
Software Development Guidelines

Contents

WEBster Home Page

1 - Introduction

1.1 - What This Process Will Achieve

1.2 - How These Guidelines Will Affect You

1.3 - What the Standard does not Cover

1.4 - What the Style Guidelines do Cover

2 - General Programming Guidelines

2.1 - Characteristics of High Quality Routines

2.1.1 - Routine Cohesion

2.1.2 - Routine Coupling

2.1.3 - Routine Size

2.2 - Modularization

2.2.1 - Module Attributes

2.2.2 - Physical Organization of Modules

2.3 - Data Typing, Declarations, Variables, and other Objects

2.4 - Names

2.4.1 - Alphabetic Case Considerations

2.4.2 - Abbreviations

2.4.3 - The Position of Components Within an Identifier

2.4.4 - Names to Avoid

Software Development Guidelines: Contents

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_contents.html (1 of 4) [10/1/2000 8:01:45 PM]

http://webster.cs.ucr.edu/index.html


2.5 - Organizing Control Structures

2.6 - Expressions

2.7 - Program Layout

2.8 - Comments and (program) Documentation

2.9 - Unfinished Code

2.10 - Cross References in Code to Other Documents

3 - C (and related C++) Specific Issues

3.1 - Repeat..Until Statement

3.2 - The Loop..Endloop Statement

3.3 - The Breakif Statement

3.4 - The While Statement

3.5 - The For..Endfor and Downto..Endfor Loops

3.6 - If..Elseif..Else..Endif Statement

3.7 - The Switch..EndSw Statement

3.8 - The _context.._endcontext, _leave, and _return Statements

3.9 - Operators

3.10 - Modules in C/C++

3.11 - Coding for Testability in C/C++

3.11.1 - The Assert Macro

3.11.2 - The RatC _affirm and _claim Macros

3.11.3 - A Convenient Way to Test a Function Return Result With Assert.

3.11.4 - Special Note for C++ Users

3.11.5 - Using Conditional Compilation

3.12 - Handling Error Return Values

3.13 - Comments in a C/C++ Source File

3.13.1 - Module Header Comments.

3.13.2 - Function Header Comments

3.13.3 - Multi-line Comments

3.13.4 - Single Line / Endline Comments

Software Development Guidelines: Contents

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_contents.html (2 of 4) [10/1/2000 8:01:45 PM]



3.14 - C++ Specific Features and Guidelines

4 - Pascal/Delphi Specific Formatting Issues

4.1 - Control Constructs in Pascal

4.2 - Semicolons in a Pascal Program

4.3 - Modules in Pascal/Delphi

4.4 - Coding for Testability in Delphi/Pascal

4.5 - Conditional Compilation in Delphi/Pascal

4.6 - Handling Error Return Values

4.7 - Comments in a Delphi/Pascal Source File

4.7.1 - Module Header Comments.

4.7.2 - Function Header Comments

4.7.3 - Multi-line Comments

4.7.4 - Single Line / Endline Comments

4.8 - Delphi Specific Issues

5 - Visual BASIC Specific Formatting Issues

6 - Lex/Flex and Yacc/Bison Specific Formatting Issues

6.1 - Lex/Flex Specific Issues

6.1.1 - The Flex Definitions Section

6.1.2 - The Flex Rules Section

6.2 - Yacc/Bison Specific Issues

6.2.1 - The Yacc/Bison Definitions Section

6.2.2 - The Yacc/Bison Rules Section

Software Development Guidelines: Contents

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_contents.html (3 of 4) [10/1/2000 8:01:45 PM]



7 - Other Languages (Formatting Issues)

8 - Appendices

8.1 - Appendix A: Guidelines

8.2 - Appendix B: Rules

8.3 - Appendix C: Enforced Rules

9 - Glossary

Authors:

Randall Hyde

Note: The authors of this paper acknowledge that many of the rules and ideas appearing in
this document were taken from Steve McConnell's text "Code Complete" (Microsoft Press,
ISBN 1-55615-484-4). This is an excellent text on personal software engineering and every
programmer should obtain a copy. Additional material was taken from Steve Maguire's
"Writing Solid Code," also from Microsoft Press (ISBN 1-55615-551-4). Another good
book on introductory software engineering/software modeling is "Software Development in
Pascal" by Sartaj Sahni (ISBN 0-942450-01-9). This document also borrows heavily from
that text.

Software Development Guidelines: Contents

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_contents.html (4 of 4) [10/1/2000 8:01:45 PM]



Software Development Guidelines

1 - Introduction

Contents - Next section (2 - General Programming Guidelines) >

1.1 - What This Process Will Achieve

1.2 - How These Guidelines Will Affect You

1.3 - What the Standard does not Cover

1.4 - What the Style Guidelines do Cover

1 - Introduction
The intent of this document is to create a guide for software source code quality. The guidelines
appearing herein apply to anyone who creates, modifies, or reads software source code.

This document is not a description of a complete software process. A particular group will need to
develop their own methodologies and procedures for the specification, design, implementation, testing,
and deployment of their software systems. This document is simply a set of rules to follow during the
implementation phase that will help produce a higher quality result.

This document addresses general and language-specific topics. The general concepts apply on any
project regardless of any implementation details. The language specific topics apply to a project in
addition to the general guidelines once a given programming language has been chosen for the project.

One restriction often found in corporations involving software engineering is the choice of programming
language for a project. Many IS shops are "one-language" houses. A corporation, for example, may hire
only COBOL programmers and insist that all programs, regardless of their nature, be written in COBOL.
Other companies do not have this policy. This allows engineers the flexibility to choose the appropriate
tool for the job; it also demands a certain amount of flexibility insofar as engineers must be capable of
working with legacy code written in any of several different languages.

Such flexibility, without a central direction guiding development, can lead to chaos. This is particularly
true when using languages that support rapid application development and prototyping like Visual
BASIC, Powerbuilder, and Delphi. This document is intended to provide guidance during development
so one developer can easily take over a project from another without facing "culture shock" upon reading
the new program. Most professionals, who take a non-personal view of their programming tools, should
find these guidelines non-obtrusive.

Many programmers take a near-religious view of machines and software tools. Alas, such views are often

Software Development Guidelines: 1 - Introduction

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_1.html (1 of 4) [10/1/2000 8:01:54 PM]



based on an individual's fear of having to learn something new rather than the actual applicability of a
given system. Engineers should maintain an open mind with respect to evolving technologies. Doing
something out of habit ("Because that's the way it's always been done," or "because that's the industry
standard.") are insufficient reasons for continuing to use an inadequate methodology.

Human nature resists change. This document describes several procedures that represent a departure from
the norm for most people. However, once you "unlearn" current habits and replace them with new habits,
you will probably agree that this change is for the best. Once you develop new habits and expand your
software development ideas, you will question how you ever accomplished anything without these new
methodologies.

1.1 - What This Process Will Achieve
You can hope to achieve three goals by requiring a consistent source code style:

Improve the productivity of existing programmers.●   

Allow new programmers to become comfortable with existing source code in less time than would
otherwise be necessary.

●   

Allow existing programmers to move around to different projects easily without having to adjust
to the programming style in use by other groups.

●   

Standardizing the "look and feel" of the source code will reduce the time to market, it will reduce the
time spent correcting problems in the product line, and it will give engineers the flexibility to jump on
and off projects without a large learning curve. This means that you will be able to spend less time on
legacy products and jump into the more interesting task of designing and implementing future products.

1.2 - How These Guidelines Will Affect You
This coding standard is not intended to be down to the level of dotting i's and crossing t's. It is flexible
enough to allow some breathing room while still achieving a visual standard in the way code is written.
Nevertheless, we all have coding habits we've developed over the years that we will need to change. As
noted above, human nature resists change. However, with the right attitude, perhaps approaching
learning this new style with the same sense of curiosity or excitement you would have when learning a
new language, you will find that the process of changing these old habits is straightforward.

Almost everyone will need to make some changes to their coding styles. Many people view this as an
assault on their personality. After all, we all like to believe we are unique (especially software
development types) and many of us tend to exhibit our personality in our programming style. Individuals
often view any attempt to conform their programming style to some "standard" as a step in conforming
their personality as well. However, this is really no different than expecting programmers to write their
comments in English rather than, say, French or Spanish.

You should encourage engineers to express (the positive aspects of) their personalities in their code in a

Software Development Guidelines: 1 - Introduction

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_1.html (2 of 4) [10/1/2000 8:01:54 PM]



positive fashion. You should pride yourself` on the diversity of the engineering staff and encourage
creativity and experience in software development. However, in a situation where you have a large
number of software engineers and this number is growing everyday, certain standards will be necessary
in order to ensure effortless communication between engineers via code. A reasonable software
development standard will help promote this.

Adopting this new standard will improve your worth to the company as well as improve you
professionally. You will quickly begin reaping benefits from this new process.

1.3 - What the Standard does not Cover
There are many issues with regard to programming style that these guidelines do not cover. They do not,
for example, dictate a particular programming language. Engineers should have the experience and
knowledge to choose an appropriate language for a given project based on technical and economic
merits. In particular, this specification does not:

Prevent you from trying something not explicitly covered by the software development standard.●   

Dictate the use of, or forbid the use of, any particular software development tool (certain
enterprise-wide tools are excepted, including configuration/version management tools and
software defect tracking tools).

●   

Specify the choice of a particular programming language on a project.●   

Specify the complete software design process.●   

Deal with platform specific issues.●   

Deal with project management issues.●   

Deal with user documentation for software products.●   

Although this document does not address those issues, other document and initiatives may very well do
so. You should consult with your manager for the specific liberties and responsibilities that you have.

1.4 - What the Style Guidelines do Cover
Software development occurs in different languages, environments, and on different machines. These
style guidelines attempt to generalize programming style across these divergent systems. For example,
assume you've written a program in two different languages. If those two languages share some
approximately equivalent statements and semantics (e.g., BASIC and C), the two programs should look
very similar. Obviously, some language pair choices (e.g., Pascal/assembly, BASIC/LISP, or C++/SETL)
will look quite a bit different, but many elements in the pairs should be identical, including variable
names, comments, etc.

Although this specification attempts to be generic, there are some language-specific issues that any set of
generic style guidelines must address. Language-specific issues appear in later sections. This standard
attempts to address the following issues:

Software Development Guidelines: 1 - Introduction

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_1.html (3 of 4) [10/1/2000 8:01:54 PM]



Modularization●   

Characteristics of high quality program units●   

Data typing●   

Names●   

Abstract data types and objects●   

Organizing control structures●   

Program layout●   

Comments and (program) documentation●   

Coding for testability●   

This document will not address issues like how to design software, how to test software, how to debug
software, etc. Different documents, particular to each department, will address those topics.

Contents - Next section (2 - General Programming Guidelines) >

Number of Web Site Hits since Dec 1, 1999:

Software Development Guidelines: 1 - Introduction

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_1.html (4 of 4) [10/1/2000 8:01:54 PM]



Software Development Guidelines

2 - General Programming Guidelines

< Previous section (1 - Introduction) - Contents - Next section (3 - C (and related C++) Specific Issues) >

2.1 - Characteristics of High Quality Routines

2.1.1 - Routine Cohesion

2.1.2 - Routine Coupling

2.1.3 - Routine Size

2.2 - Modularization

2.2.1 - Module Attributes

2.2.2 - Physical Organization of Modules

2.3 - Data Typing, Declarations, Variables, and other Objects

2.4 - Names

2.4.1 - Alphabetic Case Considerations

2.4.2 - Abbreviations

2.4.3 - The Position of Components Within an Identifier

2.4.4 - Names to Avoid

2.5 - Organizing Control Structures

2.6 - Expressions

2.7 - Program Layout

2.8 - Comments and (program) Documentation

2.9 - Unfinished Code

2.10 - Cross References in Code to Other Documents

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (1 of 30) [10/1/2000 8:02:11 PM]



2 - General Programming Guidelines
This document contains three types of rules:

Guidelines,●   

Rules that were made to be broken, and●   

Enforced rules that an engineer must never violate.●   

The description of the second rule above is, obviously, tongue-in-cheek. Such rules should always be followed
unless there is a valid, defendable, reason for violating the rule. Violations of these rules should be rare and
well documented (explaining the reason behind the violation). Guidelines are a less severe form of a rule that
was made to be broken. As a general rule, you should always follow guidelines unless there are reasons for
violating them. Guideline violations do not need to be documented, only be verbally defensible. The third
category, enforced rules, should only be violated if everyone agrees to ammend this document to demote the
enforced rule to a simple rule. This document will refer to these three types of rules as guidelines, rules, and
enforced rules.

This standard deals with products developed using several different programming languages. The desire is to
have a "look and feel" to the code that is (as much as possible) consistent across all programs, not simply
across programs in a given language. That is, Visual BASIC, Pascal/Delphi, C/C++, Tcl, assembly language,
shell scripts, Perl, Flex/Lex, Yacc/Bison, and other programs should all adhere (as much as possible) to the
same standard. Obviously, differences in the languages will have a big impact on the applicability of these
style guidelines. Nevertheless, many concepts are common to all these languages (e.g., the need for readable
identifiers, meaningful comments, appropriate layout, etc.).

C/C++ programmers will feel the biggest impact of these guidelines. C/C++ programmers have developed a
considerable set of completely arcane and poorly thought-out conventions over the years. Rarely will you see
these conventions employed in programs written in other languages (e.g., can you truly explain why
capitalizing all the characters in an identifier for constants and macros is the best way to point out that those
objects are macros or constants? This convention seems to be unique to C/C++ and other C-derived languages
[e.g. Java]).

The conventions appearing in this paper have been carefully researched and thought out. The principle author
(Randy Hyde) has studied and taught programming language design for several years at UC Riverside. While
this paper is malleable and subject to change, be aware that most of the concepts appearing in this style guide
are quite defensible with respect to modern programming language design. They are not the result of a desire
to make every language in the world look like the first language the authors learned (which, by the way, was
FORTRAN and has very little influence on these guidelines).

