll see how you can change the default interface of the produced
prettyprinting scanner and parser.

3.4.1 The Prettyprinting Scanner

Say, you need a prettyprinting scanner class called Fooscan in a header file called
Fooscan.h. All you have to do is to make a copy of the default header file Ppscan.h
(which you can find in the Pretzel include directory), change its name to Fooscan.h.
Then you have to change the one single #define statement therin, i.e. instead of

#ifndef PSCAN_NAME
#define PSCAN_NAME Ppscan
#endif

you’ll have to write

#define PSCAN_NAME Fooscan

Within your formatted token file, you’ll have to tie in the same definition like this:

3.5. MULTIPLE PRETZEL MODULES IN THE SAME PROGRAM 31

%{
#define PSCAN_NAME Fooscan
%}

It is important that this text appears in the declarations section of the formatted
scanner file, i.e. before the first line that contains the double percent sign ‘%%’.

Compiling and linking the source produced by Pretzel and flex you’ll get the
object code that contains the desired prettyprinting scanner. The scanner expects
to find a token header file under the default name ptokdefs.h with definitions of
the symbolic names and token codes of the tokens it should be able to scan. Either
you produce this file by hand or you let Bison do the job for you (using the -d
option if you have a prettyprinting grammar). Look into a standard ptokdefs.h
file to see what it should contain. The name of the token header file ptokdefs.h
may also be changed. You have to define the PTOKDEFS NAME macro within your
formatted token file like this:

%{
#define PTOKDEFS_NAME "fooscantoks.h"
%}

Now the scanner will include the file fooscantoks.h and look for token code defi-
nitions in there. (Again, this redefinition must be in the declarations section of the
formatted token file.)

3.4.2 The Prettyprinting Parser

Changing the interface of the prettyprinting parser works in a similar way as just
explained for the prettyprinting scanner. The differences lie in the macro names
that have to be redefined.

The name of the derived prettyprinting parser class is PPARSE NAME. If you say
in the definitions section of the formatted grammar file for example

%{
#define PPARSE_NAME Foopp
%}

then your prettyprinter class will be called Foopp. Internally it expects the pret-
typrinting scanner with it’s default interface (i.e. under the names Ppscan for the
class and ptokdefs.h for the token header file). If you redefine the same macros
as in the formatted token file, then you redefine the interface under which the pret-
typrinter expects the scanner. So lines like these in the formatted grammar would
urge the prettyprinter to use a Fooscan class object for scanning:

%{
#define PPARSE_NAME Foopp
#define PSCAN_NAME Fooscan
%}

3.5 Multiple Pretzel Modules in the same Pro-
gram

Using multiple Pretzel modules within a single program has been greatly simplified
by introducing the object oriented interface that has been explained in section 3.2.
The main thing is to change the names of the two scanners/parsers produced by

32 CHAPTER 3. PRETZEL HACKING

Pretzel to something distinct and then to compile and link then together. That’s
the theory.

But there’s a problem here: the scanners and parsers produced by flex and Bison
contain a couple of global variables whose names will clash when you try to link
them together. This may be circumvented by using special options of flex and Bison
to change the prefix of these globals when a scanner/parser is built. As I haven’t
needed this feature in the past (but only tested it), I haven’t prepared an additional
option to pretzel-it to do this in a nice and easy way. At the moment you’ll still
have to consult the manual pages flex(1), flexdoc(1) and bison(1) for details.
If this is a feature you need, tell me and I’ll add it to pretzel-it (see also chapter
6, “Future Work”).

Another thing that sounds interesting, but that I have not tested yet, is to use
several instances of a single prettyprinter class produced by Pretzel in the same
program. If you have ever tried it, I’m very interested in your results (see chapter
6, “Future Work” again).

3.6 Prettyprinting for non-LATEXians

“Of course CWEAVE does visual formatting, at least for the part that can-
not be left to be visually formatted by TEX: it issues forced line breaks,
explicit changes of indentation level etc. The logical markup is really
contained in the source document, and not (fully) in the intermediate
file produced by CWEAVE. However CWEAVE does not do complete visual
formatting: for instance many symbols like operators are produced as
macros, so that you can easily change their appearance by overriding
the default definitions, and breaking of long lines is also left to TEX’s
line breaking algorithm.”

Marc van Leeuwen [60]

Pretzel was build with LATEX in mind, but this doesn’t necessarily mean that you
are restricted to using this as back end of your prettyprinter. Through the way
that Pretzel was designed, it is quite easy to extend it to work with any other
markup formatting system. However, if you are opting for immediate screen output
or things like HTML, you’re not lost either. First, we’ll see how to handle the first
case, and then let’s go and look at things like HTML.

3.6.1 Other Markup Formatters

Internally, all pieces of code that handle the direct output of characters or format
commands to the output stream are encapsulated in a C++ class called Output.
The interface and implementation of this class are described in the noweb source
file output.nw in the output subdirectory of the Pretzel distribution. From looking
at this file, you’ll see that there is an abstract base class Output and that the
standard class, which Pretzel prettyprinters use, is the Latex cweb output class5,
a subclass of Output. It is within this subclass that the actual translation of the
format command force into the string “\pretzelforce{}” takes place for example.

If you are going for something like Troff, you can similarly derive a new subclass
of Output (for example by copying the original class) and simply replace the text
bits like “\pretzelindent” with the strings appropriate for Troff. Now, you have to
instruct the generated prettyprinter not to use the default (Latex cweb-) output,
but to use your new one. For this sake, the second version of the prettyprint member
function of the generated prettyprinter may be used (see section 3.2, “The Pretzel

5The name of this class results from the goal, to give a LATEX CWEB touch to the output [57].

3.6. PRETTYPRINTING FOR NON-LATEXIANS 33

Interface”). Simply pass an object of your new output class to the function and
the prettyprinter will use it instead. By deriving a new subclass, Troff and LATEX
prettyprinters may coexist peacefully.

3.6.2 Going for HTML

What if you don’t have a real markup formatting system at hand and want to go
for something in the range of a vt100 terminal, line printer or HTML page?

Bad news is that you’ll have to do without the full blown format command
set. Proper interpretation of the line breaking commands break space and opt , the
commands backup and no indent cannot be guaranteed in these cases. However,
good news is that the Pretzel distribution contains a derived Output class called
Ascii output that may be used to output prettyprinted code with this restricted
command set to the screen (or to any device suitable for ASCII characters). The
format commands that cannot be executed properly are still valid, but result in no
actions when outputting code. See the file asciioutput.nw in the output subdi-
rectory of the Pretzel distribution for details.6

6An example noweb prettyprinter that emits HTML code can be found in the
contrib/noweb/cee.html directory of the distribution. See also chapter 4, “Pretzel meets noweb”.

34 CHAPTER 3. PRETZEL HACKING

Chapter 4

Pretzel meets noweb

“noweb is designed to meet the needs of literate programmers while
remaining as simple as possible. [. . .] The primary sacrifice relative to
WEB is that code is not prettyprinted.”

Norman Ramsey [48]

The noweb system [50] by Norman Ramsey is a simple tool for literate programming,
a programming style first introduced and named by Donald Knuth in 1984 [31]. The
main goal of this new style is to enhance the readability and understandability of
a program’s source code to an extent that makes it enjoyable to read. This section
will explain, how the Pretzel system relates to this new “paradigm” [9] and how it
can be especially usefull in conjunction with noweb.

This chapter explains how you can use Pretzel prettyprinters within noweb.
It expects that you know what literate programming is about and that you have
had a go at using the noweb system. The articles by Knuth [31], Bentley [4] and
Denning [11] provide good and readable introductions to the field, while the paper by
Cordes and Brown [9] discusses the paradigm and the book by Knuth [32] provides
a collection of related articles. Concerning noweb, there is a lot of good introductory
material available online (see for example the noweb home page [48]). As you will
need noweb anyway to install and run Pretzel, it is a good idea to try a small example
now if you are unaquainted with it. Late sections will need detailed knowledge
about the concepts of noweb as explained in the original paper by Ramsey [50]
or the ultimate reference to noweb’s interior by the same author [47]. The noweb
extensions of Pretzel are still very much experimantal and far from making noweb
as powerfull as language dependent literate programming tools.

4.1 Prettyprinting in noweb – How it works

“They [the prettyprinting filters] can perform either or both of two tasks:

• choose fonts and glyphs to represent each source token
• choose indentation and line breaks of your code

I find these features of more cost than benefit (except possibly when
preparing for book publication), but lots of people like them.

Noweb takes the reasonable position that the programmer is the best
judge of where to put the line breaks and how much to indent code.
In some languages (Miranda, Haskell, awk, Icon), line breaks and/or
indentation carry meaning, and to change them would be to change the
meaning of the user’s program.”

35

36 CHAPTER 4. PRETZEL MEETS NOWEB

Norman Ramsey [52]

A primary design goal in developing noweb was to have a literate programming
tool that was simple enough to learn easily, and also suitable for easy modification
and extensions. This second goal was achieved by it’s “pipelined architechture”
[47]. Internally noweb converts the input files into a stream of items which — like
in a pipeline — are squeezed through special programs called filters that perform
simple transformations on these data items. The format of the data items in the
pipeline is called the “noweb pipeline representation” which interested readers can
study in detail elsewhere [47]. Devising a prettyprinter for noweb means building a
prettyprining filter for it. Such a filter can then be inserted into the pipeline.