The following subsections cover the following generic topics: characteristics of high quality program units,
modularization data typing, names, organizing control structures, program layout, comments and (program)
documentation, coding for testability, and communication. The following major section describes these
subjects with respect to specific programming languages.

For more information on these subjects, you should check out "Code Complete" by Steve McConnell and
"Writing Solid Code" by Steve Maguire, both from Microsoft Press. Although these texts are both full of
contradictions and contain lots of bad advice, they are easily read and contain several diamonds amongst the
gravel.

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (2 of 30) [10/1/2000 8:02:11 PM]



2.1 - Characteristics of High Quality Routines
A routine is a generic program unit, that is, a function, procedure, subroutine, iterator, block, or main program.
The quality of the routines appearing in a program have a tremendous impact on the reliability and readability
of that program. The following subsections describe some of the attributes of a high quality routine.

2.1.1 - Routine Cohesion

Routines exhibit the following kinds of cohesion (listed from good to bad):

Functional or logical cohesion exists if the routine accomplishes exactly one (simple) task.●   

Sequential or pipelined cohesion exists when a routine does several sequential operations that must be
performed in a certain order with the data from one operation being fed to the next in a "filter-like"
fashion.

●   

Global or communicational cohesion exists when a routine performs a set of operations that make use of
a common set of data, but are otherwise unrelated.

●   

Temporal cohesion exists when a routine performs a set of operations that need to be done at the same
time (though not necessarily in the same order). A typical initialization routine is an example of such
code.

●   

Procedural cohesion exists when a routine performs a sequence of operations in a specific order, but the
only thing that binds them together is the order in which they must be done. Unlike sequential cohesion,
the operations do not share data.

●   

State cohesion occurs when several different (unrelated) operations appear in the same module and a
state variable (e.g., a parameter) selects the operation to execute. Typically such routines contain a case
(switch) or if..elseif..elseif... statement.

●   

No cohesion exists if the operations in a routine have no apparent relationship with one another.●   

The first three forms of cohesion above are generally acceptable in a program. The fourth (temporal) is
probably okay, but you should rarely use it. The last three forms should almost never appear in a program. For
some reasonable examples of routine cohesion, you should consult "Code Complete".

Guideline:
All routines should exhibit good cohesiveness. Functional cohesiveness is best, followed by
sequential and global cohesiveness. Temporal cohesiveness is okay on occasion. You should avoid
the other forms.

2.1.2 - Routine Coupling

Coupling refers to the way that two routines communicate with one another. There are several criteria that
define the level of coupling between two routines:

Cardinality- the number of objects communicated between two routines. The fewer objects the better
(i.e., fewer parameters).

●   

Intimacy- how "private" is the communication? Parameter lists are the most private form; private data
fields in a class or object are next level; public data fields in a class or object are next, global variables

●   

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (3 of 30) [10/1/2000 8:02:11 PM]



are even less intimate, and passing data in a file or database is the least intimate connection.
Well-written routines exhibit a high degree of intimacy.

Visibility- this is somewhat related to intimacy above. This refers to how visible the data is to the entire
system that you pass between two routines. For example, passing data in a parameter list is direct and
very visible (you always see the data the caller is passing in the call to the routine); passing data in
global variables makes the transfer less visible (you could have set up the global variable long before
the call to the routine). Another example is passing simple (scalar) variables rather than loading up a
bunch of values into a structure/record and passing that structure/record to the callee.

●   

Flexibility- This refers to how easy it is to make the connection between two routines that may not have
been originally intended to call one another. For example, suppose you pass a structure containing three
fields into a function. If you want to call that function but you only have three data objects, not the
structure, you would have to create a dummy structure, copy the three values into the field of that
structure, and then call the routine. On the other hand, had you simply passed the three values as
separate parameters, you could still pass in structures (by specifying each field) as well as call the
routine with separate values.

●   

A function is loosely coupled if it exhibits low cardinality, high intimacy, high visibility, and high flexibility.
Often, these features are in conflict with one another (e.g., increasing the flexibility by breaking out the fields
from a structures [a good thing] will also increase the cardinality [a bad thing]). It is the traditional goal of any
engineer to choose the appropriate compromises for each individual circumstance; therefore, you will need to
carefully balance each of the four attributes above.

A program that uses loose coupling generally contains fewer errors per KLOC (thousands of lines of code).
Furthermore, routines that exhibit loose coupling are easier to reuse (both in the current and future projects).
For more information on coupling, see the appropriate chapter in "Code Complete".

Guideline:
Coupling between routines in source code should be loose;

2.1.3 - Routine Size

Sometime in the 1960's, someone decided that programmers could only look at one page in a listing at a time,
therefore routines should be a maximum of one page long (66 lines, at the time). In the 1970's, when
interactive computing became popular, this was adjusted to 24 lines -- the size of a terminal screen. In fact,
there is very little empirical evidence to suggest that small routine size is a good attribute. In fact, several
studies on code containing artificial constraints on routine size indicate just the opposite -- shorter routines
often contain more bugs per KLOC.

A routine that exhibits functional cohesiveness is the right size, almost regardless of the number of lines of
code it contains. You shouldn't artificially break up a routine into two or more subroutines (e.g., sub_partI and
sub_partII) just because you feel a routine is getting to be too long. First, verify that your routine exhibits
strong cohesion and loose coupling. If this is the case, the routine is not too long. Do keep in mind, however,
that a long routine is probably a good indication that it is performing several actions and, therefore, does not
exhibit strong cohesion.

Of course, you can take this too far. Most studies on the subject indicate that routines in excess of 150-200
lines of code tend to contain more bugs and are more costly to fix than shorter routines. Note, by the way, that
you do not count blank lines or lines containing only comments when counting the lines of code in a program.

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (4 of 30) [10/1/2000 8:02:11 PM]



Guideline:
Do not let artificial constraints affect the size of your routines. If a routine exceeds 150-200 lines of
code, make sure the routine exhibits functional or sequential cohesion. Also look to see if there
aren't some generic subsequences in your code that you can turn into stand alone routines.

Rule:
Never shorten a routine by dividing it into n parts that you would always call in the appropriate
sequence as a way of shortening the original routine.

2.2 - Modularization
A module is a collection of objects that are logically related. Those objects may include constants, data types,
variables, and program units (e.g., functions, procedures, etc.). Note that objects in a module need not be
physically related. For example, it is quite possible to construct a module using several different source files.
Likewise, it is quite possible to have several different modules in the same source file. However, the best
modules are physically related as well as logically related; that is, all the objects associated with a module
exist in a single source file (or directory if the source file would be too large) and nothing else is present.

Modules contain several different objects including constants, types, variables, and program units (routines).
Modules shares many of the attributes with routines; this is not surprising since routines are the major
component of a typical module. However, modules have some additional attributes of their own. The
following sections describe the attributes of a well-written module.

2.2.1 - Module Attributes

A module is a generic term that describes a set of program related objects (routines as well as data and type
objects) that are somehow coupled. Good modules share many of the same attributes as good routines as well
as the ability to hide certain details from code outside the module.

Good modules exhibit strong cohesion. That is, a module should offer a (small) group of services that are
logically related. For example, a "printer" module might provide all the services one would expect from a
printer. The individual routines within the module would provide the individual services.

Good modules exhibit loose coupling. That is, there are only a few, well-defined (visible) interfaces between
the module and the outside world. Most data is private, accessible only through accessor functions (see
information hiding below). Furthermore, the interface should be flexible.

Good modules exhibit information hiding. Code outside the module should only have access to the module
through a small set of public routines. All data should be private to that module.

Guideline:
A module should implement an abstract data type. All interface to the module should be through
a well-defined set of operations.

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (5 of 30) [10/1/2000 8:02:11 PM]



2.2.2 - Physical Organization of Modules

Many languages provide direct support for modules (e.g., packages in Ada, modules in Modula-2, and units in
Delphi/Pascal). Some languages provide only indirect support for modules (e.g., a source file in C/C++).
Others, like BASIC, don't really support modules, so you would have to simulate them by physically grouping
objects together and exercising some discipline.

Insofar as the particular language you're using supports the concept of a module, embrace that implementation.
Beyond that, here are a few rules that can help make modules easier to read and understand.

Rule:
Each module should completely reside in a single source file. If size considerations prevent this,
then all the source files for a given module should reside in a subdirectory specifically designated
for that module.

Rule:
If a particular language processing system does not support modules of any kind, simulate those
modules by physically grouping the objects in the source code. Be sure to access the module using
only "approved" interfaces. Always check for inconsistencies when reviewing your code.

Some people have the crazy idea that modularization means putting each function in a separate source file.
Such physical modularization generally impairs the readability of a program more than it helps. Strive instead
for logical modularization, that is, defining a module by its actions rather than by source code syntax (e.g.,
separating out functions).

This document does not address the decomposition of a problem into its modular components. Presumably,
you can already handle that part of the task. There are a wide variety of texts on this subject if you feel week
in this area.

2.3 - Data Typing, Declarations, Variables, and other
Objects
Most languages' built-in data types are abstractions of the underlying machine organization and rarely does the
language define the types in terms of exact machine representations. For example, an integer variable may be
a 16-bit two's complement value on one machine, a 32-bit value on another, or even a 64-bit value. Clearly, a
program written to expect 32 or 64 bit integers will malfunction on a machine (or compiler) that only supports
16-bit integers. The reverse can also be true.

One supposed advantage of a high level language is that it abstracts away the machine dependencies that exist
in data types. In theory, an integer is an integer is an integer ... In practice, there are short integers, integers,
and long integers. Common sizes include eight, sixteen, thirty-two, and even sixty-four bits, with more on the
way. Unfortunately, the abstraction the high level language provides can destroy the ability to port a program
from one machine to another.

Most modern high level language provide programmers with the ability to define new data types as
isomorphisms (synonyms) of existing types. Using this facility, it is possible to define a data type module that

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (6 of 30) [10/1/2000 8:02:11 PM]



provides precise definitions for most data types. For example, you could define the int16 and int32 data types
that always use 16 or 32 bits, respectively. By doing so, you can easily guarantee that your programs can
easily port between most systems (and their compilers) by simply changing the definition of the int16 and
int32 types on the new machine. Consider the following C/C++ example:

On a 16-bit machine:

typedef int int16;
typedef long int32;

On a 32-bit machine:

typedef short int16;
typedef int int32;

Rule:
If a built-in type has different semantics on different architectures or in different compilers,
always use a set of type definitions that let you easily change adjust the program to a different
architecture. It is dangerous to assume a particular object uses a specific data format (e.g., two's
complement binary or IEEE floating point). It is even worse to assume an object has a fixed
number of bits. You should avoid using predefined types in a language.

Guideline:
If the data type you are creating depends upon a specific format, use names like int8, int16, int32,
int64, real32, real64, and real80 (that is, a type name with the number of bits appended) to denote
your types. If the data type does not depend on a specific representation, use a descriptive name
(see the next section on naming conventions). Try to avoid the use of types in a language that vary
depdning on the underlying machine representation (alas, this is not always possible).

Don't redefine existing types. This may seem like a contradiction to the guideline above, but it really isn't. This
statement says that if you have an existing type that uses the name "integer" you should not create a new type
named "integer." Doing so would only create confusion. Another programmer, reading your code, may
confuse the old "integer" type every time s/he sees a variable of type integer. This applies to existing user
types as well as predefined types.

Enforced Rule:
Never redefine an existing type.

Declare all variables, even if the language processor allows implicit declarations. At one time there was a
controversy as to whether it was better to have implicitly declared variables or force the user to explicitly
declare all variables (e.g., the FORTRAN vs. ALGOL/Pascal crowd). When NASA and JPL lost a Venus
probe due to an implicitly declared variable (that just happened to have the wrong type), the "explicitly
declare" crowd won the argument. Fortunately, most modern languages require explicit declarations.

Enforced Rule:
Always explicitly declare all variables (and other identifiers) unless the language does not allow
this.

Some languages force you to declare all your variables at a given point in a program unit (e.g., Pascal); some
languages are more flexible and let you declare variables anywhere in your program as long as you declare
them before their first use; other languages do not require that you declare variables at all (see the above rule).

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (7 of 30) [10/1/2000 8:02:11 PM]



Since it is possible to declare symbols at different points in a program, different programmers have developed
different conventions concern the position of their declarations. The two most popular conventions are the
following:

Declare all symbols at the beginning of the associated program unit (function, procedure, etc.).●   

Declare all variables as close as possible to their use.●   

Logically, the second scheme above would seem to be the best. However, it has one major drawback -
although names typically have only a single definition, the program may use them in several different
locations. So although you can easily define a variable just prior to its first use, other uses may be hundreds of
lines away. The advantage of declaring variables at the beginning of the program unit is that, no matter how
far away it is, the programmer always knows where to look to find the variable declarations. If you embed the
definition in the middle of the code nearest the first usage, someone reading the program may have to resort to
a "linear search" in order to find the declaration.

Rule:
All variable, constant, and type definitions should occur at the very beginning of the program unit
whose limits define the scope of the object.

Unfortunately, not all name definitions are passive, some actually execute code. A instance of a class object in
C++ is a good example. The definition of a class object calls the constructor for that class. The constructor
may require the computation of some parameter values prior to the object's definition. This would prevent the
placement of the definition at the beginning of the module. The solution is rather simple and well within the
definition of a "Rule" within this guide:

Rule:
If you cannot define an object at the beginning of the program unit to which it belongs, then put a
place-holder comment at the beginning of the block and define the variable as soon as possible
within the program unit. You should place a comment near such a definition to remind the reader
to update the comment at the beginning of the block if the actual definition ever changes.

Some might argue that certain languages, like C++, provide excellent facilities for declaring otherwise
anonymous variables with certain language constructs. For example, the "for ( int i = 0; i < 10; ++i) ..."
statement limits the scope of "i" to this for loop. However, the goal of these guidelines is to produce a standard
that applies to all languages; making special exceptions for C++ (or some feature-laden language) will only
lead to confusion. Besides, C++ lets you create new program units by using "{" and "}" (e.g., the compound
statement). Those who absolutely desire to put their definitions as close to the for-loop as possible can always
do something like the following:

        // Previous statements in this code...
                .
                .
                .
        {
                int i;
                for (i=start; i <= end; ++k) ... 
        }
                .
                .
                .

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (8 of 30) [10/1/2000 8:02:11 PM]



        // Additional statements in this code.

Descriptive comments should always accompany a set of variable declarations. These comments should
describe the purpose of the variables, provide complete English names for the variables if the names use any
abbreviations (see the next section), and describe any constraints or assumptions on the use of these variables.
The position of these comments should be immediately before the block or program unit that declares the
variables (e.g., in the block of comments preceding a function definition). To improve readability and make it
easy for a programmer to locate a particular name while manually scanning through a listing, you should place
only one variable declaration per line so the reader can easily find the variable's name while scanning the
left-hand side of the list. In languages where the type name precedes the variable name, it's a good idea to put
the type name on one line and the variable name (indented) on the next line.

Rule:
Associated with any set of variable declarations will be a set of comments known as the "Data
Dictionary." This data dictionary will describe the name and purpose for each variable. The Data
Dictionary will also describe any constraints or assumptions on the use of the variables.

Guideline:
Variable declarations should appear on separate lines. If desired, the type specification should
appear on a separate line as well. Variable and type names should be aligned in columns and easy
to find and read.

Examples:

        (* Pascal *)
        var
                LineCnt,                { Number of lines, words, and   } 
                WordCnt,                { and characters in a file.     }
                CharCnt:integer;

        (* Also Reasonable *)

        var
                LineCnt:integer;        { Number of lines, words, and   } 
                WordCnt:integer;        { and characters in a file.     }
                CharCnt:integer;

        /* C/C++  */

        int
                LineCnt,                /* Number of lines, words, and  */
                WordCnt,                /* and characters in a file.    */
                CharCnt;

        /* Another C/C++ Version */

        int     LineCnt;        /* Number of lines, words, and          */
        int     WordCnt;        /* and characters in a file.            */

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (9 of 30) [10/1/2000 8:02:11 PM]



        float   CharCnt;

2.4 - Names
According to studies done at IBM, the use of high-quality identifiers in a program contributes more to the
readability of that program than any other single factor, including high-quality comments. The quality of your
identifiers can make or break your program; program with high-quality identifiers can be very easy to read,
programs with poor quality identifiers will be very difficult to read. There are very few "tricks" to developing
high-quality names; most of the rules are nothing more than plain old-fashion common sense. Unfortunately,
programmers (especially C/C++ programmers) have developed many arcane naming conventions that ignore
common sense. The biggest obstacle most programmers have to learning how to create good names is an
unwillingness to abandon existing conventions. Yet their only defense when quizzed on why they adhere to
(existing) bad conventions seems to be "because that's the way I've always done it and that's the way
everybody else does it."

Naming conventions represent one area in Computer Science where there are far too many divergent views
(program layout is the other principle area). The primary purpose of an object's name in a programming
language is to describe the use and/or contents of that object. A secondary consideration may be to describe
the type of the object. Programmers use different mechanisms to handle these objectives. Unfortunately, there
are far too many "conventions" in place, it would be asking too much to expect any one programmer to follow
several different standards. Therefore, this standard will apply across all languages as much as possible.

The vast majority of programmers know only one language - English. Some programmers know English as a
second language and may not be familiar with a common non-English phrase that is not in their own language
(e.g., rendezvous). Since English is the common language of most programmers, all identifiers should use
easily recognizable English words and phrases.

Rule:
All identifiers that represent words or phrases must be English words or phrases.

2.4.1 - Alphabetic Case Considerations

A case-neutral identifier will work properly whether you compile it with a compiler that has case sensitive
identifiers or case insensitive identifiers. In practice, this means that all uses of the identifiers must be spelled
exactly the same way (including case) and that no other identifier exists whose only difference is the case of
the letters in the identifier. For example, if you declare an identifier "ProfitsThisYear" in Pascal (a
case-insensitive language), you could legally refer to this variable as "profitsThisYear" and
"PROFITSTHISYEAR". However, this is not a case-neutral usage since a case sensitive language would treat
these three identifiers as different names. Conversely, in case-sensitive languages like C/C++, it is possible to
create two different identifiers with names like "PROFITS" and "profits" in the program. This is not
case-neutral since attempting to use these two identifiers in a case insensitive language (like Pascal) would
produce an error since the case-insensitive language would think they were the same name.

Enforced Rule:
All identifiers must be "case-neutral."

Different programmers (especially in different languages) use alphabetic case to denote different objects. For
example, a common C/C++ coding convention is to use all upper case to denote a constant, macro, or type
definition and to use all lower case to denote variable names or reserved words. Prolog programmers use an

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (10 of 30) [10/1/2000 8:02:11 PM]



initial lower case alphabetic to denote a variable. Other comparable coding conventions exist. Unfortunately,
there are so many different conventions that make use of alphabetic case, they are nearly worthless, hence the
following rule:

Rule:
You should never use alphabetic case to denote the type, classification, or any other
program-related attribute of an identifier (unless the language's syntax specifically requires this).

There are going to be some obvious exceptions to the above rule, this document will cover those exceptions a
little later. Alphabetic case does have one very useful purpose in identifiers - it is useful for separating words
in a multi-word identifier; more on that subject in a moment.

To produce readable identifiers often requires a multi-word phrase. Natural languages typically use spaces to
separate words; we can not, however, use this technique in identifiers.
Unfortunatelywritingmultiwordidentifiers
makesthemalmostimpossibletoreadifyoudonotdosomethingtodistiguishtheindividualwords (Unfortunately
writing multiword identifiers makes them almost impossible to read if you do not do something to distinguish
the individual words). There are a couple of good conventions in place to solve this problem. This standard's
convention is to capitalize the first alphabetic character of each word in the middle of an identifier.

Rule:
Capitalize the first letter of interior words in all multi-word identifiers.

Note that the rule above does not specify whether the first letter of an identifier is upper or lower case. Subject
to the other rules governing case, you can elect to use upper or lower case for the first symbol, although you
should be consistent throughout your program.

Lower case characters are easier to read than upper case. Identifiers written completely in upper case take
almost twice as long to recognize and, therefore, impair the readability of a program. Yes, all upper case does
make an identifier stand out. Such emphasis is rarely necessary in real programs. Yes, common C/C++ coding
conventions dictate the use of all upper case identifiers. Forget them. They not only make your programs
harder to read, they also violate the first rule above.

Rule:
Avoid using all upper case characters in an identifier.

2.4.2 - Abbreviations

The primary purpose of an identifier is to describe the use of, or value associated with, that identifier. The best
way to create an identifier for an object is to describe that object in English and then create a variable name
from that description. Variable names should be meaningful, concise, and non-ambiguous to an average
programmer fluent in the English language. Avoid short names. Some research has shown that programs using
identifiers whose average length is 10-20 characters are generally easier to debug than programs with
substantially shorter or longer identifiers.

Avoid abbreviations as much as possible. What may seem like a perfectly reasonable abbreviation to you may
totally confound someone else. Consider the following variable names that have actually appeared in
commercial software:

NoEmployees, NoAccounts, pend

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (11 of 30) [10/1/2000 8:02:11 PM]



The "NoEmployees" and "NoAccounts" variables seem to be boolean variables indicating the presence or
absence of employees and accounts. In fact, this particular programmer was using the (perfectly reasonable in
the real world) abbreviation of "number" to indicate the number of employees and the number of accounts.
The "pend" name referred to a procedure's end rather than any pending operation.

Programmers often use abbreviations in two situations: they're poor typists and they want to reduce the typing
effort, or a good descriptive name for an object is simply too long. The former case is an unacceptable reason
for using abbreviations. The second case, especially if care is taken, may warrant the occasional use of an
abbreviation.

Guideline:
Avoid all identifier abbreviations in your programs. When necessary, use standardized
abbreviations or ask someone to review your abbreviations. Whenever you use abbreviations in
your programs, create a "data dictionary" in the comments near the names' definition that
provides a full name and description for your abbreviation.

The variable names you create should be pronounceable. "NumFiles" is a much better identifier than "NmFls".
The first can be spoken, the second you must generally spell out. Avoid homonyms and long names that are
identical except for a few syllables. If you choose good names for your identifiers, you should be able to read
a program listing over the telephone to a peer without overly confusing that person.

Rule:
All identifiers should be pronounceable (in English) without having to spell out more than one
letter.

2.4.3 - The Position of Components Within an Identifier

When scanning through a listing, most programmers only read the first few characters of an identifier. It is
important, therefore, to place the most important information (that defines and makes this identifier unique) in
the first few characters of the identifier. So, you should avoid creating several identifiers that all begin with the
same phrase or sequence of characters since this will force the programmer to mentally process additional
characters in the identifier while reading the listing. Since this slows the reader down, it makes the program
harder to read.

Guideline:
Try to make most identifiers unique in the first few character positions of the identifier. This
makes the program easier to read.

Corollary:
Never use a numeric suffix to differentiate two names.

Many C/C++ Programmers, especially Microsoft Windows programmers, have adopted a formal naming
convention known as "Hungarian Notation." To quote Steve McConnell from Code Complete: "The term
'Hungarian' refers both to the fact that names that follow the convention look like words in a foreign language
and to the fact that the creator of the convention, Charles Simonyi, is originally from Hungary." One of the
first rules given concerning identifiers stated that all identifiers are to be English names. Do we really want to
create "artificially foreign" identifiers? Hungarian notation actually violates another rule as well: names using
the Hungarian notation generally have very common prefixes, thus making them harder to read.

Hungarian notation does have a few minor advantages, but the disadvantages far outweigh the advantages.

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (12 of 30) [10/1/2000 8:02:11 PM]



The following list from Code Complete and other sources describes what's wrong with Hungarian notation:

Hungarian notation generally defines objects in terms of basic machine types rather than in terms of
abstract data types.

●   

Hungarian notation combines meaning with representation. One of the primary purposes of high level
language is to abstract representation away. For example, if you declare a variable to be of type integer,
you shouldn't have to change the variable's name just because you changed its type to real.

●   

Hungarian notation encourages lazy, uninformative variable names. Indeed, it is common to find
variable names in Windows programs that contain only type prefix characters, without an descriptive
name attached.

●   

Hungarian notation prefixes the descriptive name with some type information, thus making it harder for
the programming to find the descriptive portion of the name.

●   

Guideline:
Avoid using Hungarian notation and any other formal naming convention that attaches low-level
type information to the identifier.

Although attaching machine type information to an identifier is generally a bad idea, a well thought-out name
can successfully associate some high-level type information with the identifier, especially if the name implies
the type or the type information appears as a suffix. For example, names like "PencilCount" and
"BytesAvailable" suggest integer values. Likewise, names like "IsReady" and "Busy" indicate boolean values.
"KeyCode" and "MiddleInitial" suggest character variables. A name like "StopWatchTime" probably indicates
a real value. Likewise, "CustomerName" is probably a string variable. Unfortunately, it isn't always possible
to choose a great name that describes both the content and type of an object; this is particularly true when the
object is an instance (or definition of) some abstract data type. In such instances, some additional text can
improve the identifier. Hungarian notation is a raw attempt at this that, unfortunately, fails for a variety of
reasons.

A better solution is to use a suffix phrase to denote the type or class of an identifier. A common UNIX/C
convention, for example, is to apply a "_t" suffix to denote a type name (e.g., size_t, key_t, etc.). This
convention succeeds over Hungarian notation for several reasons including (1) the "type phrase" is a suffix
and doesn't interfere with reading the name, (2) this particular convention specifies the class of the object
(const, var, type, function, etc.) rather than a low level type, and (3) It certainly makes sense to change the
identifier if it's classification changes.

Guideline:
If you want to differentiate identifiers that are constants, type definitions, and variable names, use
the suffixes "_c", "_t", and "_v", respectively.

Rule:
The classification suffix should not be the only component that differentiates two identifiers.

Can we apply this suffix idea to variables and avoid the pitfalls? Sometimes. Consider a high level data type
"button" corresponding to a button on a Visual BASIC or Delphi form. A variable name like "CancelButton"
makes perfect sense. Likewise, labels appearing on a form could use names like "ETWWLabel" and
"EditPageLabel". Note that these suffixes still suffer from the fact that a change in type will require that you
change the variable's name. However, changes in high level types are far less common than changes in
low-level types, so this shouldn't present a big problem.

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (13 of 30) [10/1/2000 8:02:11 PM]



2.4.4 - Names to Avoid

Avoid using symbols in an identifier that are easily mistaken for other symbols. This includes the sets {"1"
(one), "I" (upper case "I"), and "l" (lower case "L")}, {"0" (zero) and "O" (upper case "O")}, {"2" (two) and
"Z" (upper case "Z")}, {"5" (five) and "S" (upper case "S")}, and ("6" (six) and "G" (upper case "G")}.

Guideline:
Avoid using symbols in identifiers that are easily mistaken for other symbols (see the list above).

Avoid misleading abbreviations and names. For example, FALSE shouldn't be an identifier that stands for
"Failed As a Legitimate Software Engineer." Likewise, you shouldn't compute the amount of free memory
available to a program and stuff it into the variable "Profits".

Rule:
Avoid misleading abbreviations and names.

You should avoid names with similar meanings. For example, if you have two variables "InputLine" and
"InputLn" that you use for two separate purposes, you will undoubtedly confuse the two when writing or
reading the code. If you can swap the names of the two objects and the program still makes sense, you should
rename those identifiers. Note that the names do not have to be similar, only their meanings. "InputLine" and
"LineBuffer" are obviously different but you can still easily confuse them in a program.