4.1.1 A noweb Prettyprinter for C

In the contrib/noweb/cee.latex you can find the definitions of a simple pret-
typrinter for C. Change into this directory and look at the files cee.ft and cee.fg.
They are normal Pretzel input files that have been modified slightly to work with
noweb. Before we look at these modifications, let’s try to build a noweb prettyprint-
ing filter first. To do this, you can use the -n option of pretzel-it in the following
way:

pretzel-it -n cee prettycee

This will produce a noweb prettyprinter called prettycee in the current directory.1

This filter can then be sent into action using the -filter option of noweave. For
an example, type:

noweave -delay -filter prettycee ceetest.nw > ceetest.tex

This will mangle the noweb input file ceetest.nw and output LATEX source to
ceetest.tex. Now run it through LATEX and have a look at the result.2 What do
you think?

4.1.2 A noweb Prettyprinter for Java

A pretty good Pretzel prettyprinter that works with Java and noweb can be found in
the contrib/noweb/java.latex/ directory of the Pretzel distribution. It features
a fine tuned prettyprinting grammar that is quite robust (contributed in core by
Lee Wittenberg), correct typesetting of class names (in bold, as god ment them to
be) and rudimentary automatic indexing facilities.

After installing Pretzel and making the file prettyjava (by simply typing ‘make’),
try the filter on Java files of your own. The command to use then is:

noweave -delay -filter prettyjava -index file.nw > file.tex

Note that the -filter switch comes before -index. To get this stuff typeset cor-
rectly, your file needs to access the pretzel-noweb.sty LATEX style file (which gets
installed when Pretzel gets installed). For this reason, you need to input it withing
your document. The frames of my noweb files always look like this:

1The noweb extensions of Pretzel must have been installed on your system in order for this to
work. See the top README file of the Pretzel distribution for details.

2People who are interested in the internals of this operation should consult the file pretty.nw

which contains the noweb prettyprinter API and the file nowebpretzelpp.nw which contains a
description of the interface between Pretzel and noweb. Both can be found in the directory
contrib/noweb/general of the Pretzel distribution.

4.1. PRETTYPRINTING IN NOWEB – HOW IT WORKS 37

\documentclass{article}
\usepackage{noweb}
\usepackage{pretzel-noweb}
%
\begin{document}

... % rest of the noweb file

\end{document}

Note that you still have to include the noweb.sty package before accessing pretzel-noweb.sty.
This prettyprinter shows, how it can be made possible to include explicit format

commands within the code a la CWEB. For example you can say

a:=1; //@cancel

and the forced line break that follows every statement will be canceled at this place.
The only other format command that is possible here is force, which can be coded
as //@/ (a little like CWEB) or //@force, but in practice all other format commands
can easily be added. Note that the format commands are comments in Java so they
don’t bother the tangling process.

4.1.3 Writing Prettyprinting Grammars for noweb

”The most significant downsinde of not using CWEB is lack of code pret-
typrinting; however, after prettyprinting code for quite some time I got
tired of it and I am now a nuweb minimalist.”

Przemek Klosowski [27]

Now, how do the cee.ft and cee.fg files differ from their non-noweb counterparts?
From your point of view, consider every code chunk as a seperate input to the
prettyprinter you write. So the only things to note when building a prettyprinter
for noweb is that you may have arbitrary code fragments instead of full blown
programs or functions, and that chunk uses may appear anywhere within the input
code.

Chunk uses come as individual lines into the prettyprinter. These lines are in
raw pipeline representation, i.e. look something like this:

@use Foo Bar

The scanner must detect these lines and basicly must wrap them up into a token
that doesn’t get changed. Thus, the formatted token file contains a line like this:

^"@use\ ".* CHUNK { "\n" ** "\n" }

The ‘^’ ensures that the input matches from the beginning of the line. The two
newlines in the attribute definition will result in the line being passed out of the
prettyprinter unchanged. (The prettyprinter internally accumulates the code lines
of an entire code chunk and then prettyprints it into a string. Then he cuts the
prettyprinted code into lines before inserting it into the pipeline again. Lines that
don’t start with an ‘@’ are prefixed with “@textÃ”.) This chunk token now can be
used within the formatted grammar.

Because such a chunk token may appear everywhere in the text, it would be
nice to have some rule that will stick a chunk token to any token that precedes it.
As we have no possibility of using wildcards in token names, we use a simple trick:
at the end of the grammar there is a rule like this for every possible token name:

38 CHAPTER 4. PRETZEL MEETS NOWEB

^"@use\ ".* CHUNK { "\n" ** "\n" }
^"@".* IGNORE { "\n" ** "\n" }

The special IGNORE tokens result from another line in the formatted token file. This
line reads as follows and is placed behind the line that matches chunk uses:

^"@".* IGNORE { "\n" ** "\n" }

As the prettyprinter input may contain other lines of internal noweb representation
code (they all start with ‘@’), they need to be passed through the prettyprinter
untouched too. This is what these two rules are good for.

Note that the ceetest.nw file includes the noweb.sty LATEX style file as well as
the file pretzel-noweb.sty. It is important that the noweb style comes before the
pretzel-noweb style, because the latter redefines a macro from the prior (see also
section 4.2).

4.1.4 Debugging

You may debug the prettyprinting filter by setting an environment variable called
PRETZEL NOWEB DEBUG to the value “on”. Debug information will be turned off again
when you unset the variable. This is a simple, but easy to use method of controlling
debug output. The output is much like the one explained in section 2.3.5 on page
19, and the tips and tricks from section 3.1.4 come in handy too. Suggestions for
improvements are welcome.

I regularly run the parsing within Emacs (using the shell command possibility)
ans then can easily search the debug output and follow how the tokens are put
together.

4.1.5 Making the Best Use of It

“The one area where language dependent LP tools are ahead is identifier
indexing, but I suspect that for C++, this is an almost impossible task
anyway.”

Matthias Neeracher [42]

Having understood how noweb prettyprinters differ from normal Pretzel prettyprint-
ers, it is easy to convert files in either direction. But now, we also get language
dependent information within the prettyprinter nearly for free and we can for ex-
ample start to build an index of identifier definitions and uses.

For example, in the formatted token file, you could write:

[a-zA-Z][a-zA-Z0-9_]* ID
{"%\n@index use " + ** + "\n"
"{\\it " [escaped_underlines(yytext)] "}" }

Here, every identifier will finally be preceded by a line that will tell the indexer of
noweb about the appearance of the identifier in this chunk. See the “noweb Hacker’s
Guide” [47] for details on the keywords that are allowed. But note, that if you’re
doing it this way the -index option of noweave has to appear after the -filter
option on the command line.

4.1.6 Some Naming Conventions

If you are looking at example files of noweb prettyprinting filters, it’s quite handy
to notice some conventions that I have followed. The formatted grammar and the
formatted token file should carry a name as a clear indication what programming

4.2. PROBLEMS 39

language they contain (e.g. cee.ft or java.fg). The prettyprinting filter for
noweb that is produced should be called pretty... with the dots replaced by the
programming language name (e.g. prettycee or prettyjava).

In the development directories you’ll find special noweb files meant to test the
prettyprinters, not to be of any programming use. They include most of the syntax
constructs of the programming language in question. These files are very instructive
when building a new prettyprinter for noweb or testing one that you have changed.

4.2 Problems

“I think the problem here is not so much that prettyprinting is inherently
bad as that many languages don’t benefit from it so much. Algol and
Pascal, I believe, benefit quite a bit from appropriate prettyprinting.
These are languages where you write out a lot of whole words: ‘begin’,
‘end’, ‘do’, ‘then’ . . . You get the idea. Languages like C and Icon
depend a lot on symbolic notation. For the large part, all CWEB does
is replace one set of symbols with another that some people happen
to prefer. But, still, CWEB puts reserved words and defining words in
boldface and identifiers in italics; what of that? In Pascal, doing that
helps mark out the form of a construct. In C, on the other hand, the
constructs are delimited by things like parentheses and braces, and so
putting things in different typefaces doesn’t help that much. OK, CWEB
indentifies, but you don’t need weave to do that; Emacs can do that
for you, or you can do it yourself, and the web source will benefit from
it. The main thing that I might want from noweb but don’t get is
typesetting of comments, and I can live without that because I don’t
need a great many comments.”

Barry Schwartz [58]

Handling of comments in prettyprinting remains an unsolved problem to date (see
section 5.2.5). This is partially due to the fact that that comments can crop up
anywhere in the code and that they themself can again contain quoted code. With
noweb this problem isn’t so severe, because chunks mostly do not contain a lot of
comments as they are moved to the documentation parts of the literate program.
But still a nice way of handling comments needs to be found.

Also, quoted code in documentation chunks isn’t prettyprinted. This is partially
a deficit of the prettyprinter API and partially a structural problem. One would
need two distinct prettyprinters to handle normal chunk code and quoted code
seperately because you don’t want to have forced line breaks within documentation.

Another problem arises from the noweb.sty LATEX style. The environment for
setting code naturally is rather restrictive and a macro needs to be changed in order
to allow the Pretzel macros to work correctly.3 All this signals, that Pretzel an noweb
have not become real friends yet; they still have to work on their relationship.

3I’m not a TEX freak after all. Thanks to Lee Wittenberg for his help on this.

40 CHAPTER 4. PRETZEL MEETS NOWEB

Chapter 5

On Prettyprinting

“noweb does automatic indexing and cross-referencing for some lan-
guages, including C, Icon, TEX, and Standard ML. Some people have
made it prettyprint other language, like Icon and Object-Oriented Tur-
ing. I haven’t been overwhelmed by the results, but then I’m notoriously
difficult to convince of the value of prettyprinting.”
Norman Ramsey [51]

The term prettyprinting means the rearrangement of a program’s source code to
illuminate it’s logical structure and thus enhance readability. The term goes back
to Henry Ledgard and his “Programming Proverbs” [35]. Prettyprinting has become
a field of interest because many of todays popular programming languages are so
called “free-format” languages, where there are basically no column-position or line-
boundary restrictions on statements, declarations, or comments.

As a matter of fact, formatting and all other aspects of readability depend
heavily on personal taste and skill. This has lead to a wide range of suggestions
and standards concerning the formatting of programming languages, especially for
the Pascal [23] language [1, 2, 3, 6, 10, 16, 18, 20, 34, 37, 45, 40]. The consistency of
these proposals has also enabled construction of automatic formatting algorithms
and tools that are usually called prettyprinters (or indenting programs). In the
literature general examples of prettyprinters have been presented among others for
the languages Algol [39, 59], PL/I [8], Lisp [15, 19, 65, 66], Ada [43], and of course
for Pascal [21, 22, 3, 67, 1].

However, technological advance in the area of automatic typesetting has led to
a set of powerful formatting tools called typesetters, or typesetting systems, of which
TEX [30] is maybe the most apparent to computer scientists. These tools allow the
preparation of documents in high quality suited for publication. Among the features
of these systems are automatic line- and page-breaking, powerful macro-processing
facilities and convenient devices for typesetting mathematical formulas. Seen in
this light, automatic program formatting is only a simple instance of automatic
typesetting [55, p. 652]. So prettyprinting algorithms that rely on professional
typesetters can be simpler and produce better results at the same time, because a lot
of the formatting problems (e.g. alignment, line-breaking, typesetting mathematical
formulas) can be taken on by the typesetter.

In this chapter deals with the general issue of prettyprinting. It places a wider
view on the field and tries to locate the Pretzel system within the latest research.

5.1 Prettyprinting with Format Commands

“Well, I must confess, I was very close to throwing the whole CWEB away

41

42 CHAPTER 5. ON PRETTYPRINTING

and switching to something without any prettyprinting, like nuweb or
noweb. I installed nuweb, rewrote the Matrix2D example into it, ran
it through and – returned back to CWEB. I probably got spoiled by the
nice-looking output it produces – almost always.”

Jan Dvorak [12]

The prettyprinting method used by Pretzel can be called prettyprinting with for-
mat command primitives and goes back to a similar method used by Knuth in his
original WEAVE system for Pascal (see section 5.2 for details). Like most other
prettyprinting algorithms this method functions similar to a compiler, i.e. an input
file is processed and translated into an output file according to special rules. Here,
the input file is the patch of source code that shall be prettyprinted and the output
file is the text suited for the typesetter. The translation rules represent the special
way in which source code should be formatted.

The main assumption is that we have a text formatter that uses control se-
quences (or tags) inside the actual text body for specifying all the different ways
of formatting (such as fonts, indentation, spacing, etc.). Another term for this way
of formatting control is in-text procedural markup and systems using this technique
are commonly called document compilers (though this might only refer to the way
they work, not to viewing text processing as programming). Common examples of
such typesetting systems are TEX and the UNIX tools Nroff/Troff. During the
processing of the input the only thing it does is to enrich the stream of incoming
information with special control sequences that I call format commands (or format
command primitives). These commands are tags that are left for the typesetter to
interpret. The set of format commands used by Pretzel is basically the initial set
used by Knuth. To understand this procedure, see chapter 2. The original docu-
ments by Knuth [29] and Knuth and Levy [33] present the algorithm in (in)formal
detail.

5.2 A Short History of Prettyprinting

“Nevertheless I strongly disagree with people saying that pretty-printing
is not worth the effort for anyone in general; this depends very much
on ones particular situation and purpose. In some cases pretty-printing
may even be the main reason to opt for literate programming.”

Marc van Leeuwen [61]

In this section I will give a brief chronological overview over the area of prettyprint-
ing, try to structure the field, and will show, how the present system fits into it.

5.2.1 Historical Notes

The prettyprinting of code has a long tradition that not only originates from the
compulsion to typeset programs for publication. The readability or even the sheer
beauty of a prettyprinted algorithm have also been a key motivation to this part of
computer science.

The first people to call special attention to formatting issues were probably Pe-
ter Naur, Myrtle Kellington and William McKeeman. While Myrtle Kellington, as
executive editor of ACM publications, helped to develop high quality programming-
language typography standards, Naur was the first to include such formatting stan-
dards into his report on the Algol 60 language [41] and McKeeman was the first
to present a prettyprinting algorithm for it [39]. This reaches back to the early 60s.
In fact, McKeeman‘s algorithm is the first actual prettyprinter to be found in the
literature. Its purpose was

5.2. A SHORT HISTORY OF PRETTYPRINTING 43

“[. . .] to edit Algol 60 text that is difficult to read because, for exam-
ple, the Algol has been transcribed from printed documents, or written
by inexperienced programmers [. . .]”

Later, other prettyprinters were presented for PL/I [8], Lisp [15], and finally Pas-
cal [21]. These systems simply looked at the input text searching for special key-
words. When encountering a keyword (which could be a begin or an opening brace,
for example) a certain action would be triggered which would result in a line break,
change of indentation, etc.

In these first approaches to the issue of prettyprinting the basic actions that pret-
typrinting includes were already visible. These concern (in order of importance):1

• indentation and folding (i.e. determining line breaks) of source code

• the additional spacing of syntactic constructs (like expressions)

• using additional typographic means (e.g. different fonts)

The main disadvantage of the early systems was their language dependence.
The style of prettyprinting was hard-wired into the system, which was basicly a
big “case” switch over all known constructs that were to be treated specially. The
main advantage of them, however, was their simplicity and their error handling
capabilities (which is also the reason why such and similar tools are still widely
used today). But it was soon clear that this approach wasn’t adequate and that
structural changes had to be made to the concept.

In their paper titled “A One-pass Prettyprinter” [19] Hearn and Norman intro-
duce a fundamentally new idea into this area. They simplify the whole concept of
prettyprinting by introducing structure.

“The new method that we propose here will be described in terms of
a pair of coroutines. One of these will be responsible for producing a
stream of characters that represent the program being printed, the other
makes decisions about how these characters should be displayed.” [19,
p. 52]

This is a fundamental distinction, namely that between formatting policy and
formatting algorithm [2] and is a vital step on the road to language independence.2

A problem that arises from this separation is: how do the two coroutines com-
municate? Hearn and Norman use a simple FIFO buffer in which the first coroutine
inserts text and “special markers” that indicate its decisions on the policy. These
markers were mainly special blanks that indicate possible line breaks.

“The markers will contain enough information for the formatting process
to discover what level of indentation would be appropriate to use were
a line break to be inserted at that point.”

This resembles a special kind of ‘communication protocol’ and is the first hint
to a thing that I have called ‘format command primitive’ throughout this chapter.
Other authors [22, 44, 65, 5, 56, 55, 24] have taken up this idea and have introduced
different sets of format commands that change and increase the communication
facilities between these two processes. The two most elaborate to date are those of
Rubin [56] and that of Knuth and Levy [33], that is used here.

1In the late 70s there was one additional point on this list, namely the introduction of ‘connector
lines’ into the prettyprinted output [7, 46]. But this method hasn’t found too much support since.

2This idea however has also introduced a slight blur in the terminology, as some authors refer to
prettyprinting as consisting only of the actual “printing” on paper (i.e. the formatting algorithm)
[44, 24] and others still mean the entire process.

44 CHAPTER 5. ON PRETTYPRINTING

The separation introduced by Hearn and Norman is an example of ‘separation
of concerns’: the language dependent parts of prettyprinting are separated from
the actual typesetting issues that arise, when putting text to paper. Blaschek and
Sametinger [5] call this a distinction between “language dependent front end and
language independent back end”.

5.2.2 The Language Dependent Front End

The earliest suggestions how to build the language dependent front end go back to
Oppens fundamental paper on prettyprinting [44]. Though his main concern is the
language independent back end, he makes suggestions about the “preprocessor” that
should drive it. The main idea is to make a full syntactic parse of the prettyprinted
code and to use the resulting parse tree to drive the prettyprinter. The format
commands are either assumed to be implicit in the tree (i.e. every single branch is
treated as a structural block) or they are explicitly inserted into the tree during the
parse. Oppen writes:

“First, notice that the information needed by the prettyprinter can often
conveniently be represented directly in the grammar [. . .]. We modify
the grammar of the language to contain prettyprinting information as
above, where [. . .] [the formatting commands] are nonterminals map-
ping only the empty string.” [44, p. 475]

This aspect has at last enabled people to use formal methods to describe layout
rules. Mateti’s paper [38] is another approach in the same direction and is the first to
adapt this method to Pascal.3 The fact that rules for layout and grammar are often
closely related [36] also is a strong indication that this method is in fact adequate.
The trend towards formal specification in this area has indeed been “very fortunate”
[68] and has also proved to be useful in other areas, such as syntax-directed editors
[56].