Rule:
Do not use names with similar meanings for different objects in your programs.

In a similar vein, you should avoid using two or more variables that have different meanings but similar
names. For example, if you are writing a teacher's grading program you probably wouldn't want to use the
name "NumStudents" to indicate the number of students in the class along with the variable "StudentNum" to
hold an individual student's ID number. "NumStudents" and "StudentNum" are too similar.

Rule:
Do not use similar names that have different meanings.

Avoid names that sound similar when read aloud, especially out of context. This would include names like
"hard" and "heart", "Knew" and "new", etc. Remember the discussion in the section above on abbreviations,
you should be able to discuss your problem listing over the telephone with a peer. Names that sound alike
make such discussions difficult.

Guideline:
Avoid homonyms in identifiers.

Avoid misspelled words in names and avoid names that are commonly misspelled. Most programmers are
notoriously bad spellers (look at some of the comments in our own code!). Spelling words correctly is hard
enough, remembering how to spell an identifier incorrectly is even more difficult. Likewise, if a word is often
spelled incorrectly, requiring a programer to spell it correctly on each use is probably asking too much.

Guideline:
Avoid misspelled words and names that are often misspelled in identifiers.

If you redefine the name of some library routine in your code, another program will surely confuse your name
with the library's version. This is especially true when dealing with standard library routines and APIs.

Enforced Rule:
Do not reuse existing standard library routine names in your program unless you are specifically
replacing that routine with one that has similar semantics (i.e., don't reuse the name for a
different purpose).

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (14 of 30) [10/1/2000 8:02:11 PM]



2.5 - Organizing Control Structures
Although the control structures found in most modern languages trace their roots back to Algol-60, there is a
surprising number of subtle variations between the control structures found in common programming
languages in use today. This paper will describe a mechanism to unify the control structures the various
programming languages use in an attempt to make it possible for a Visual BASIC programmer to easily
understand code written in Pascal or C++ as well as make it possible for C++ programmers to read BASIC and
Pascal programs, etc.

Typical programming languages contain eight flow-of-control statements: two conditional selection statements
(if..then..else and case/switch), four loops (while, repeat..until/do..while, for, and loop), a program unit
invocation (i.e., procedure call), and a sequence. There are other less common control structures include
processes/coroutines, foreach loops (iterators), and generators, but this paper will focus only on the more
common control mechanisms.

Control structures typically come in two forms: those that act on a single statement as an operand and those
that act on a sequence of statements. For example, the if..then statement in Pascal operates on a single
statement:

if (expression) then Single_Statement;

Of course it is possible to apply Pascal's if statement to a list of statements, but that involves creating a
compound statement using a begin..end pair. There are two problems with this type of statement. First of all, it
introduces the problem of where you are supposed to put the begin and end in a well-formatted program. This
is a very controversial issue with large numbers of programmers in different camps. Some feel an if with a
compound statement should look like this:

        if (expression) then begin

                { Statement 1 }
                { Statement 2 }
                        .
                        .
                        .
                { Statement n }

        end;

Others feel it should look like this:

        if (expression) then 
        begin

                { Statement 1 }
                { Statement 2 }
                        .

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (15 of 30) [10/1/2000 8:02:11 PM]



                        .
                        .
                { Statement n }

        end;

C/C++ programmers are even worse, there are no less than four common ways of putting the opening and
closing braces around a compound statement after an "if".

The second problem with C/C++'s and Pascal's "if" statements is the ambiguity involved. Consider the
following Pascal code:

        if (expression) then
            if (expression) then
                (* Statement *)

           else (* Statement *);

To which "if" does the "else" belong? Of course, you've always been taught that the else goes with the first
un-elsed "if" looking back in the file (i.e., the second "if" statement above). What happens if you want it to go
with the first one? What happens if there is a long compound statement after the second "if" above and the else
is far removed from these two ifs? How easy is it to tell which if belongs to the else?

Modern programming languages (Modula-2, Ada, Visual BASIC, FORTRAN 90, etc.) avoid this problem
altogether by using control structures that begin and end with a reserved word, for example, IF and ENDIF.
The code above, in one of these languages would look something like:

        if (expression) then

                if (expression) then
                        { Statement list}
                endif;

        else 
                { Statement list};
        endif;

Now there is no question that the else belongs to the first if above, not the second. Note that this form of the if
statement allows you to attach a list of statements (between the if and else or if and endif) rather than a single
or compound statement. Furthermore, it totally eliminates the religious argument concerning where to put the
braces or the begin..end pair on the if.

The complete set of modern programming language constructs includes:

if..then..elseif..else..endif
select..case..default..endselect  (typical case/switch statement).
while..endwhile
repeat..until
loop..endloop

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (16 of 30) [10/1/2000 8:02:11 PM]



for..endfor
break
breakif
continue

Those who have had the opportunity to use these control structures for a considerable amount of time
generally recognize their superiority over the Pascal/C/C++ variants. The biggest fault Pascal/C/C++
programmers tend to find with these structures (other than they are different ) is that "Ada uses these structures
and Ada is a 'yucky' language." Hardly a scientific assessment of the quality of these control constructs.

All programs should use these control structures where available and simulate them if they are not available.
The exact simulation details will appear in language-specific sections of this document.

Rule: Programs written in a standard imperative language (e.g., C/C++, Pascal, Ada, Visual BASIC, Delphi,
etc.) will use the modern versions of the standard control constructs. If the language does not directly support
these control structures, the programmer will simulate them using rules appearing elsewhere in this document.

Rule:
If your code contains a chain of if..elseif..elseif.......elseif..... statements, do not use the final else
clause to handle a remaining case. Only use the final else to catch an error condition. If you need
to test for some value in an if..elseif..elseif.... chain, always test the value in an if or elseif
statement.

Most compilers implement multi-way selection statements (case/switch) using a jump table. This means that
the order of the cases within the selection statement is usually irrelevant. Placing the statements in a particular
order rarely improves performance. Since the order is usually irrelevant to the compiler, you should organize
the cases so that they are easy to read. There are two common organizations that make sense: sorted
(numerically or alphabetically) or by frequency (the most common cases first). Either organization is readable,
sorting by frequency has the advantage of being faster if your compiler uses a brain-dead
if..then.elseif..elseif... implementation of multi-way selection. One drawback to the second approach is that it
is often difficult to predict which cases the program will execute most often.

Guideline:
When using multi-way selection statements (case/switch) sort the cases numerically
(alphabetically) or by frequency of expected occurrence.

There are three general categories of looping constructs available in common high-level languages- loops that
test for termination at the beginning of the loop (e.g., while), loops that test for loop termination at the bottom
of the loop (e.g., repeat..until), and those that test for loop termination in the middle of the loop (e.g.,
loop..endloop). It is possible simulate any one of these loops using any of the others. This is particularly
trivial with the loop..endloop construct:

/* Test for loop termination at beginning of LOOP..ENDLOOP */

    loop
        breakif (x==y);
         .
         .
         .
    endloop;

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (17 of 30) [10/1/2000 8:02:11 PM]



/* Test for loop termination in the middle of LOOP..ENDLOOP */

    loop
         .
         .
         .
        breakif (x==y);
         .
         .
         .
    endloop;

/* Test for loop termination at the end of LOOP..ENDLOOP */

    loop
         .
         .
         .
        breakif (x==y);
    endloop;

Given the flexibility of the loop..endloop control structure, you might question why one would even burden a
compiler with the other loop statements. However, using the appropriate looping structure makes a program
far more readable, therefore, you should never use one type of loop when the situation demands another. If
someone reading your code sees a loop..endloop construct, they may think it's okay to insert statements before
or after the exit statement in the loop. If your algorithm truly depends on while..do or repeat..until semantics,
the program may now malfunction.

Rule:
Always use the most appropriate type of loop (categorized by termination test position). Never
force one type of loop to behave like another.

Many languages provide a special case of the while loop that executes some number of times specified upon
first encountering the loop (a definite loop rather than an indefinite loop). This is the "for" loop in most
languages. Unfortunately, this iterative loop ranges from very simple (e.g., in Pascal) to extremely complex
(e.g., Algol-68 and PL/I). The vast majority of the time a for loop sequences through a fixed range of value
incrementing or decrementing the loop control variable by one. Therefore, most programmers automatically
assume this is the way a for loop will operate until they take a closer look at the code. Since most
programmers immediately expect this behavior, it makes sense to limit for loops to these semantics. If some
other looping mechanism is desirable, you should use a while loop to implement it (since the for loop is just a
special case of the while loop). There are other reasons behind this decision as well. Most compilers generate
especially efficient code for standard for loops, while they tend to generate less than optimal code for "funny"
versions of for loops. Hence there are efficiency considerations as well as readability reasons behind this
choice.

Rule:
"FOR" loops should always use an ordinal loop control variable (e.g., integer, char, boolean,
enumerated type) and should always increment or decrement the loop control variable by one.

Most people expect the execution of a loop to begin with the first statement at the top of the loop, therefore,

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (18 of 30) [10/1/2000 8:02:11 PM]



Rule:
All loops should have one entry point. The program should enter the loop with the instruction at
the top of the loop.

Likewise, most people expect a loop to have a single exit point, especially if it's a while or repeat..until loop.
They will rarely look closely inside a loop body to determine if there are "break" statements within the loop
once they find one exit point. Therefore,

Guideline:
Loops with a single exit point are more easily understood.

Whenever a programmer sees an empty loop, the first thought is that something is missing. Worse yet, in
languages like Pascal or C/C++ where you don't have a terminating ENDloop statement, it's easy to think that
the next statement in the program is the body of the loop (worse yet, it's easy to forget the semicolon that
marks the end of the loop and actually make the next statement in the program the loop's body). Therefore,

Guideline:
Avoid empty loops. If testing the loop termination condition produces some side effect that is the
whole purpose of the loop, move that side effect into the body of the loop. If a loop truly has an
empty body, place a comment like "/* nothing */" or "{null statement}" within your code.

Even if the loop body is not empty, you should avoid side effects in a loop termination expression. When
someone else reads your code and sees a loop body, they may skim right over the loop termination expression
and start reading the code in the body of the loop. If the (correct) execution of the loop body depends upon the
side effect, the reader may become confused since s/he did not notice the side effect earlier. The presence of
side effects (that is, having the loop termination expression compute some other value beyond whether the
loop should terminate or repeat) indicates that you're probably using the wrong control structure. Consider the
following while loop from "C" that is easily corrected:

    while ( ( ch = getc(stdin)) != 'A')
    {
        << statements >>
    }

A better implementation of this code fragment would be to use a loop..endloop construct:

    for(;;) /* C/C++'s infinite loop statement */
    {
        ch = getc(stdin);
        if (ch != 'A') break;

        << statements >>
    }

An even better solution to the above would be to use the newer high level language constructs. See the C/C++
language-specific section for more details.

Rule:
Avoid side-effects in the computation of the loop termination expression (others may not be
expecting such side effects). Also see the guideline about empty loops.

Like functions, loops should exhibit functional cohesion. That is, the loop should accomplish exactly one
thing. It's very tempting to initialize two separate arrays in the same loop. You have to ask yourself, though,

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (19 of 30) [10/1/2000 8:02:11 PM]



"what do you really accomplish by this?" You save about four machine instructions on each loop iteration,
that's what. That rarely accounts for much. Furthermore, now the operations on those two arrays are tied
together, you cannot change the size of one without changing the size of the other. Finally, someone reading
your code has to remember two things the loop is doing rather than one.

Guideline:
Make each loop perform only one function.

Programs are much easier to read if you read them from left to right, top to bottom (beginning to end).
Programs that jump around quite a bit are much harder to read. Of course, the goto statement is well-known
for its ability to scramble the logical flow of a program, but you can produce equally hard to read code using
other, structured, statements in a language. For example, a deeply nested set of if statements, some with and
some without else clauses, can be very difficult to follow because of the number of possible places the code
can transfer depending upon the result of several different boolean expressions.

Rule:
Code, as much as possible, should read from top to bottom.

Rule:
Related statements should be grouped together and separated from unrelated statements with
whitespace or comments.

Enforced Rule:
GOTOs, if they appear at all in a program, must be okayed by a peer review of at least two peers,
both of whom agree the resulting code with a GOTO is easier to understand than equivalent code
without a GOTO. GOTOs should only be used in exception processing statements or after
exhausting several other attempts at writing clear code without the GOTO. Of course some code
is actually easier to read with a GOTO statement than without, but it is easy to develop a mental
block that would suggest the use of a GOTO when a clearer solution exists, hence the peer review.

2.6 - Expressions
Few things look so similar between different languages yet act so different as arithmetic expressions. Between
various languages the precedence of operators is different, the associativity of operators is different, even the
operation computed is often different. It goes without saying that different languages often use the same
symbol for different operations and, likewise, use different symbols for the same operation. This creates a
problem with a coding standard if the intent is to allow a Visual BASIC programmer to easily read a program
written in C/C++ or Pascal. Although there are many issues that a coding standard cannot practically resolve,
some standards can improve the situation.

One of the big areas where programming languages differ is how they handle operator precedence. For
example, in C/C++ the "<<" and ">>" (shift left and shift right) operators have lower precedence than addition
and subtraction. In Borland Turbo Pascal and Delphi, the "SHL" and "SHR" operators have higher precedence
than addition and subtraction. Likewise, in many languages the relational operators all have the same
precedence while in others they do not. The overly simplistic solution is to take the "Beginning Programmer
Textbook" attitude of accepting the (almost) universal precedence relationship between addition, subtraction,
multiplication, and division and requiring parentheses everywhere else. While this is, perhaps, a good starting

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (20 of 30) [10/1/2000 8:02:11 PM]



point it often falls short in practice because some expressions wind up with too many parentheses (impairing
the readability) when the intent would have been clear without them.

As a general rule, the reader of a program should be able to make the following assumptions about the
operator precedence within a program:

Operands have the highest precedence. This includes functions, variables (scalar, array element, and
record field), constants, dereferenced pointers, etc.