To this end Rose and Welsh [55] have advocated the integration of format rules
within the language syntax on the language design level. They state that “program
format decisions [should be put] in the domain of the language’s designer, rather
than its several implementators or numerous users, which implies uniformly format-
ted programs of improved readability and therefore usability.” [55, p. 651] Their
idea does not try to impose rigid formatting rules on users of existing or future lan-
guages. Instead they propose a metasyntax and a set of guidelines that constrain
and direct the language designer in the placing of format commands. These format
commands include commands for indentation, as well as for line breaks and optional
line breaks (so called “fold options”). The metasyntax and the guidelines only effect
rather global issues of formatting but ensure consistency across language borders.
They also present a folding algorithm that implements the format commands from
their list.

This last approach by Rose and Welsh is currently the ‘state of the art’ in pro-
gram layout issues. Woodman has published a thorough discussion of this scheme
and has proposed refinements [68] that however do not alter the main points. It is
an approach that in some way surpasses the area of prettyprinting in that it forces
the formatting grammar to be equal to the language reference grammar. However,
Knuth shows that a prettprinting grammar can be much simpler than a full-size lan-
guage grammar, because it is able to treat semantically different contructs equally
as they are formatted in the same way (e.g. if, for and while statements).

3It is interesting that Mateti’s solution was the result of formalization (due to verification needs)
and that Oppen’s proposals emerged from the language independent nature of his approach.

5.2. A SHORT HISTORY OF PRETTYPRINTING 45

5.2.3 The Language Independent Back End

The language independent back end implements the formatting algorithm. It ac-
tually makes the formatting decisions that the formatting policy has outlined and
communicated to it via the format commands. The main concern of most algorithms
is line breaking (or folding). The proposals by Rose and Welsh [55] and Oppen [44]
have been the most influential ones on other systems [65, 24, 5] in the literature.
However, in both articles the authors refer to the future of their proposals for the
formatting algorithm:

“The changes advocated must be seen in the light of current technolog-
ical advances. Automatic program formatting is a very simple instance
of automatic typesetting, as that provided by Knuth’s TEX system for
technical or mathematical text.” [55, p. 652]

“It [the algorithm] is not, however, as sophisticated as it might be, and
certainly cannot compete with typesetting systems (such as TEX) for
preparing text for publication.” [44, p. 466]

As the WEB system shows, TEX has been used as a back end for a prettyprinter,
but it has remained the only one that I am aware of. This leads to the question,
why so little prettyprinters faciliate typesetters as back ends for their output? This
question is very striking, as typesetters offer powerful capabilities, and for example,
TEX’s line breaking algorithm has been advocated to be very suitable for exactly
this task [28].

Oppen gives an answer to this in his paper:

“However, it [the algorithm] seems to strike a reasonable balance be-
tween sophistication and simplicity, and to be appropriate as a subcom-
ponent of editors and the like.” [44, p. 466]

It is surely the question whether you are prettyprinting on screen or preparing a
publication. But the other part of the answer is maybe not so obvious and has to
do with the traditional fears in the programming community.

A lot of prettyprinters have been built as parts of larger programming environ-
ments and were constituent parts of this larger system. A lack of modularity in the
design (as for example the fundamental distinction presented in these sections and
visialized in figure 5.1) often makes the resuing of subcomponents impossible. The
prettyprinters hide somewhere in the larger system and are difficult to extract.

Another point is that an old habit of programmers is their strive for indepen-
dence. They do not want their systems to rely on other systems. But this habit is
hopefully getting less frequent today.

5.2.4 The Set of Format Commands

The format commands passed between the front end and the back end of the pret-
typrinter are the only means to convey the formatting policy to the actual formatter
(see figure 5.1 that visualizes the modularity of a prettyprinter). This means that
every typesetting feature must be expressible in them. In conjunction with this
work it is important to ask, if the command set provided in the current Pretzel
system is sufficient to format every desired feature that we can possibly think of.
The answer is clearly ‘No!’, as there still are open prettyprinting problems. We will
have a look at them later. But just how sufficient is the command set?

First we’ll look at whether it allows full control over line breaks and indentation.
A detailed comparison shows that the command set used by Rose and Welsh is a

46 CHAPTER 5. ON PRETTYPRINTING

and format commands

¾

-
?

stream of strings

formatting algorithm

. .

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

typeset document

unformatted source code

prettyprinter

language dependent front end

language independent back end

parser using
prettyprinting grammar

Figure 5.1: The module structure of modern prettyprinters

subset of Knuth’s command set (indent , outdent , force, breakspace, opt).4 Rose
and Welsh in fact show by example, that any language syntax can be transformed
into a formatted syntax that in itself is capable of specifying all desirable folds and
changes of indentation. The main precondition for this transformation is, that the
starting grammar is context free. None of the five basic commands is superfluous (as
we have seen in the first part of this chapter) so we can call these basic commands
the necessary command set .

The necessary command set enables the first point of the basic actions of a pret-
typrinter mentioned on page 43. The other two points (additional local spacing of
syntactic constructs; using different fonts) are things that depend on the capabili-
ties of the typesetter and are not so much a question of the format command set.
Thanks to procedural markup, as long as the prettyprinter allows us to insert strings
between any two tokens at lexical level we are able to handle these two points too.
However, in Rubin’s rather assembler like command set [56, p. 122] we see that the
necessary command set still lacks full control over vertical and horizontal spacing.
One can argue over what parts of this issue belong into the domain of the typesetter
and what should be left to the user’s control, but there surely is an obvious need
to express additional vertical separation in terms of a simple format command. In
our case this is the big force command.

The other command that gives better control over horizontal space is backup.
Both backup and big force can be simulated by sequences of commands from the
necessary command set.5 So they are not necessary but convenient short-hands.

4The commands used by Rose and Welsh are denoted by the special symbols m, o, r, i and
s. A stack is used to keep track of the indentation of the preceding lines. The symbol m pushes
the current horizontal print position onto the stack and the symbol o pops the stack again. The
metasyntax insists that every string produced from a non-terminal is bracketed by an m. . . o pair.
As no m and o are allowed elsewhere in a rule body, the amount of indentation is always restored
to the prevoius value during formatting.

The symbol r denotes a line feed and a carriage return to the margin that is stored in top of
the stack, whereas i increments the top-of-stack margin value and then performes an r. The s
symbol is used to emphasize strings produced from a rule of the grammar. It is only allowed at
the beginning of a rule body and directs the folding algorithm to force line breaks before and after
the string produced from this rule. Optional line breaks (so called folding options, denoted ‘[i]’ or
‘[r]’) can be inserted between the non-terminals in the rule body.

The most obvious analogy is the i symbol. It corresponds to the sequence indent , force and since
every indent is followed by a force or made superfluous by a matching outdent you may transform
every occurence of indent into an optional i. The r symbol, performed inside the i, denotes a force
command. By popping the margin stack, the o symbol plays the role of the outdent command.
The two fold options ‘[r]’ and ‘[i]’ correspond to break space and opt .

5The sequence ‘force, backup’ is equal to ‘outdent , force, indent ’ and ‘big force’ is something

5.2. A SHORT HISTORY OF PRETTYPRINTING 47

necessary command set N = { indent , outdent , force, break space, opt }
convenient command set C = N ∪ { backup, big force }

sufficient command set S = C ∪ { cancel , no indent }

Figure 5.2: Naming of subsets of the command set.

We will call them, together with the basic commands the convenient command set .
Typesetting lines of code flushleft is not a feature commonly needed in modern

structured programming languages, except in C/C++ when using preprocessor
directives (and still they do not belong to the actual language itself). The no indent
command caters for them but it is hardly necessary in other languages, where alone
the idea of excluding single lines from the overall indentation frame violates all rules
of good program layout.

Finally the cancel command does not add any striking new features to the
command set. It just allows more flexibility in the placement of format commands
in the output. A well placed cancel command can obliterate a dozen rules of your
prettyprinting grammar and thus can deflate prettyprinting grammars very much.
So if you define sufficiency as incorporating convenience and flexibility we could call
this whole set of presented commands a sufficient command set. This, however,
naturally excludes the open problems mentioned in the next subsection. The two
subsets of this sufficient command set are summarized in table 5.2.

5.2.5 Open Prettyprinting Problems

“No there isn’t, and there won’t be [a method of vertically aligning
statements in CWEB]. It is true thatCWEB forgets your alignment, but you
should realise that it also forgets any layout feature present in your
source file (e.g., line breaks). Apart from the fact that it would be
very hard to integrate any alignment processing into CWEAVE’s ordinary
parsing operations, it is an impossible task for CWEAVE, since it knows
nothing about the actual width of identifiers and other items. So the
only possibility would be to transmit alignment instructions to TEX, but
TEX typesets code in paragraph mode (breaking lines to the width of the
page if necessary), and there is no way to mix that with an alignment.”

Marc van Leeuwen [63]

If you have ever tried to use a prettyprinter for your own code you will surely have
come across problems concerning user control. Yehudai states, that

“[. . .] it is not clear that any automated indentation scheme will be
adequate, as I may choose different ways to lay out the same construct
in different parts of my program.” [69, p. 85]

Woodman gives an example for this point that he calls “adaptive combs” [68, p. 616],
where a long if/elsif statement in Modula-2 is cited as:

if longexpression1 then
longstatement1

elsif expr2 then stmt2
elsif longexpression3 then

longstatement3
else

longstatement4

like ‘force, null , force’, depending on the exact interpretation of the typesetter.

48 CHAPTER 5. ON PRETTYPRINTING

end

Here the statement stmt2 appears on the “tooth” of the comb, whereas the context
rather suggests that it should appear between the teeth like all other statements.
This is a question of context sensitive formatting and it is an open question, how
to deal with this problem in terms of format commands.6

Another open problem falls into the same domain, but deals with horizontal
spacing instead of line breaking. Blaschek [5, p. 701] points out that his system is
not able to align constructs horizontally, as for example in:

with stmt ˆdo
position := pos
decLabel := label
next := nil

end

This is a problem that no prettyprinter to date has mastered in an automatic
fashion.