●   

Unary operators●   

Multiplication, division, and remainder (mod)●   

Addition and subtraction●   

Relational operators (may not all be the same precedence)●   

Logical operators (and, or, may not be the same precedence)●   

As long as two adjacent operators in an expression belong to two different classes above, you can skip using
parentheses. You can assume that addition, subtraction, multiplication, remainder and division are left
associative. Therefore, if there are two adjacent operators are addition and subtraction, or multiplication,
remainder, or division, then you can skip the parentheses. In all other cases, you must supply parentheses to
explicitly state the precedence.

Rule:
The assumable precedences are: [highest]: {operands} {unary operators} {*,/,mod} {+.-} {<, <=, =,
<>, >, >=} {and, or}. Note that you can only assume left associativity for {*,/,mod} and {+,-}.
Assume all other operators are non-associative and that you must use parentheses if they are next
to one another in an expression. If you cannot assume the precedence according to the rule above,
use parentheses to explicitly state the precedence.

Some language use short-circuit evaluation, some use full evaluation of expressions. If your program uses and
depends upon short-circuit evaluation, you will comment this fact next to each expression that requires
short-circuit evaluation.

Rule:
If an expression depends upon short-circuit evaluation to produce a correct answer, you must
explicitly state this in a comment nearby.

In most languages it is possible to produce side effects within an expression. You can accomplish this, for
example, by passing a parameter by reference to a function or if the function modifies global variables. Since
most languages give the compiler writer leeway with respect to the order of evaluation of expressions, you
should never use a variable whose value is modified as a side effect of a function or operator within that
expression (e.g., in C/C++ consider the statement "Y = X + Y + ++X;"). Even if you're sure the result will be
correct, such code would be very difficult to understand.

Guideline:
An expression should not produce any side effects.

There are some obvious exceptions to the rule above. The whole purpose of some operators and functions is to
produce a side effect. Examples include the "++" and "--" operators in C/C++ and any of the various
assignment operators. A stronger rule to allow for this might be

Rule:
A program should never use the value of a variable modified as a result of a side effect within that
same expression.

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (21 of 30) [10/1/2000 8:02:11 PM]



Never execute an expression solely for the side effects it produces. Programmers generally expect the value of
an expression to carry some significance; they feel there would be no need to compute the value of an
expression if that value were of no importance. If all you need are the side effects, find some other way to
achieve those side effects. Example: What does the following C statement do? (This came out of a real
program on the net.)

        *s++ || *s++ || *s++ || *s++ || s++;

Rule:
Never execute an expression solely for the side effects it produces.

There are some mechanical issues regarding expressions that can make them easier to read. The following
rules and guidelines document these issues:

Guideline:
There should be no spaces between a unary operator (e.g., "-") and the object on which it
operates.

        -x      *p      !b      /* from C/C++ */

Guideline:
There should be at least one space on either side of a binary operator.

        x = *p + a / b;

Guideline:
Operators that select a component of a larger object (e.g., "." for records/structures and "[ ]" for
arrays) should be adjacent to the object(s) they operate upon.

        recname.field                   recptr->field  ary[ i ]

Guideline:
Objects that separate items (e.g., "," and ";") should immediately follow the previous object. If a
second object follows the separator, there should be a space between the separator and the second
object.

        proc( parm1, parm2, parm3);
        procedure PascalProc( i:integer; b:boolean );

Guideline:
Bracketing symbols (e.g., "(" and ")", "[" and "]", and "{" and "}" ) should have one space on
the "open" end of the symbol, that is, to the right of "(", "[", and "[" and to the left of ")", "]",
and "}".

        x := f( x + 2 * a[ i, j ] );

Some languages (C/C++ and Algol-68 come to mind) have a tremendous number of operators. Some of them
are quite arcane and have no counterpart in other languages (when was the last time you used ">>=" or "->*"
?). If an alternative is available, you should avoid using assignments within expressions and other lesser-used
operators.

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (22 of 30) [10/1/2000 8:02:11 PM]



2.7 - Program Layout
After naming conventions and where to put braces (or begin..end), the other major argument programmers
engage in is how to lay out a program, i.e., what are the indentations one should use in a well written
program? Unfortunately, the ideal program layout is something that varies by language. The layout of an easy
to read C/C++ program is considerably different than that of an assembly language, Prolog, or Bison/YACC
program. As usual, this section will describe those conventions that generally apply to all programs. It will
also discuss layouts of the standard control structures described earlier.

According to McConnell (Code Complete), research has shown that there is a strong correlation between
program indentation and comprehensibility. Miaria et. al ("Program Indentation and Comprehension")
concluded that indentation in the two to four character range was optimal even though many subjects felt that
six-space indentation looked better. These results are probably due to the fact that the eye has to travel less
distance to read indented code and therefore the reader's eyes suffer from less fatigue.

Guideline:
Indentation should be three to four spaces in an indented control structure with four spaces
probably being the optimal value.

Enforced Rule:
If you use tabs to indent your code, insert a comment at the very beginning of the program that
states the number of positions for each tab stop. E.g., "/* This program is formatted using four
character position tabstops. */"

Steve McConnell, in Code Complete, mentions several objectives of good program layout:

The layout should accurately reflect the logical structure of the code. Code Complete refers to this as the
"Fundamental Theorem of Formatting." White space (blank lines and indentation) is the primary tool
one can use to show the logical structure of a program.

●   

Consistently represent the logical structure of the code. Some common formatting conventions (e.g.,
those used by many C/C++ programmers) are full of inconsistencies. For example, why does the "{" go
on the same line as an "if" but below "int main()" (or any other function declaration)? A good style
applies consistently.

●   

Improve readability. If the indentation scheme makes a program harder to read, why waste time with it?
As pointed out earlier, some schemes make the program look pretty but, in fact, make it harder to read
(see the example about 2-4 vs. 6 position indentation, above).

●   

Withstand modifications. A good indentation scheme shouldn't force a programmer to modify several
lines of code in order to affect a small change to one line. For example, many programmers put a
begin..end block (or "{".."}" block) after an if statement even if there is only one statement associated
with the if. This allows the programmer to easily add new statements to the then-clause of the if
statement without having to add additional syntactical elements later.

●   

The principle tool for creating good layout is whitespace (or the lack thereof, that is, grouping objects). The
following paragraphs summarize McConnell's finding on the subject:

Grouping: Related statements should be grouped together. Statements that logically belong together
should contain no arbitrary interleaving whitespace (blank lines or unnecessary indentation).

●   

Blank lines: Blank lines should separate declarations from the start of code, logically related statements●   

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (23 of 30) [10/1/2000 8:02:11 PM]



from unrelated statements, and blocks of comments from blocks of code.

Alignment: Align objects that belong together. Examples include type names in a variable declaration
section, assignment operators in a sequence of related assignment statements, and columns of initialized
data.

●   

Indentation: Indenting statements inside block statements improves readability, see the comments and
rules earlier in this section.

●   

Rule:
At least one blank line must separate a comment on a line by itself from a line of code following or
preceding the comment.

This style guide uses the "Pure Blocks" layout form suggested by McConnell. This is the obvious layout
scheme to use when your language supports modern structured statements like if..then..elseif..else..endif.
Since this standard requires the emulation of the modern block structured statements, the Pure Blocks layout is
appropriate.

Rule:
The standard layout scheme for this coding standard is the Pure Block format. For languages that
do not support modern structured control statements, this coding standard specifies an emulation
of these statements that allows the use of the Pure Block layout format.

In theory, a line of source code can be arbitrarily long. In practice, there are several practical limitations on
source code lines. Paramount is the amount of text that will fit on a given terminal display device (we don't all
have 21" high resolution monitors!) and what can be printed on a typical sheet of paper. If this isn't enough to
suggest an 80 character limit on source lines, McConnell suggests that longer lines are harder to read
(remember, people tend to look at only the left side of the page while skimming through a listing).

Enforced Rule:
Source code lines will not exceed 80 characters in length.

If a statement approaches the maximum limit of 80 characters, it should be broken up at a reasonable point and
split across two lines. If the line is a control statement that involves a particularly long logical expression, the
expression should be broken up at a logical point (e.g., at the point of a low-precedence operator outside any
parentheses) and the remainder of the expression placed underneath the first part of the expression. E.g.,

    if
    (
        ( ( x + y * z) < ( ComputeProfits(1980,1990) / 1.0775 ) ) &&
        ( ValueOfStock[ ThisYear ] >= ValueOfStock[ LastYear ] ) 
    )

            << statements >>

    endif;

Many statements (e.g., IF, WHILE, FOR, and function or procedure calls) contain a keyword followed by a
parenthesis. If the expression appearing between the parentheses is too long to fit on one line, consider putting
the opening and closing parentheses in the same column as the first character of the start of the statement and
indenting the remaining expression elements. The example above demonstrates this for the "IF" statement.
The following examples demonstrate this technique for other statements:

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (24 of 30) [10/1/2000 8:02:11 PM]



    while
    (
        ( NumberOfIterations < MaxCount ) &&
        ( i <= NumberOfIterations )
    )

        << Statements to execute >>

    endwhile;

    fprintf
    (
        stderr,
        "Error in module %s at line #%d, encountered illegal value\n",
        ModuleName,
        LineNumber
    );

Guideline:
For statements that are too long to fit on one physical 80-column line, you should break the
statement into two (or more) lines at points in the statement that will have the least impact on the
readability of the statement. This situation usually occurs immediately after low-precedence
operators or after commas.

For block statements there should always be a blank line between the line containing an if, elseif, else, endif,
while, endwhile, repeat, until, etc., and the lines they enclose. This clearly differentiates statements within a
block from a possible continuation of the expression associated with the enclosing statement. It also helps
clearly show the logical format of the code. Example:

    if ( ( x = y ) and PassingValue( x, y ) ) then

        Output( 'This is done' );

    endif;

Rule:
Always put a blank line between any block statement and the statement(s) it encloses.

If a procedure, function, or other program unit has a particularly long actual or formal parameter list, each
parameter should be placed on a separate line. The following (C/C++) examples demonstrate a function
declaration and call using this technique:

    int 
    MyFunction
    (
        int    NumberOfDataPoints,
        float  X1Root,
        float  X2Root,

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (25 of 30) [10/1/2000 8:02:11 PM]



        float  &YIntercept
    );

    x = MyFunction 
        (
            GetNumberOfPoints(RootArray),
            RootArray[ 0 ],
            RootArray[ 1 ],
            Solution
        );

Rule:
If an actual or formal parameter list is too long to fit a function call or definition on a single line,
then place each parameter on a separate line and align them so they are easy to read.

2.8 - Comments and (program) Documentation
Almost everyone agrees that a program should have good comments. Unfortunately, few people agree on the
definition of a good comment. Some people, in frustration, feel that minimal comments are the best. Others
feel that every line should have two or three comments attached to it. Everyone else wishes they had good
comments in their program but never seem to find the time to put them in.

It is rather difficult to characterize a "good comment." In fact, it's much easier to give examples of bad
comments than it is to discuss good comments. The following list describes some of the worst possible
comments you can put in a program (from worst up to barely tolerable):

The absolute worst comment you can put into a program is an incorrect comment. Consider the
following Pascal statement:

●   

                        A := 10;  { Set 'A' to 11 }

It is amazing how many programmers will automatically assume the comment is correct and try to
figure out how this code manages to set the variable "A" to the value 11 when the code so obviously
sets it to 10.

●   

The second worst comment you can place in a program is a comment that explains what a statement is
doing. The typical example is something like "A := 10; { Set 'A' to 10 }". Unlike the previous example,
this comment is correct. But it is still worse than no comment at all because it is redundant and forces
the reader to spend additional time reading the code (reading time is directly proportional to reading
difficulty). This also makes it harder to maintain since slight changes to the code (e.g., "A := 9")
requires modifications to the comment that would not otherwise be required.

●   

The third worst comment in a program is an irrelevant one. Telling a joke, for example, may seem cute,
but it does little to improve the readability of a program; indeed, it offers a distraction that breaks
concentration.

●   

The fourth worst comment is no comment at all.●   

The fifth worst comment is a comment that is obsolete or out of date (though not incorrect). For
example, comments at the beginning of the file may describe the current version of a module and who
last worked on it. If the last programmer to modify the file did not update the comments, the comments

●   

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (26 of 30) [10/1/2000 8:02:11 PM]



are now out of date.

Steve McConnell provides a long list of suggestions for high-quality code. These suggestions include:

Use commenting styles that don't break down or discourage modification. Essentially, he's saying pick a
commenting style that isn't so much work people refuse to use it. He gives an example of a block of
comments surrounded by asterisks as being hard to maintain. This is a poor example since modern text
editors will automatically "outline" the comments for you. Nevertheless, the basic idea is sound.

●   

Comment as you go along. If you put commenting off until the last moment, then it seems like another
task in the software development process and management is likely to discourage the completion of the
commenting task in hopes of meeting new deadlines.

●   

Avoid self-indulgent comments. Also, you should avoid sexist, profane, or other insulting remarks in
your comments. Always remember, someone else will eventually read your code.

●   

Avoid putting comments on the same physical line as the statement they describe. Such comments are
very hard to maintain since there is very little room. McConnell suggests that endline comments are
okay for variable declarations. For some this might be true but many variable declarations may require
considerable explanation that simply won't fit at the end of a line. One exception to this rule is
"maintenance notes." Comments that refer to a defect tracking entry in the defect database are okay
(note that the CodeWright text editor provides a much better solution for this -- buttons that can bring
up an external file). Endline comments are also useful for marking the end of a control structure (e.g.,
"end{if};").

●   

Write comments that describe blocks of statements rather than individual statements. Comments
covering single statements tend to discuss the mechanics of that statement rather than discussing what
the program is doing.

●   

Focus paragraph comments on the why rather than the how. Code should explain what the program is
doing and why the programmer chose to do it that way rather than explain what each individual
statement is doing.

●   

Use comments to prepare the reader for what is to follow. Someone reading the comments should be
able to have a good idea of what the following code does without actually looking at the code. Note that
this rule also suggests that comments should always precede the code to which they apply.

●   

Make every comment count. If the reader wastes time reading a comment of little value, the program is
harder to read; period.

●   

Document surprises and tricky code. Of course, the best solution is not to have any tricky code. In
practice, you can't always achieve this goal. When you do need to restore to some tricky code, make
sure you fully document what you've done.

●   

Avoid abbreviations. While there may be an argument for abbreviating identifiers that appear in a
program, no way does this apply to comments.

●   

Keep comments close to the code they describe. The prologue to a program unit should give its name,
describe the parameters, and provide a short description of the program. It should not go into details
about the operation of the module itself. Internal comments should to that.

●   

Comments should explain the parameters to a function, assertions about these parameters, whether they
are input, output, or in/out parameters.

●   

Comments should describe a routine's limitations, assumptions, and any side effects.●   

Rule:
All comments will be high-quality comments that describe the actions of the surrounding code in
a concise manner

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (27 of 30) [10/1/2000 8:02:11 PM]



Enforced Rule:
All comments will be up to date. If a programmer makes changes to the code, that programmer is
responsible for updating the internal comments and any external documentation affected by those
changes.

2.9 - Unfinished Code
Often it is the case that a programmer will write a section of code that (partially) accomplishes some task but
needs further work to complete a feature set, make it more robust, or remove some known defect in the code.
It is common for such programmers to place comments into the code like "This needs more work," "Kludge
ahead," etc. The problem with these comments is that they are often forgotten. It isn't until the code fails in the
field that the section of code associated with these comments is found and their problems corrected.

Ideally, one should never have to put such code into a program. Of course, ideally, programs never have any
defects in them, either. Since such code inevitably finds its way into a program, it's best to have a policy in
place to deal with it, hence this section.

Unfinished code comes in four general categories: non-functional code, partially functioning code, suspect
code, and code in need of enhancement. Non-functional code might be a stub or driver that needs to be
replaced in the future with actual code or some code that has severe enough defects that it is useless except for
some small special cases. This code is really bad, fortunately its severity prevents you from ignoring it. It is
unlikely anyone would miss such a poorly constructed piece of code in early testing prior to release.

Partially functioning code is, perhaps, the biggest problem. This code works well enough to pass some simple
tests yet contains serious defects that should be corrected. Moreover, these defects are known. Software often
contains a large number of unknown defects; it's a shame to let some (prior) known defects ship with the
product simply because a programmer forgot about a defect or couldn't find the defect later.

Suspect code is exactly that- code that is suspicious. The programmer may not be aware of a quantifiable
problem but may suspect that a problem exists. Such code will need a later review in order to verify whether it
is correct.

The fourth category, code in need of enhancement, is the least serious. For example, to expedite a release, a
programmer might choose to use a simple algorithm rather than a complex, faster algorithm. S/he could make
a comment in the code like "This linear search should be replaced by a hash table lookup in a future version of
the software." Although it might not be absolutely necessary to correct such a problem, it would be nice to
know about such problems so they can be dealt with in the future.

The fifth category, documentation, refers to changes made to software that will affect the corresponding
documentation (user guide, design document, etc.). The documentation department can search for these
defects to bring existing documentation in line with the current code.

This standard defines a mechanism for dealing with these five classes of problems. Any occurrence of
unfinished code will be preceded by a comment that takes one of the following forms (where "@" denotes the
standard comment delimiters in a given language and "_" denotes a single space):

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (28 of 30) [10/1/2000 8:02:11 PM]



@_#defect#severe_@
@_#defect#functional_@
@_#defect#suspect_@
@_#defect#enhancement_@
@_#defect#documentation_@

It is important to use all lower case and verify the correct spelling so it is easy to find these comments using a
text editor search or a tool like grep. Obviously, a separate comment explaining the situation must follow these
comments in the source code.

Examples in various languages:

Pascal/Delphi:

(* #defect#severe *)
{ #defect#enhancement }
(* #defect#functional *)
{ #defect#suspect }
{ #defect#documentation }

C:

/* #defect#severe */
/* #defect#suspect */
/* #defect#documentation */

C++:
/* #defect#functional */
// #defect#enhancement //

BASIC:
' #defect#functional '

Assembly (80x86):
; #defect#suspect ;

Ada:
-- #defect#enhancement --
-- #defect#documentation --

Notice the use of delimiters on both sides even if the language, technically, doesn't require them (C++.
BASIC, assembly, and Ada).

Enforced Rule:
If a module contains some defects that cannot be immediately removed because of time or other
constraints, the program will insert a standardized comment before the code so that it is easy to
locate such problems in the future. The four standardized comments are "@_#defect#severe_@,
"@_#defect#functional_@", "@_#defect#suspect_@", "@_#defect#enhancement_@", and
"@_#defect#documentation_@" where "@" denotes the comment delimiter and "_" denotes a

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (29 of 30) [10/1/2000 8:02:11 PM]



single space. The spelling and spacing should be exact so it is easy to search for these strings in the
source tree.

2.10 - Cross References in Code to Other Documents
In many instances a section of code might be intrinsically tied to some other document. For example, you
might refer the reader to the user document or the design document within your comments in a program. This
document proposes a standard way to do this so that it is relatively easy to locate cross references appearing in
source code. The technique is similar to that for defect reporting, except the comments take the form:

                @  text #link#location text @

The "@" represents the comment delimiters. "Text" is optional and represents arbitrary text (although it is
really intended for embedding html commands to provide hyperlinks to the specified document). "Location"
describes the document and section where the associated information can be found.

Examples:
C/C++:

/* #link#User's Guide Section 3.1 */
// #link#Program Design Document, Page 5 //

Pascal:

(* #link#Funcs.pas module, "xyz" function *)
{ <A HREF="DesignDoc.html#xyzfunc"> #link#xyzfunc </a> }

Guideline:
If a module contains some cross references to other documents, there should be a comment that
takes the form "@ text #link#location text @" that provides the reference to that other document.
In this comment, the "@" represents the language's comment delimeter(s), "text" represents
some optional text (typically reserved for html tags), and "location" is some descriptive text that
describes the document (and a position in that document) related to the current section of code in
the program.

< Previous section (1 - Introduction) - Contents - Next section (3 - C (and related C++) Specific Issues) >

Software Development Guidelines: 2 - General Programming Guidelines

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_2.html (30 of 30) [10/1/2000 8:02:11 PM]



Software Development Guidelines

3 - C (and related C++) Specific Issues

< Previous section (2 - General Programming Guidelines) - Contents - Next section (4 - Pascal/Delphi
Specific Formatting Issues) >

3.1 - Repeat..Until Statement

3.2 - The Loop..Endloop Statement

3.3 - The Breakif Statement

3.4 - The While Statement

3.5 - The For..Endfor and Downto..Endfor Loops

3.6 - If..Elseif..Else..Endif Statement

3.7 - The Switch..EndSw Statement

3.8 - The _context.._endcontext, _leave, and _return Statements

3.9 - Operators

3.10 - Modules in C/C++

3.11 - Coding for Testability in C/C++

3.11.1 - The Assert Macro

3.11.2 - The RatC _affirm and _claim Macros

3.11.3 - A Convenient Way to Test a Function Return Result With Assert.

3.11.4 - Special Note for C++ Users

3.11.5 - Using Conditional Compilation

3.12 - Handling Error Return Values

3.13 - Comments in a C/C++ Source File

3.13.1 - Module Header Comments.

3.13.2 - Function Header Comments

3.13.3 - Multi-line Comments

3.13.4 - Single Line / Endline Comments

3.14 - C++ Specific Features and Guidelines

Software Development Guidelines: 3 - C (and related C++) Specific Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_3.html (1 of 24) [10/1/2000 8:02:23 PM]



3 - C (and related C++) Specific Issues
This coding standard will probably offer the biggest challenge to C/C++ programmers since conventional
C/C++ programming practices are pervasive and unusual (compared to other high level languages). This
document recommends some unusual solutions that will improve the C/C++ languages by modernizing their
control structures. The fact that C/C++ is flexible enough to allow such an extension speaks highly of the
language. On the downside, these changes mean that current C/C++ programmers will have to adopt to a
slightly different programming paradigm in order to meet the standard.

The first step is to move the C/C++ language into the 21st century with respect to control structures. With
respect to programming language design, C is a very old language. C++ is certainly newer, but still carries
around a lot of old baggage for the sake of upwards compatibility. One primary drawback to C/C++ is that it
doesn't directly support modern control structures like if..then..elseif..else..endif, while..endwhile,
repeat..until, loop..endloop, for..endfor, context..endcontext, and a modern switch. Fortunately, C/C++ does
provide macro facilities through which we can construct versions of all these statements. Adopting these macros
into your C/C++ programs may seem like an annoyance at first, but they offer many major advantages over
existing C/C++ statements; plus they eliminate the religious argument about the placement of "{" and "}" after a
statement.

The following macros (from the "ratc.h" header file) provide the constructions for each of these statements. See
the "ratc.h" file for details on how to implement these constructs.

Rule:
All C/C++ programs will use the control structures found in the "ratc.h" (RATional C) header file
in place of the traditional C/C++ control structures.

3.1 - Repeat..Until Statement
The repeat..until statement in C/C++ takes the following form:

    _repeat

        << statements >>

    _until ( boolean_expression )

There must be one blank line between the "_repeat" and the first statement in the body of the loop. Likewise,
there must be one blank line between the last statement in the body of the loop and the "_until" clause. You
should indent the loop body statements two to four characters.

This loop executes the body of the loop at least once and then tests the value of the expression. If the expression
evaluates to false the loop repeats. The loop terminates when the expression evaluates to true. Some people
complain that the loop termination condition should be false in order to match the termination condition of the
while loop. There is very little empirical evidence (I am aware of) to suggest that this affects the readability of
"test at the bottom" loops one way or the other.

Software Development Guidelines: 3 - C (and related C++) Specific Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_3.html (2 of 24) [10/1/2000 8:02:24 PM]



3.2 - The Loop..Endloop Statement
The cryptic "for(;;)" statement has been the traditional way to create an infinite loop in C/C++ since the earliest
version of the K&R reference. The "_loop" and "_endloop" macros in the "ratc.h" header file encapsulate this
strange structure to make it more readable.

A typical _loop.._endloop statement takes the following form:

    _loop

        << statements >>

    _endloop

There should be at least one blank line between the "_loop" and the first statement of the loop body. Likewise,
there should be at least one blank line between the last statement of the loop body and the "_endloop" clause.
You should indent the loop statements two to four characters.

The _loop.._endloop statement creates an infinite loop. A typical use of the _loop.._endloop statement is to
create loops whose termination test occurs somewhere in the middle of the loop body. You can use C/C++'s
existing break and continue statements to exit the loop or jump to the top of the loop. You can also use the
"_breakif" statement described next.

3.3 - The Breakif Statement
The "_breakif" macro combines a test for loop termination with the C/C++ "break" statement. This statement
takes the form:

        _breakif ( expression );

If the expression evaluates false, the program ignores this statement. If the expression evaluates to true, then
control transfers to the first statement beyond the immediately enclosing loop construct.

Using the "_breakif" statement is slightly superior to the if statement above because it is easier to determine the
purpose of the instruction since the reader doesn't have to scan past the expression to see the "break" statement.

The "_breakif" statement is especially useful for terminating a "_loop.._endloop" iteration. This is the typical
statement one would use to terminate loop execution in the middle of a loop.

3.4 - The While Statement
The "_while" and "_endwhile" macros provide an implementation of a modern while loop. The syntax of this
statement takes the following form:

Software Development Guidelines: 3 - C (and related C++) Specific Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_3.html (3 of 24) [10/1/2000 8:02:24 PM]



    _while ( expression )

        << statements >>

    _endwhile

The statements that comprise the loop body should be indented 2-4 spaces. Also, there should be a blank line
between the "_while" and the first statement of the loop body, there should also be a blank line between the last
statement in the loop body and the "_endwhile".

3.5 - The For..Endfor and Downto..Endfor Loops
These two statements implement the standard versions of the for loop that iterate from a smaller value to a
larger value by one and iterate from a larger value down to a smaller value by minus one. These two loops take
the following forms:

    _for( var, start, stop )

        << statements >>

    _endfor;

    _downto( var, start, stop )

        << statements >>

    _endfor;

There should be a blank line between the _for, _downto, and _endfor clauses and any statements within the loop
body. The loop body statements should be indented 2-4 characters within the loop.

Note: These variants of the "for" loop severely restrict the capabilities of C/C++'s for loop. This is good! If you
need a fancier type of for loop, construct it using a while loop, do not revert back to C/C++'s "out of control" for
loop. Doing so makes your programs harder to read.

3.6 - If..Elseif..Else..Endif Statement
The "ratc.h" macro file includes a set of macros to add a sophisticated if..elseif..else..endif statement to the
C/C++ programming languages. This statement takes the following form:

    _if ( expression )

        << then statements >>

Software Development Guidelines: 3 - C (and related C++) Specific Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_3.html (4 of 24) [10/1/2000 8:02:24 PM]



    _elseif ( expression )  /* optional, may be repeated */

        << elseif statements >>

    _else               /* optional */

        << else statements >>

    _endif

The "_elseif" clause is optional; the program may have any number of "_elseif" clauses. The "_else" section is
also optional, although the statement may contain only one "_else" clause.