It is an open question whether these problems could be solved using intelligent
algorithms that learn a layout style by example, like for instance the ‘intelligent’
prettyprinter by Winter and Cook [67]. But maybe the worst (and oldest) pret-
typrinting problem is how to typeset comments! Papers as early as those of Mo-
hilner [40] and Jackel [22] address this topic and the core of the problem surely lies
in the nature of comments. The paper “Programming languages should NOT have
comment statements” by Kaelbling [25] and that by Grogono [17] strongly argue
that at last comments should be treated equally as parts of the language, not as an
add-on that is forgotten at first point during compilation. Grogono brings this to
the point by stating that “Comments are second class citizens.” [17, p. 80] They
are mostly allowed anywhere in the source code and prettyprinters who want to
preserve them in the output have severe problems doing that without destroying
the program’s format, because they have to be incorporated into the prettyprinting
grammar.

There have been attempts to do this in a structured way, i.e. to divide comments
into classes and to treat each class differently [53, 56, 13, 54]. Rose and Welsh
distinguish between pre- and postcomments and state that comments must move
with the syntactic elements that they refer to [55, p. 660]. Kaelbling even goes as
far as to demand “scoped comments”, i.e. comments that explicitly show to which
part of the program they belong.

All these attempts have the same goal, but the problem of prettyprinting com-
ments will only be solved, if they are treated as an equal part of a programming
language and thus are included in the reference grammar.

6Woodman proposes the idea of “linked folds”, i.e. a special set of format commands that force
a number of consecutive folds to be treated equally, but doesn’t elaborate on it.

Chapter 6

Future Work

“In automatic formatting one should avoid interpreting layout features
of the source text unless they are so special that the user can always
avoid supplying such features inadvertently (e.g., one could imagine
blank lines in the program code being automatically converted to ‘@#’,
but even there some programmers may feel that this cramps their input
style). [...] it would be a good thing however if any popular layout style
could be selected as an option to the prettyprinter (just like LATEX allows
selection of a document style independently from its contents) [...]”
Marc van Leeuwen [62]

After having finally implemented and tested the Pretzel program I have noticed,
that the program doesn’t do very much at all, although it suits the specifications
that belonged to this project. To enjoy beautifully formatted source code you still
have to construct your prettyprinting grammar. As is seems, the work of fine tuning
such a grammar that the prettyprinter is able to handle the last formatting detail
you desire is quite tedious and time-consuming, especially if you start to build your
grammar from scratch. But after constructing such a grammar for Pascal and
applying it to a few everyday-example Pascal source codes, I was astonished how
easy it was to change the looks of the prettyprinted text. I think that starting
with a formal grammar of your favourite language and trying to enhance it and
transform it into a prettyprinting grammar is surely a better way to reach your
goal. I suppose that the Pretzel program could be the right tool to help you with
this task.

However, since only few people have used Pretzel until today there will surely
be a lot of things people miss when using the program. Here are a few things I have
thought of already:

Allow /*. . . */ comments. In places where the user has an empty production in
the formatted grammar file or an empty token definition in the formatted
token file file, it would be nice to have a C like commenting feature with
opening and closing delimiters. The ‘//’ comment delimiter isn’t nice if you
want to add an attribute definition to an empty production.

Copy comments. It surely would make the generated flex and Bison files more
readable, if Pretzel would copy the comments from the formatted token and
the formatted grammar files into them.

Generate %token definitions. If one would impose the restriction to use only up-
percase identifiers as terminal token names Pretzel could automalically gener-
ate the list of %token definitions needed to identify terminals in the formatted
grammar file.

49

50 CHAPTER 6. FUTURE WORK

Change prettyprinting grammar format. It would be nice to be able to insert
format commands directly into the grammar rules, like for example in:

WHILE expr DO indent stmt outdent force −→ stmt

This is a point that effects fundamentals of the build pparse function. Other
parts of Pretzel are not involved. This is a change that would be good for
new users, since this way of specifying the grammar is much more intuitive.

Include files for grammars. As parts of prettyprinting grammars occur frequently
in many different programming languages (such as the formatting of expres-
sions) it would be nice to be able to include files that contain these definitions
with a simple command in the formatted token and formatted grammar files.
On a more abstract level one could think of a notion of modules of grammars,
i.e. parts of a grammar that can be called with arguments to suit local demands
(“grammar templates”?). But it is still an unanswered question whether this
is practical, because of the lack of method to specify the interface of such a
module.

Enhance noweb support. This includes managing multiple prettyprinting filters
and automatically selecting a filter for the right language (if you mix languages
in noweb files). The noweb support seems the place where the most work can
be done to get a practical system.

Suggestions are always welcome.

Chapter 7

Reference

“I used to think that prettyprinting was the cats meow, but after be-
coming a bit accustomed to noweb I find that a CWEB printout looks
somewhat like gibberish.”

Barry Schwartz [58]

This chapter contains a complete and detailed reference of the Pretzel system. This
is information that mostly is also contained in the manual pages pretzel(1) and
pretzel-it(1).

7.1 The Concept of Pretzel

The concept of Pretzel is visualized in figure 7.1. From a formal formatting de-
scription of a programming language P , Pretzel generates a prettyprinting function
that can be used to prettyprint source code in P . To get the actual prettyprint-
ing program, you only have to supply a main program (or use the one that comes
with Pretzel). If the way of prettyprinting needs to be changed, the user only
needs to change formal parts in the input and use Pretzel again to get an enhanced
prettyprinter.

Figure 7.2 on page 53 shows the generating process in slightly more detail. The
figure shows that the program Pretzel doesn’t generate a prettyprinter immediately;
what it does is to produce code that can be turned into a C++ prettyprinting class
with the help of two tools:

flex A POSIX.2 compliant lexical analyser generator.

Bison A POSIX.2 compliant parser generator. The version used with Pretzel has
to produce C++ compliant source.

pretzel

?
- -

?

formal description

prettyprinterText
prettyprinted

text

Figure 7.1: The concept of Pretzel.

51

52 CHAPTER 7. REFERENCE

Users that are already familiar with the basics of both tools will find it easier to
read the following text because the way of specifying input to Pretzel is quite close
to the ways used by them. However, this text aims at people who don’t have such
knowledge and will explain everything that is necessary.

Also visible from this figure is that Pretzel creates two things:

• A prettyprinting scanner class and

• a prettyprinting parser class (containing the actual prettyprinter).

The prettyprinting parser is the actual prettyprinter function that you normally
want to get when using Pretzel. The prettyprinting scanner is used by the parser
and takes care of the token formatting. Both parts are separate modules with a
well defined interface and can be used individually. Hence, you can write your own
scanner or parser if you really need features that the ones produced by Pretzel don’t
have.

7.1.1 The Input Files

The word “pretty” is very subjective and so programming language source code can
be printed in a “pretty” kind of fashion in almost infinitely many ways, according
to the taste and preferences of the user. If the task of prettyprinting is handed
over to the computer, the user must specify in detail all of his wishes towards the
appearance of the output of the prettyprinter.

To generate a prettyprinter, Pretzel needs two descriptions that it expects to
find in two different files:

A formatted token file. This file should contain all information concerning the
individual formatting of tokens (i.e. identifiers, reserved words, etc.).

A formatted grammar file. This file should contain a prettyprinting grammar,
i.e. a context free grammar enhanced with formatting commands. This infor-
mation is necessary to handle the more global aspects of prettyprinting that
need information about the language context (i.e. indentation, line breaks,
etc.).

The name of the first file might be a little misleading, since it doesn’t contain
formatted tokens. Instead it tells you what you will get from the definitions therein.
A name like “token formatting file” might have been a little better, but the similarity
in names between the two input files sounded good and seemed to outplay this small
inconsistency.

The special formats of these two files are described later in section 7.2. The
interface to the generated Pretzel classes is described in detail in section 3.2.

7.2 The Format of the Input Files

Now we turn to a vital thing for the user of Pretzel: The format of the Pretzel input
files. Here the user has to put a formal description of the underlying programming
language and (with the help of format commands) state how its text should be
formatted.

We have seen that Pretzel takes two input files: The formatted token file and
the formatted grammar file. We suggest to use the suffix ‘.ft’ for a formatted token
file and ‘.fg’ for a formatted grammar file.

7.2. THE FORMAT OF THE INPUT FILES 53

?

?

?

grammar file

Bison source

C++ code

prettyprinting

prettyprinter

pretzel

Bison

CC

formatted

parser

common
token header

??

scanner

?

?

-

..........
.
.

.

.¾

token file

flex source

C++ code

prettyprinting

pretzel

flex

CC

is called by

formatted

Figure 7.2: The current process of generating a prettyprinter with Pretzel.

7.2.1 The Formatted Token File

The formatted token file contains a list of token definitions with their corresponding
“prettyprinted” form. The prettyprinted form of a token will be called an attribute
or a translation.

The general outline of the formatted token file is

declarations
%%
token definitions

Normally, the declarations part is empty. You can put a general description of the
file here (as a C comment) and redefinitions of the default interface go here as well
(see section 3.2 for more).