There should be a blank line between the statement blocks in the code above (i.e., << then statements >>, <<
elseif statements >>, and << else statements >> ) and the corresponding delimiting characters. The following
code sequences provide some examples of the "_if.._elseif.._else.._endif" statement:

/* Note, this is an example only, there are obviously better ways  */
/* to do the following                                             */

    _if
    ( 
        (( ch >= 'A' ) and ( ch <= 'Z' )) ||
        (( ch >= 'a' ) and ( ch <= 'z'))
    )

        ch = ( ch xor 0x20h );    /* swap case */

    _elseif (( ch >= '0' ) and ( ch <= 9 ))

        value = ch & 0xF;

    _else

        PrintError();

    _endif

    /* The _elseif and _else sections are optional, as the */
    /* next example shows.                                 */

    _if ( isAlpha(ch) )

        ch = ( ch xor 0x20 );

    _endif

Software Development Guidelines: 3 - C (and related C++) Specific Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_3.html (5 of 24) [10/1/2000 8:02:24 PM]



3.7 - The Switch..EndSw Statement
C/C++'s switch statement is one of the least structured statements in the language. A typical example of a
"_switch.._endsw" statement might be:

    _switch ( ch )

      _case 'A':

        << A statements >>

      _endcase

      _case 'B':

        << B statements >>

      _endcase

      _case 'Q':

        << Q statements >>

      _endcase

      _default:

        << Default statements >>

    _endsw

The first thing to note is that there are no "break" statements in the code above. The "_endcase" macro quietly
inserts a break for you.

Consider the following C/C++ switch statement:

    switch ( ch )
    {
      case 'A':
        DoAStuff();
        break;

      case 'B':

        DoBStuff();

Software Development Guidelines: 3 - C (and related C++) Specific Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_3.html (6 of 24) [10/1/2000 8:02:24 PM]



        break;

      case 'Q':
      case 'X':

        return ( 0 );

      default:

        PrintError();

    }

This example demonstrates the one situation where, stylistically, it is okay for one case to drop down into
another. To simulate this with the "_switch" statement you would use the following code:

    _switch ( ch )

      _case 'A':

        DoAStuff();

      _endcase

      _case 'B':

        DoBStuff();

      _endcase

      _case 'Q':
      _case 'X':

        return ( 0 );

      _endcase          /* Some compilers may complain about this  */
                        /* because the code is unreachable.        */

      default:

        PrintError();

    _endsw

The comment in the code describes a minor problem that may occur. Some compilers will warn you if there is
unreachable code in your program. The "break" statement the "_endcase" emits will be unreachable, hence the
warning. Short of leaving off the "_endcase" (probably a worse style violation than accepting a warning from
the compiler), there is little you can do about this.

Software Development Guidelines: 3 - C (and related C++) Specific Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_3.html (7 of 24) [10/1/2000 8:02:24 PM]



3.8 - The _context.._endcontext, _leave, and _return
Statements
There are a few occasions when a goto is warranted in a C/C++ program. Typically, this occurs when breaking
out of several loops or when handling an exceptional condition that requires transfer to the end of a function.
The _context.._endcontext block provides a structured way to handle this situation. The "_context" and
"_endcontext" clauses surround a block of statements you want to exit under some condition. Once you define a
context with these statements, you can exit the context with the _leave and _return statements. The syntax for
the _context.._endcontext statement is

_context( Unique_Label )

    << Statements within the context >>

_endcontext( Unique_Label )

The labels above should be the same label, but should otherwise be unique in the current function (technically,
the compiler ignores the label in the _context clause, but for readability you should always ensure that the two
labels match). You should indent all statements between the _context and _endcontext clauses four character
positions.

The _context and _endcontext clauses normally have no effect on program execution. That is, in the absence of
an _leave or _return statement within the context, the program will executes the statements sequentially as
though the _context statement were not present. However, should the program execute an _leave( Unique_Label
) statement within the context, control immediately transfers to the first statement after the corresponding
_endcontext( Unique_Label ) clause.

The _return statement uses the following syntax:

_return( expression, Unique_label );

This statement assigns the value of "expression" to a variable named "Result". You must define the variable
"Result" within the current function. Presumably, this it has the same type as the function return result. A
typical use of the "_return" statement would be to transfer control to the end of a function to allow clean-up
before actually returning from the function. For example, consider the following code:

int SomeFunc()
{
    int Result;
    char *Pointer;

    _context( SF_context );

        Pointer = malloc( 256 );
            .
            .
            .
        _if( x == y )

Software Development Guidelines: 3 - C (and related C++) Specific Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_3.html (8 of 24) [10/1/2000 8:02:24 PM]



            _return( x+2, SF_context );

        _endif
          .
          .
          .
    _endcontext( SF_context );
    free( Pointer );
    return Result;
}

As you can see, the use of _return allows you to set up the function return result and still jump to clean-up code
(in this case, simply freeing up the storage allocated for "Pointer") before returning from the function. Of
course, if you use the _return statement, you must make sure that you assign the function's return value to the
"Result" variable before attempting to return from the function. Note that most C/C++ compiler optimizers will
remove this actual assignment from the code, so there is rarely a performance penalty when using this
technique.

An interesting use of the _context.._endcontext statement is that it lets you check to see if you've terminated a
loop via the loop termination condition or via a break (_leave) statement. Consider the following while loop:

_context( whl_cntxt )

    _while( expression )
            .
            .
            .
        _if( expression2 )

            _leave( whl_cntxt );

        _endif
            .
            .
            .
    _endwhile

    << statements that execute if expression is false >>

_endcontext( whl_cntxt );

Note that the "<<..>>" marked statements above do not execute if the code breaks out of the loop via the _leave
statement. This fact is quite useful on many occasions.

Warning: The _context.._endcontext statement is really nothing more than a specialized form of a GOTO
statement. Although it is structured and, therefore, safer to use than a straight goto, you can still obfuscate your
code if you use too many _context.._endcontext statements within a function. This is especially true if you have
several of them nested or there is a large number of statements between the _context and the corresponding
_endcontext. Should this happen, you should consider converting the statements in the _context.._endcontext

Software Development Guidelines: 3 - C (and related C++) Specific Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_3.html (9 of 24) [10/1/2000 8:02:24 PM]



statement to a function (if appropriate to do so).

3.9 - Operators
Dennis Ritchie designed the C programming language around 1971 when most programming was still done on a
10 cps teletype machine. As such, he developed a terse language that minimized the number of keystrokes one
had to type to enter a program. Unfortunately, this terseness led to the creation of similar operators with similar
names that are easily confused; furthermore, the lexemes chosen were completely different from other those that
other languages employ, adding to the confusion. C++ made this problem worse by introducing function
overloading.

The "ratc.h" macro file contains a few macro definitions to overcome some of C/C++'s deficiencies. These
macros include the following:

#define and &&
#define or  ||
#define not !
#define ifx(x,t,f) ((x) ? (t) : (f))

There are many other possible macros that could be written. They were not included for the following reasons:

SHL ("<<") and SHR (">>") would seem to be possible candidates. However, inclusion of these
operators could introduce subtle bugs in C++ code. Consider the following C++ statement:

●   

                cout <<  2 shl 8;

Normally, one would expect this to print 256; however, it prints "28" instead. The reason is because this code
expands to:

                cout << 2 << 8;

Since the "<<" operator is left associative, C++ evaluates the "cout << 2" expression first. This produces an
"OSTREAM << 8" result that prints the "8". Because of the possible confusion in C++ programs, defining SHL
and SHR seems like a bad idea.

Replacing "&x" (address of x) with something like "adrs(x)" would also seem to make sense considering
the number of places C/C++ already uses the "&" symbol. However, taking the address of an object is an
extremely common operation in C programs, so it's questionable how welcome such a change would be
to most programmers.

●   

The other C/C++ operators are either reasonable or have no counterparts in other languages.

3.10 - Modules in C/C++
Modules in C/C++ physically consist of a ".c" source file[1] and a corresponding ".h" source file. C/C++ files
associate one of four namespace attributes with identifiers within the source code: local names, static names,
global names, or class/structure names (extern names are the same as global names). The proper use of these
namespace attributes lets C/C++ programmers implement information hiding and abstract data types. This
section will describe how to use these features in C. C++ also offers the availability of namespaces, this

Software Development Guidelines: 3 - C (and related C++) Specific Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_3.html (10 of 24) [10/1/2000 8:02:24 PM]



document will not consider namespaces here. Furthermore, C++ also offers direct support for abstract data types
via classes. This section will not deal with that aspect of information hiding.

Local names are any object identifiers declared within a function in a C/C++ program (this section will not
address locals appearing within compound statements in a function). Such names are not available outside the
function and typically hold temporary results of interest only to the function enclosing them. The proper use of
local variables is one of the first programming rules beginning programmers are taught, there is little need to
expand on that discussion here.

Function and variable names declared outside of any function can be either static or global. By default, all such
identifiers are global. The C/C++ keyword static precedes any static declarations. The scope of static objects is
limited to the current source file; that is, you cannot reference a static object from another module. Global
objects, on the other hand, are public and their names are available (via the linker) to other modules.
Unfortunately, C/C++'s default is backwards. As a general rule an object should only be public if the
programmer explicitly requests it to be so. Good programming style dictates information hiding - that is,
publishing only those names and data structures that other modules need to use and keeping the remaining
names private. To accomplish this, you must precede all private objects with the static storage class specifier.

Rule:
All private objects (that is, variable and function names that should remain local to a given source
file) must have the keyword "static" preceding them in a C/C++ source file. If the "static" keyword
is not present, the reader must be able to assume that the object is a public object that can be used
by code in other modules.

Leaving off the keyword "static" is only half the work necessary to make a name available in another module.
The other half of the work is defining that object in the other module using an "extern" storage class specifier.
To avoid maintenance problems, the only acceptable way to incorporate such external objects is via a "header"
or ".h" file. If a module with the name xyz.c exports any names, then there will be a corresponding xyz.h file
that contains the external declarations and any public constants and type declarations. Under no circumstances
should a programmer insert "extern" definitions directly into a ".c" file; programs using this technique are very
hard to maintain.

Enforced Rule:
All intermodule communication in C/C++ programs must take place through header files (".h"
files). All extern directives, public class definitions, public type definitions, and public constants
must appear in the header file that all interested modules will include.

ANSI C and C++ support the notion of a function prototype. A prototype provides a mechanism whereby the
compiler can perform stronger type checking on functions that a module calls before their declaration.
Prototypes, if organized properly, can also improve the readability of a module. Proper organization consists of
nothing more than placing all prototypes together near the beginning of the module. The best organization is
order the prototypes in the order that the functions appear in the source module. This makes it easier for a
programmer to manually locate a particular function in a listing by first locating its prototype at the beginning
of the module and noting the functions around it.

Enforced Rule:
All functions (public or private) appearing in a source module will have an associated prototype.
The prototypes for all functions will appear near the beginning of the source file (typically after the
include and define directives and any other type definitions also appearing there).

Guideline:

Software Development Guidelines: 3 - C (and related C++) Specific Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_3.html (11 of 24) [10/1/2000 8:02:24 PM]



The order of the prototypes should match the order of the functions appearing in the source
module.

Rule:
Functions that are also public (non-static) should appear near the beginning of the source file.

3.11 - Coding for Testability in C/C++
C/C++ provides two facilities that make it easy to write self-testing code: assertions and conditional
compilation. An assertion is simply a macro that has a boolean expression as its parameter. The assert macro
evaluates this expression and aborts the program with an error message if the expression is false. The
conditional compilation directives let you include or exclude code based on various conditions. This lets you
put in special debugging and testing statements that you can easily remove by changing a single global value.

3.11.1 - The Assert Macro

The assert macro expands one of two ways, normally it expands to some code that tests the expression and
aborts the program if the expression is false. If the NDEBUG symbol is defined prior to the "#include
<assert.h>" statement, then asserts (effectively) expand to a no-operation. Normally, the NDEBUG symbol
should not be defined; this will produce a debugging/testing version of the software. When compiling a
production version of the software, this symbol must be defined to ensure that you don't ship any debugging
code embedded in a production system.

Guideline:
For internal use, all compiles should expand all assertions to abort the program if the assertion
turns out to be false.

Rule:
The makefile for a given project must offer a "standard/debug" compilation and a "production"
compilation option. The "production" compilation option should define the macro symbol
NDEBUG for every C source file it processes.

The assert macro displays the filename containing the assertion, the line number of the assertion, and the text of
the expression whenever the program aborts. For example, if the statement "assert( x == y );" is sitting at line
number 25 in the file "xyz.c" and "x==y" evaluates false, the C run-time system will print (among other things):
"x==y file: xyz.c line 25." Although this is useful information, some additional information might be helpful.
This is especially true if an expression like "x==y" occurs in several different assertion statements. Assertions
don't normally provide the ability to attach a string to the output message, but there is a trick you can use to
print a string literal along with the (text of the) expression. When an assertion fails, the C run-time system prints
everything between the parentheses in the assertion statement. Unfortunately, the C preprocessor removes
comments before assert gets a look at the parameter list, otherwise we'd be able to stick a comment in the
assertion and print it. A second solution is to put a string in the assertion parameter list. One way to do this is to
use an assertion call like the following:

                assert( ( "Assertion Message", x == y ) );

This particular statement, if the assertion fails, prints '( "Assertion Message" , x == y )' along with the values for

Software Development Guidelines: 3 - C (and related C++) Specific Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_3.html (12 of 24) [10/1/2000 8:02:24 PM]



the line number and filename. There is nothing magic going on here; the comma operator tells C to ignore the
first operand and use the value of the second ("x == y"). The parentheses are necessary around the whole bit so
the C compiler does not confuse the "x == y" clause with a second parameter.

Since you can easily remove them by defining the symbol NDEBUG, assertions are cheap insurance and you
should use them liberally to check input parameters to any functions you write, to check return values from
functions you call, and to handle the default ("can't occur") case in if..then..elseif..elseif..else..endif and
switch..endswitch statements.

Rule:
You should use assertions throughout your code to check degenerate and "impossible" conditions.
You should also use assertions to check the sanity of parameters input to a function.

Some people might argue against assertions claiming that they clutter up the listing. However, an editor like
Codewright can remove lines containing assertion statements if this proves to be a problem. The benefit of
having assertions in your code far outweighs the disadvantages.