The token definitions section of the formatted token file contains a series of token
definitions of the form:

pattern token {attribute}
The pattern must be a valid regular expression (in terms of flex) and must be
unindented. The token specifies the symbolic name of the token for the pattern
and begins at the first non-whitespace character after the pattern. The token name
must be a legal name for an identifier in Pascal notation and must be all in upper
case. (Underlines are allowed but not at the beginning of a word.)

The attribute for this token, that is it’s prettyprinted form, consists of all text
between the two curling brackets ‘{’ and ‘}’. Attributes can be either simple strings
(surrounded by double quotes) or format commands (like force, indent) or a com-
bination of both joined together by an optional ‘+’ sign. Attribute definitions can
cover several lines and the starting ‘{’ needn’t stand on the same line as the token
definition; however subsequent lines must be indented with at least one blank or
one tab. Attributes can also contain C code. See section 3.1 or the manual page
pretzel(1) for details.

If you define strings as part of an attribute definition, you have to specify them
in a C kind of fashion, i.e. you can insert newlines and tabs with ‘\n’ and ‘\t’.

54 CHAPTER 7. REFERENCE

But if you want to insert a backslash into a string, you mustn’t forget to put
two backslashes (‘\\’) into the input file. This is especially noteworthy if you are
using TEX as typesetter, because TEX uses a backslash as a prefix for typesetting
commands.

If the definition of the attribute is omitted Pretzel creates an attribute for this
pattern by default. The default attribute consists of the string containing the text
matched by the corresponding pattern.

The user himself may also refer to the matched text by using the sequence ‘**’.
Thus

"foo" BAR
"foo" BAR { ** }
"foo" BAR { "foo" }

all have the same meaning.
You can use a ‘|’ sign as a token name; this signals that the current regular

expression has the same token name (and also the same attribute) as the token
specified in the following line (empty lines are ignored). An attribute definition
behind a ‘|’ is illegal. However you may specify regular expressions with neither a
token name nor an attribute to give a default rule or to eat up whitespace.

The following examples are all legal token definitions (and please note the dot
in the very last line):

[0-9] DIGIT

"{" OPEN { "\\{" indent force }

[a-z][a-z0-9]* ID { "{\\it " + ** + "}" }

"function" |
"procedure" PROC_INTRO { big_force ** }

[\t\ \n] |
.

The declarations and the token definitions must be separated by a line containing
only the two characters %%. So the shortest possible formatted token file is

%%

but this doesn’t seem of any use, does it?

7.2.2 The Formatted Grammar File

In the formatted grammar file the user encodes the general prettyprinting grammar
for the programming language. This is done by specifying a context free grammar
of the language and by adding information about the creation of new attributes in
every rule.

The formatted grammar file is the second and last input to the Pretzel program.
Its general outline looks like this:

token declarations
%%
grammar rules

7.2. THE FORMAT OF THE INPUT FILES 55

The token declarations section may be empty and the separator between the two
parts of the file (%%) must appear unindented on a single line by itself. Before we
look at these declarations, let’s have a look at the grammar rules.

The grammar rules section contains the collection of rules of the context free
grammar that can be accompanied by an attribute definition. A rule is specified
by stating the resulting token, a colon and then the series of tokens which will
be reduced by this rule. The rule is ended by a semicolon. A block definition in
Pascal for example might look like this:

block : BEGIN stmt_list END
;

Following the token list on the right side of the colon can be an attribute defini-
tion; this definition states, how the translation of the produced symbol is obtained
from the tokens on the right side of the rule.

An attribute definition is bracketed amidst curling brackets ‘{’ and ‘}’ and can
again consist of strings (in double quotes) and format commands or both joined
together with ‘+’. But here you can also refer to the attributes of the tokens on the
right side of the rule. This is done in a slightly awkward notation with a number
that is preceded with a ‘$’ dollar sign. The numbers refer to the order of appearance
of the symbols on the right side of the rule. So ‘$1’ refers to the first token of the
rule, ‘$2’ to the second, . . .

Again attribute definitions are allowed to span several lines and strings must be
specified in C manner. They can also contain C code as described in section 3.1.

For example, here again is the possible definition of a block in Pascal, now
with an example attribute definition:

block : BEGIN stmt_list END { $1 + $2 + force + $3 }
;

The attribute of a block will therefore consist of the attributes of the BEGIN
and stmt list tokens, joined together with a force command and the translation
of the END token.

The attribute definition may be omitted. If this is so, Pretzelwill by default
form the attribute of the produced symbol from the simple concatenation of the
attributes on the right side of the rule. For instance

stmt : block SEMI
;

means the same as:

stmt : block SEMI { $1 + $2 }
;

Of course you may also have empty right sides of a rule (to produce things out
of nothing) or simply concatenate two or more rules resulting in the same symbol
with a ‘|’. So the following are legal rules:

stmt_list : { force }
| stmt_list stmt SEMI { $1 $2 $3 force }

;

To end this subsection, we have to return to the token declarations section of
the formatted grammar file. Here we have to insert a special line for every terminal
token that appears in the grammar rules. These definitions are of the form ‘%token
tokenname’. This part of the formatted grammar file is owed to Bison and should
be removed in subsequent versions.

56 CHAPTER 7. REFERENCE

7.2.3 Comments and Code

There is a very simple way of putting comments into the formatted token and
formatted grammar files. This is done in a C++ kind of manner by preceding the
comment with a double slash (‘//’). All characters between this sign and the end
of the line are ignored by pretzel.

In both files you can put additional C++ code before and after the defini-
tions/grammar sections. If you want to insert code at the end of your file, you
have to put a second ‘%%’ on a line by itself and put the code behind it. C/C++
Code before the definitions/rules section has to be tied in with a ‘%{’, ‘%}’ pair.
Inserting extra code is interesting for people who want to call this code from within
the attribute definitions. See section 3.1 for details.

7.3 Synopsis of pretzel and pretzel-it

7.3.1 pretzel-it

The shell script pretzel-it uses Pretzel to build a simple prettyprinter executable.
It minimizes building a Pretzel prettyprinter to just one shell command.

You have to provide the same two input files to pretzel-it as to Pretzel.
These two files are called the formatted token file (suffix .ft) and the formatted
grammar file (suffix .fg). Both files need to have the same prefix. From this input,
pretzel-it generates an executable prettyprinter.

To get to know the options, type

pretzel-it -h

at the command line. The full usage is:

pretzel-it [-iqvdnh] language ppname

Here’s an explanation of the options:

-i Don’t remove intermediate products of pretzeling.

-q Run quietly.

-v Verbose mode, print shell commands before invoking (for debugging).

-d Turn prettyprinter debugging features on by default (for debugging the pret-
typrinting grammar).

-h Print full usage message.

-n Noweb mode, will produce a prettyprinting filter ppname compatible to Norman
Ramsey’s noweb literate programming system. The filter can be inserted into
the noweb pipeline using noweave’s -filter option.

See also the manpage pretzel-it and chapters 2 and 4.

7.3.2 pretzel

Pretzel is invoked by typing

pretzel

at the command line. The full usage of Pretzel can be obtained using the -h option.
It is:

7.3. SYNOPSIS OF PRETZEL AND PRETZEL-IT 57

pretzel [-qtgdh] [-o outfile] (prefix | file1 file2)

Here’s an explanation of the options:

-q Run quietly (no screen output).

-t Process formatted token file only.

-g Process formatted grammar file only.

-d Run in debug mode (i.e. print out debugging information on the screen while
running).

-h Show full usage.

-o outfile Names of the produced output files begin with “outfile”.

The options -t and -g are mutually exclusive, i.e. you can’t choose both at the
same time.

The command line parameters have different meanings depending on whether
one ore two names are given. If there is only one parameter, it specifies the prefix
of both formatted token and formatted grammar files. The suffixes ‘.ft’ and ‘.fg’
are assumed. But if there are two parameters at the command line, Pretzel will
take the first as full name of the formatted token file and the second as full name of
the formatted grammar file. In this case, the output files will get a default name.
The output files will have endings ‘.l’ (token file) and ‘.y’ (grammar file).

58 CHAPTER 7. REFERENCE

Bibliography

[1] M. Arab. Enhancing program comprehension: formatting and documenting.
ACM SIGPLAN Notices, 27(2):37–46, February 1992.

[2] P. A. Bailes and A. Salvadori. A semantically-based formatting discipline for
Pascal. Software — Practice & Experience, 14(3):235–251, March 1984.

[3] R. M. Bates. A Pascal prettyprinter with a different purpose. ACM SIGPLAN
Notices, 16(3):10–17, March 1981.

[4] Jon Bentley. Programming pearls—literate programming. Communications of
the Association for Computing Machinery, 29(5):364–369, May 1986.

[5] G. Blaschek and J. Sametinger. User-adaptable prettyprinting. Software —
Practice & Experience, 19(7):687–702, July 1989.

[6] R. Bond. Another note on Pascal indentation. ACM SIGPLAN Notices,
14(12):47–49, December 1979.

[7] H. M. Clifton. A technique for making structured programs more readable.
ACM SIGPLAN Notices, 13(4):58–63, April 1978.

[8] K. Conrow and R. G. Smith. NEATER2: A PL/I source program reformatter.
Communications of the ACM, 13(11):669–675, November 1970.

[9] David Cordes and Marcus Brown. The literate-programming paradigm. Com-
puter, 24(6):52–61, June 1991.

[10] J. Crider. Structured formatting of Pascal programs. ACM SIGPLAN Notices,
13(11):15–22, November 1978.

[11] Peter J. Denning. Announcing literate programming. Communications of the
Association for Computing Machinery, 30(7):593, July 1987.

[12] Jan Dvorak. Re: CWEB & C++ trouble with ‘const’. Posting in
comp.programming.literate, November 1995.

[13] P. Fritzson. Adaptive prettyprinting of abstract syntax applied to Ada and
Pascal. Research report, University of Linköping, Sweden, 1983.

[14] Felix Gärtner. Pretzel home page. WWW URL:
http://www.iti.informatik.th-darmstadt.de/~gaertner/pretzel.

[15] I. Goldstein. Prettyprinting, converting list to linear structure. Technical
Report 279, M.I.T. Artificial Intelligence Laboratory, Cambridge, Mass., 1973.

[16] P. Grogono. On layout, identifiers and semicolons in Pascal programs. ACM
SIGPLAN Notices, 14(4):35–40, April 1979.

59

60 BIBLIOGRAPHY

[17] P. Grogono. Comments, assertions, and pragmas. ACM SIGPLAN Notices,
24(3):79–84, March 1989.

[18] G. G. Gustafson. Some practical experiences formatting PASCAL programs.
ACM SIGPLAN Notices, 14(9):42–49, September 1979.

[19] A. C. Hearn and A. C. Norman. A one-pass prettyprinter. ACM SIGPLAN
Notices, 14(12):50–58, December 1979.

[20] R. Heckert. A Pascal indentation philosophy. Computer Language, pages 37–39,
September 1985.

[21] Jon Hueras and Henry Ledgard. An automatic formatting program for PAS-
CAL. ACM SIGPLAN Notices, 12(7):82–84, July 1977.

[22] M. Jackel. A formatting parser for Pascal programs. ACM SIGPLAN Notices,
15(7–8):58–63, July–August 1980.

[23] K. Jensen and N. Wirth. PASCAL — User Manual and Report. Springer,
third edition, 1985.

[24] M. O. Jokinen. A language-independent pretty printer. Software — Practice
& Experience, 19(9):839–856, September 1989.

[25] M. J. Kaelbling. Programming languages should NOT have comment state-
ments. ACM SIGPLAN Notices, 23(10):59–60, October 1988.

[26] Tim Kientzle. When to use prettyprinting. Posting in
comp.programming.literate, October 1994. Correct subject header
might be different. Date here: 6 Oct 1994.

[27] Przemek Klosowski. Re: I want to produce postscript output from cweb.
Posting in comp.programming.literate, November 1996.

[28] D. E. Knuth and M. F. Plass. Breaking paragraphs into lines. Software —
Practice & Experience, 11:1119–1184, 1981.

[29] Donald E. Knuth. The WEB system of structured documentation. Stanford
Computer Science Report CS980, Stanford University, Stanford, CA, Septem-
ber 1983.

[30] Donald E. Knuth. The TEXbook, volume A of Computers and Typesetting.
Addison-Wesley, Reading, Massachusetts, 1983.

[31] Donald E. Knuth. Literate programming. The Computer Journal, 27(2):97–
111, May 1984.

[32] Donald E. Knuth. Literate Programming. CSLI Lecture Notes Number 27.
Stanford University Center for the Study of Language and Information, Stan-
ford, CA, USA, 1992.

[33] Donald E. Knuth and Silvio Levy. The CWEB System of Structured Documen-
tation, Version 3.0. Addison-Wesley, Reading, MA, USA, 1993.

[34] H. Ledgard, A. Singer, and J. Hueras. A basis for executing PASCAL pro-
grammers. ACM SIGPLAN Notices, 12(7):101–105, July 1977.

[35] Henry F. Ledgard. Programming Proverbs. Hayden, Rochelle Park, New Jersey,
1975.

BIBLIOGRAPHY 61

[36] D. W. Leinbaught. Indenting for the compiler. ACM SIGPLAN Notices,
15(5):41–48, May 1980.

[37] D. Marca. Some Pascal style guidelines. ACM SIGPLAN Notices, 16(4):70–80,
April 1981.

[38] P. Mateti. A specification scheme for indenting programs. Software — Practice
& Experience, 13:163–179, 1983.

[39] William M. McKeeman. Algorithm 268. Communications of the ACM, 8:667–
668, 1965.

[40] Patricia R Mohilner. Prettyprinting PASCAL programs. ACM SIGPLAN
Notices, 13(7):34–40, July 1978.

[41] Peter Naur et al. Report on the algorithmic language Algol 60. Communica-
tions of the ACM, 3(5):299–314, May 1960.

[42] Matthias Neeracher. Re: Simple lp experiment. Posting in
comp.programming.literate, April 1996.

[43] D. Norris. An Ada prettyprinter. Journal of Pascal and Ada, 3(4):29–48, April
1984.

[44] Derek C. Oppen. Prettyprinting. ACM Transactions on Programming Lan-
guages and System, 2(4):465–483, October 1980.

[45] James L. Peterson. On the formatting of Pascal programs. ACM SIGPLAN
Notices, 12(12):83–86, December 1977.

[46] J. Ramsdell. Prettyprinting structured programs with connector lines. ACM
SIGPLAN Notices, 14(9):74–75, September 1979.

[47] Norman Ramsey. The noweb hacker’s guide. included in the noweb distribution,
also available via the Noweb home page [48].

[48] Norman Ramsey. Noweb home page. WWW URL:
http://www.cs.virginia.edu/ nr/noweb/intro.html.

[49] Norman Ramsey. Weaving a language-independent WEB. Communications of
the Association for Computing Machinery, 32(9):1051–1055, September 1989.

[50] Norman Ramsey. Literate programming simplified. IEEE Software, 11(5):97–
105, September 1994.

[51] Norman Ramsey. When to use prettyprinting. Posting in
comp.programming.literate, October 1994. Correct subject header
might be different.

[52] Norman Ramsey. Re: Prettyprinting in noweb (was: the underscore dilema).
Posting in comp.programming.literate, April 1996.

[53] Frederic Richard and Henry F. Ledgard. A reminder for language designers.
ACM SIGPLAN Notices, 12(12):73–83, December 1977.

[54] P. N. Rorbillard. Automating comments. ACM SIGPLAN Notices, 24(5):66–
70, April 1989.

[55] G. A. Rose and J Welsh. Formatted programming languages. Software —
Practice & Experience, 11:651–669, 1981.

62 BIBLIOGRAPHY

[56] Lisa F. Rubin. Syntax-directed pretty printing — a first step towards a syntax-
directed editor. IEEE Transactions on Software Engineering, SE-9(2):119–127,
March 1983.

[57] Joachim Schrod. Latex cweb — a bundle that allows you to use la-
tex as the documentation markup of your cweb program. WWW URL:
ftp://ftp.th-darmstadt.de/ pub/programming/literate-programming/
c.c++/cweb-sty-1.1.1.tar.gz.

[58] Barry Schwartz. When to use prettyprinting. Posting in
comp.programming.literate, October 1994. Correct subject header
might be different. Date here: 5 Oct 1994.

[59] R. Scowen, D. Allin, A. L. Hillman, and M. Shimell. SOAP – A program which
documents and edits Algol60 programs. The Computer Journal, 14(2):133–135,
1971.

[60] Marc van Leeuwen. When to use prettyprinting. Posting in
comp.programming.literate, October 1994. Correct subject header might
be different. Date here: 7 Oct 1994.

[61] Marc van Leeuwen. Differences between CWEB and WEB prettyprinting gram-
mars. Posting in comp.programming.literate, February 1995. Correct sub-
ject header might be different.

[62] Marc van Leeuwen. On interpretation of layout features. Posting in
comp.programming.literate, February 1995. Correct subject was different.

[63] Marc van Leeuwen. Alignment of assignments in CWEAVE. Posting in
comp.programming.literate, March 1996. Correct subject header might be
different (date and number here: 2986, 19 Mar 1996.

[64] Marc van Leeuwen. Prettyprinting in noweb (was: the underscore dilema).
Posting in comp.programming.literate, April 1996.

[65] R. Waters. User format control in a LISP prettyprinter. ACM Transactions
on Programming Languages and Systems, 5(4):513–531, October 1983.

[66] R.C. Waters. Using the new common LISP pretty printer. Lisp and Symbolic
Computation, V(2):27–34, April–June 1992.

[67] K. Winter and C. Cook. A prototype intelligent prettyprinter for Pascal. ACM
SIGPLAN Notices, 24(9):116–125, September 1989.

[68] M. Woodman. Formatted syntaxes and Modula-2. Software — Practice &
Experience, 16(7):605–626, July 1986.

[69] A. Yehudai. Automatic indentation versus program formatting. ACM SIG-
PLAN Notices, 15(10):85–87, 1980.

Index

/*. . . */ comments, 49
// comments, 49
[, code delimiters, 23
2.0, 6

ACM, 42
Ada, 41
“adaptive combs”, 47
adding code, 23
Additional spacing, 43
AIX, 6
Algol, 41, 42
Algorithm-policy distinction, 43
ASCII, 33
Assembler like command set, 46
attachments, 13
attr.nw, 23
Attribute class, 23
attribute definitions, 11
attributes, 13
Automatic typesetting, 41
available grammars, 19

Back end, 44
backup, 15
backup, 15, 47
Basic actions of prettyprinters, 43
Beauty, 42
big force, 15, 46
Bison, 6, 11, 18, 32, 52
Blaschek, G., 44, 48
books, 18
breakspace, 14
build pparse, 50

C, 17, 19
C, 16, 47, 55
C code in rules, 23
C preprocessor, 16
C++, 16, 47, 51, 56
cancel , 16, 37, 47
“case” construct, 43
christmas 1996, 6
Classes of comments, 48
code delimiters, 23

code in attributes
summary, 25

colon, 11
combining rules, 11
Command set

assembler like, 46
convenient, 47
sufficiency, 45
sufficient, 47

Comments, 48
in Pretzel input files, 56

Communication protocol, 43
comp.programming.literate, 6
Compilers

and prettyprinters, 42
for documents, 42

compilers, 18
complex languages, 16
complex tokens, 11
Connector lines, 43
Context free grammar, 46, 54
context free grammar, 11
context free grammars, 18
Context sensitive formatting, 48
context sensitive grammars, 18, 21
Control sequences, 42
control sequences, 13
controlling indentation, 13
controlling line breaks, 14
Convenient command set, 47
Conventions, 52
Cook, C., 48
Copy comments, 49
Coroutines, 43
create, 24
CWEB, 7
CWEB, 37

-d option of Bison, 30
-d option of pretzel-it, 20, 29
Darmstadt, 6
date

up to, 6
debug off function, 29
debug on function, 29

63

64 INDEX

debug print, 26
debugging grammars, 19
debugging mode, 20
Deflating prettyprinting grammars, 47
-delay switch, 36
Document compilers, 42
documents, own, 9
Dublin, 6
Dvorak, Jan, 42

Early prettyprinters, 43
Editors

syntax directed, 44
Empty tokens, 49
ending code, 25
Equality, 48
error token, 20
escaped underlines, 24
everyday setting, 7
example-frame.tex, 9
Exceptions, 16
executable prettyprinter, 9
expectations, 9
Explicit format commands, 44

.fg suffix, 52, 57
FIFO buffer, 43
File formats, 52
Filename conventions, 52
-filter switch, 36
flex, 6, 11, 32, 52
flexdoc, 11, 32
Flexibility, 16
Folding, 43, 45
Folding algorithm (Rose and Welsh),

44
force, 13
force, 37
formal language theory, 18
Formal methods, 44
Format commands, 43

backup, 15, 47
big force, 15, 46
cancel , 16, 47
explained, 16
explicit, 44
implicit, 44
no indent , 16, 47
null , 16
summary, 16

format commands
additional, 15
backup, 15
breakspace, 14

extra, 37
opt, 15

Formatted grammar file, 52, 54
formatted grammar file, 10, 11
Formatted token file, 52, 53
formatted token file, 10

placement of regular expressions,
11

formatting, 13
Formatting algorithm, 43
Formatting algorithms, 41
formatting instructions, 12, 13
Formatting policy, 43, 45
Formatting standards, 41
“free format” languages, 41
Free Software Foundation, 6
Front end, 44
.ft suffix, 52, 57

Gärtner, Felix, 19
Gärtner, Felix, 19
GNU g++ Compiler, 6
GNU General Public License, 6
good news, 19
grammar rules, 13
grammar, context free, 11
grammars

prettyprinting, 16
Grogono, P., 48
Guidelines (Rose and Welsh), 44

handling identifiers, 10
Hearn, A. C., 43, 44
History of prettyprinting, 42
Hmmm, 18
homepage

Pretzel, 6, 17
Horizontal spacing, 48
HP-UX, 6
HTML, 32
hum, rattle and, 9

Implicit format commands, 44
In-text procedural markup, 42
Include files for grammars, 50
indent, 13
Indentation, 43
indentation, 13
Indenting programs, see Prettyprint-

ers
-index switch, 36
Indexing with noweb, 36
indexing, automatic, 7
Inituitive grammar format, 50

INDEX 65

install, 24
installing Pretzel, 6
Intelligent prettyprinter, 48
ITI, 6

Jackel, M., 48
Java, 17, 19, 36
join, 24

Kaelbling, M. J., 48
Kehr, Roger, 6
Kellington, Myrtle, 42
Kientzle, Tim, 7
Klosowski, Przemek, 37
Knuth, Donald E., 35, 42–44, 46

command set by, 42

.l suffix, 57
Language (in)dependence, 44
language definition grammars, 18
Language dependent front end, 44
Language independent back end, 44,

45
languages/examples, 7
LATEX, 9, 32
Latex cweb output, 26
Ledgard, Henry F., 41
van Leeuwen, Marc, 5, 16, 20, 32, 42,

47, 49
Levy, Silvio, 43
Lexical level, 46
line breaks, 14
Linked folds, 48
Lisp, 41, 43
literate programming, 35
lookup table, 24

Markup, 42, 46
markup, 13
match iput patterns, 10
Mateti, P., 44
McKeeman, William, 42
Metasyntax (Rose and Welsh), 44
Modula-2, 47
Modularity, 45
modules, 5
Mohilner, Patricia R., 48
muliple modules, 31

-n option of pretzel-it, 36
naming conventions, 38
Naur, Peter, 42
Necessary command set, 46
Neeracher, Matthias, 38
newlines, 26

newsgroup, 6
“No”, 45
no indent , 16, 47
Norman, A. C., 43, 44
noweb, 6, 35, 36

prettyprinter API, 36
problems, 39

noweb.sty, 39
noweb.sty, 37
Nroff, 13, 42
null , 16

Omissions, 49
Oppen, Derek C., 44
opt, 15
outdent, 13
own documents, 9

P , 51
Parse tree, 44
parser generator, 18
parsing, 18
Pascal, 19
Pascal, 18, 41–44, 49, 53, 55
Personal taste, 41
PL/I, 41, 43
placing regular expressions, 11
Policy-algorithm distinction, 43
POSIX, 52
“postcomments” (Rose and Welsh), 48
Pparse class, 28
PPARSE NAME macro, 28, 31
“precomments” (Rose and Welsh), 48
Preprocessing of format commands, 16
Preprocessor, 16
“preprocessor” for prettyprinting, 44
Prettprinting scanner, 52
prettyprint function, 28
Prettyprinter

first, 42
intelligent, 48

prettyprinter
executable, 9
generator, 5

Prettyprinters
basic actions, 43
early systems, 43
for other languages, 41
running on keywords, 43

Prettyprinting, 41
history, 42
language (in)dependence, 44
problems, 47

prettyprinting

66 INDEX

grammars, 16
history, 12
idea, 13
modules, 5
with format commands, 13

Prettyprinting grammar
include files, 50

Prettyprinting grammar, 16, 49, 50
and comments, 48
deflating, 47

prettyprinting grammar, 11
watching parse, 20

prettyprinting grammars, 18
available, 19

prettyprinting module, 30
Prettyprinting parser, 52
prettyprinting parser, 27
prettyprinting parser interface, 28
Prettyprinting problems

worst and oldest, 48
prettyprinting scanner, 27
prettyprinting scanner class, 27
Pretzel

currect release, 6
example output, 9
file extensions, 7
history, 6
homepage, 6, 17
input files, 7, 10
installing, 6
interface, 26
output, 9
prettyprinting method, 10

Pretzel, 49
concept, 51
options, 57

Pretzel
obtaining, 6
ultimate source, 5

PRETZEL INCLUDE environment variable,
30

pretzel-it, 9
option -d, 20

pretzel-noweb.sty, 37
Procedural markup, 42, 46
Program formatting, 41
Pscan class, 27
Pscan.h header file, 27
PSCAN NAME macro, 27, 30
ptokdefs.h header file, 30

Ramsey, Norman, 6, 35, 36, 41
rattle and hum, 9
README, 6

recursion, 11
reducing tokens, 11
reference grammars, 18
regular expressions, 10

placement in formatted token file,
11

restrictions, 21
restrictions of Pretzel, 19
Reuseability, 45
Rigid formatting rules, 44
robust grammars, 20
Rose, G. A., 44–46, 48
RS6000, 6
Rubin, Lisa F., 43, 46

Sametinger, J., 44
Schrod, Joachim, 6
Schwartz, Barry, 22, 39, 51
“scoped comments” (Kaelbling), 48
scratch, 17
Second class citizens, 48
semicolon, 11
Separation of concerns, 44
setting, everyday, 7
simpas.ft, 7
simpas.fg, 7
simpaspp, 9
small-example.tex, 9
Spacing

additional, 43
horizontal, 48
horzontal, 46
vertical, 46

“special markers”, 43
SPIDER, 18
standard input, 9
standard output, 9
starting code, 25
State of the art, 44
students, 6
Sufficiency of command set, 45
Sufficient command set, 47
Summary of format commands, 16
symbolic names, 10
syntax error, 20
Syntax-directed editors, 44

Tags, 42
tags, 13
Taste

personal, 41
TEX, 13, 41, 42, 45
text formatter, 13
tips and tricks, 26

INDEX 67

%token declarations, 11
%token definitions, 49
token header file, 30
tokens, 10, 11

symbolic names, 10
Tooth, 48
Tradition, 42
Tricky details, 16
Trinity College, Dublin, 6
Troff, 13, 42
Typesetters, 41
Typesetting systems, 41
Typesetting comments, 48

Uhr, Holger, 6, 19
ultimate source, 5
UNIX, 6, 13, 18
UNIX, 42
USENET, 6
User control, 47
user control

full, 5
using Pretzel output, 9

vertical line, 11

Waldschmidt, Helmut, 6
watching the parse, 20
WEAVE, 42
WEB, 18
WEB, 45
Welsh, J., 44–46, 48
Winter, K., 48
Wittenberg, Lee, 6, 19, 36
Woodman, M., 44, 47
writing grammars, 17

.y suffix, 57
Yehudai, A., 47
yytext, 24