3.11.2 - The RatC _affirm and _claim Macros

RatC provides two macros that offer a "softer" implementation of assert: _affirm and _claim. These two macros
test an expression and print a string if the expression is false (just like assert). Unlike assert, however, they do
not abort the program if the expression is false; they simply print their strings to the standard error device and
then execution continues.

The _claim macro takes a single parameter -- the expression to test. If the expression evaluates true, then _claim
does nothing. However, if the expression evaluates false, then the _claim macro will print the line number and
the name of the file along with the text corresponding to the expression.

The _affirm macro takes two parameters -- and expression and a literal string constant. If the expression
evaluates to true, the _affirm macro does nothing. If the expression evaluates false, the _affirm macro prints the
filename, the line number of the _affirm statement, and the string literal.

Like the assert statement, all of the _claim and _affirm calls in your program will disappear if you define the
NDEBUG symbol. Therefore, you can easily remove this code from your program for production purposes.

3.11.3 - A Convenient Way to Test a Function Return Result With Assert.

Suppose you have a function f(x) that returns zero if it is successful and any other value (typically an error
code) if it is unsuccessful. You can easily attach an assertion to a call to f as follows:

                f( x ) _passert( "f(x) failed" );

This is functionally equivalent to the following C code:

    _if ( f( x ) )

        assert(!*"f(x) failed");

Software Development Guidelines: 3 - C (and related C++) Specific Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_3.html (13 of 24) [10/1/2000 8:02:24 PM]



    _endif;

Why should we prefer the "_passert" version over the "_if" version? There are a couple of reasons. First of all,
keep in mind that assertions typically check for exceptional conditions (meaning they rarely occur). Consider
the malloc function; it returns a pointer to an allocated object on the heap if it succeeds, it returns NULL if a
(rarely occurring) out of memory condition exists. Consider the following calls to malloc:

    ptr = (char *) malloc( NumberOfBytes );

vs.

    _if ( ptr = (char *) malloc( NumberOfBytes ) )
 
        fprintf( stderr, "Memory allocation failure\n");
        abort();

    _endif;

Which sequence above do you feel is easiest to read? Obviously, the first one it easier to read; it is also a lot
easier to write and maintain. Of course, there is one major drawback -- it doesn't check the error return code.
The vast majority of the time the first call to malloc above will work properly. However, once in a great while
the program might actually run out of memory and then it would probably crash since it doesn't consider the out
of memory condition. Obviously, this is unacceptable in commercial quality code.

To work out a solution, consider why the first statement above is more readable. One might argue (correctly)
that the first version is more readable than the second because is it shorter. However, it's easy to make the
second version much shorter by using a macro. It wouldn't be hard to write the second version as follows:

    asrt( ptr = (char *) malloc( NumberOfBytes ), "Malloc failure");

This still isn't as readable as the first version above. The primary reason is because the real work (allocating
storage for a string and storing its address into ptr) occurs in the middle of this statement rather than at the
beginning of the statement. A program will be easier to read if the real work of each statement occurs at the
beginning of the statement. This is why the "_if ( f( x ) ) ..." statement earlier isn't as easy to read as the "f( x )
_passert..." version. The structure of the "_if" version implies that there is an important test that is necessary to
the logic of the program. This is true in an absolute sense, but in a relative sense we would like to push error
checking into the background and concentrate on the main computations the program performs. Having to
worry about degenerate cases all the time simply confuses the reader.

The "ratc.h" header file defines two macros: "_passert" (positive assertion) and "_nassert" (negative assert).
Both expect some boolean expression to precede the macro. If the expression evaluates to false, "_passert" does
nothing. Likewise, if the expression's value is true then "_nassert" does nothing. If the expression evaluates to
the opposite value, then these two functions abort the program printing the single string literal value passed to
them.

The important thing to keep in mind about these operators is that they expect an arithmetic expression
immediately preceding the macro invocation. These operators have the same precedence as the C "?" ternary
operator.

Software Development Guidelines: 3 - C (and related C++) Specific Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_3.html (14 of 24) [10/1/2000 8:02:24 PM]



Rule:
If a function can succeed or fail in addition to returning some value, the function should return the
failure status as the function result and return the other value through a reference parameter. This
allows you to use the _assert and _nassert macros to check the return status of the function.

3.11.4 - Special Note for C++ Users

If you glance back at the descriptions in the last section, you'll notice that it refers to "C" not "C/C++." That's
because in many instances, C++ provides a better solution: exception handling. By using the try, catch, and
throw statements in C++ you can raise an exception inside your function and handle it at some point other than
immediately upon return. Since exceptions should rarely occur, this is much better way to handle degenerate
cases in the program.

Rule:
If your language provides exception handling capabilities, use them rather than manufacturing
your own tests for exceptional conditions.

3.11.5 - Using Conditional Compilation

Assertions provide a good check against a disastrous condition. Should an assertion fail, the program stops with
a message that indicates the source of the problem. Sometimes, however, you might want to insert some
debugging code that logs some information to a file (or the standard error output device) without stopping the
execution of the program. Assertions, since they terminate program execution, are unsuitable for this. A better
solution is to use the #ifdef and #ifndef directives to include or not include debugging code.

Rule:
All debugging code must disappear if the symbol "NDEBUG" is defined. That is, you must
surround all debugging code with "#ifndef NDEBUG" and a corresponding #endif.

The single symbol "NDEBUG" eliminates all assertions in a program. Therefore, it makes sense to say that this
single symbol should also eliminate all debugging code if it is defined. This allows whoever builds a production
copy of the C code to feel they have confidently eliminated all debugging code by defining a single symbol
during compilation.

Unlike assertions, you may not want to have all debugging statements active at one time. For example, if a
particular module has five sets of debugging statements in it, you may only be interested in one set or the other.
With the NDEBUG symbol, it's all or nothing; either all the debug statements are present or none of them are
present. The solution is to associate a name with the current debug block (or a set of debug blocks) and use a
nested #ifdef statement to activate or deactivate the debugging code. Consider the following code:

    #ifndef NDEBUG    /* To turn off debugging for production code */
    #ifdef DebugCalc

        fprintf(debugLogFile,"Appropriate Logging Output\n");

    #endif
    #endif

Normally, you should indent #ifdef and #ifndef statements just like any statement in C/C++. That would
suggest that the style above is incorrect. However, since these statements will always occur in pairs, an

Software Development Guidelines: 3 - C (and related C++) Specific Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_3.html (15 of 24) [10/1/2000 8:02:24 PM]



exception is quite justifiable in this particular case.

It is tempting to create a macro that will emit the #ifndef and #ifdef statements above. Avoid this temptation!
The Codewright editor on the PC has a nifty feature that automatically removes #ifdef/#ifndef code that
wouldn't normally be compiled. Unfortunately, Codewright only looks for #ifdef and #ifndef; it isn't smart
enough to expand macros when searching for these statements. A major problem with #ifdef and #ifndef is that
they tend to clutter up your code. Codewright's ability to selective display sections of code (and not display
others, like the #ifdef code) is a very handy feature.

Guideline:
Don't avoid the use of #ifdef and #ifndef statements in your program because you are worried
about making your program harder to read. Tools exist to remove these #ifdef and #ifndef
statements thus eliminating the clutter.

Debugging statements programmers put into their programs generally fall into three categories:

One-time blocks of code that help you track down an eliminate a single bug (and, obviously, never appear
in production code).

●   

Debugging statements that log current values in a module for later perusal to see if a section of code is
getting and computing reasonable values. This code never appears in the production version of the
program.

●   

Debugging statements that log values or provide information on demand in a production version of a
program. A field engineer, for example, might use such code to test the program at a customer's site.

●   

The first category of statements above (one-time blocks) normally shouldn't exist - you should really be using a
debugger to track down these types of problems. However, not all debuggers are flexible enough to handle
every situation and a small block of debugging code can save the day. These debugging statements are the most
dangerous to insert into a program. Often, the programmer sees these statements as temporary additions to the
code that s/he will remove momentarily. Unfortunately, such statements invariably wind up in production code
because the programmer, in haste, forgot to remove the debugging statements and failed to protect them with a
#ifndef NDEBUG statement.

Enforced Rule:
All "temporary" debugging statements you add to a program, no matter how temporary they
seem, must be protected with "#ifndef NDEBUG" and "#endif" statements. This is the only line of
defense against forgetting to remove the code before compiling a production version of the
program.

The second category of debug statements above will typically print parameters passed into a function, print
computations during the execution of a function, print return results from a called function, and print results that
the current function returns. Programmers often insert such statements into their programs as temporary
measures to track down an elusive defect in the software. However, such statements should be coded in as
permanent fixtures in a program. After all, once you've tracked down a current problem with a routine, there is
no guarantee that there won't be future problems with that routine. If you leave the logging code in place, you
will not have to rewrite it the next time you want to trace a routine.

Code in this second category is the type of code you should protect with two #ifdef or #ifndef statements. The
outside directive should be a "#ifndef NDEBUG" statement that removes debugging code from the program for
a normal (production) release. The second "#ifdef SomeSymbol" determines whether the compiler should
process this particular block of debugging code. The symbol name should either (1) Be a general name that
applies to several different blocks of debugging code or (2) be a specific name consisting of the function name
followed by a description of what the code is logging.

Software Development Guidelines: 3 - C (and related C++) Specific Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_3.html (16 of 24) [10/1/2000 8:02:24 PM]



Example 1: an example of some generic debugging code. The "EntryExit" symbol, if defined throughout the
current source code module, prints a short message to the debug logging file on entry and exit from every
function in this module.

int
MyFunction( int i )
{
    #ifndef NDEBUG
    #ifdef EntryExit

        fprintf( debugLogFile, "Entering MyFunction\n" );

    #endif
    #endif
        .
        .   << Statements that implement MyFunction >>
        . 
    #ifndef NDEBUG
    #ifdef EntryExit

        fprintf( debugLogFile, "Exiting MyFunction\n" );

    #endif
    #endif

    return WhateverValueWasComputed;
}

int
YourFunction( int i )
{
    #ifndef NDEBUG
    #ifdef EntryExit

        fprintf( debugLogFile, "Entering YourFunction\n" );

    #endif
    #endif
        .
        .   << Statements that implement YourFunction >>
        . 
    #ifndef NDEBUG
    #ifdef EntryExit

        fprintf( debugLogFile, "Exiting YourFunction\n" );

Software Development Guidelines: 3 - C (and related C++) Specific Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_3.html (17 of 24) [10/1/2000 8:02:24 PM]



    #endif
    #endif

    return WhateverValueWasComputed;
}

By defining or undefining a single label ("EntryExit" in this case) you can quickly turn on or off the logging
within a particular source module.

Often, you will want to explicitly turn on or off a single set of debugging statements. This is really no different
than the situation above except that you can use a more specific name for the symbol that controls the code
expansion. A good name generally involves the function name and the type of debugging action that occurs.
The following code provides an example of such usage:

int
Recursive(int i)
{
    #ifndef NDEBUG
    #ifdef debugRecursive

        static int count=0;
        ++count;
        fprintf( debugLogFile, "Entry to recursive, count=%d i=%d\n",
               count, i );

    #endif
    #endif

    if ( ! --i ) Recursive( i );

    #ifndef NDEBUG
    #ifdef  debugRecursive

        --count;

    #endif
    #endif
}

You should define all the debug symbols for a source module at the very beginning of the source module. If you
are not currently using a particular symbol, simply comment out its definition, do not remove the definition
from the module. Every such symbol (commented out or present) should have some associated comments that
describe the purpose of the symbol. Example:

<< Module header comments and include files >>

/*

Software Development Guidelines: 3 - C (and related C++) Specific Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_3.html (18 of 24) [10/1/2000 8:02:24 PM]



** Debugging Symbols:
**
** EntryExit-  Defining this symbol causes many of the routines in this
**             module to log a brief message whenever you call them and
**             they return to the caller.
**
** debugRecursive- Displays the parameter and current recursive depth
**                 for a call to the "Recursive" function.
*/
/* #define EntryExit */
#define debugRecursive

        .
        .
        .

3.12 - Handling Error Return Values
Many standard library functions in C/C++ attempt to return two values in a single function result: the expected
function result or an error indication. The "malloc" routine is a good example as is "getc". While this may seem
to make an efficient use of a limited resource (i.e., the single function return result), combining two objects into
a single return result is very bad programming style. It encourages programmers to ignore one or the other of
the values since it is rarely obvious that a function is returning two values. For example, probably over 75% of
the calls to "malloc" in typical C/C++ programs go unchecked for an out of memory condition.

Rule:
Functions should never attempt to return two (or more) values through a single parameter or
function return result. If a function truly needs to return two different values, return them in
separate locations (e.g., through pass by reference parameters).

Although it is easy enough to control functions you write, a problem arises when calling standard library or
third party library routines. The solution is to write wrapper functions that check input and output values for
such library functions. By convention, many programmers have traditionally written special versions malloc,
free, realloc, and other such calls to produce "safe" versions of these routines. This paper will suggest an
extension of this feature and apply it to any library routine that can fail, not just the memory allocation routines.

For a given runtime library routine xyz( a, b, ...) you will substitute the call xyz_safe( &result, a, b, ... ). The
xyz_safe function returns a non-zero error code if an error occurs (typically the value one if there is only one
type of error), it returns zero if the function was successful. This function returns the (non-error) function return
result in the result parameter. A typical call to xyz_safe would look like this:

    _if ( xyz_safe(&result, a, b ) )

        fprintf(stderr,"function XYZ returned an error\n");
        fprintf(logfile,"error XYZ=%d\n" errno);
        exit(1);

    _endif;

Software Development Guidelines: 3 - C (and related C++) Specific Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_3.html (19 of 24) [10/1/2000 8:02:24 PM]



    /* Down here "Result" contains whatever legal value xyz returned */

Another solution is to use the "_passert" macro to test the return result:

                xyz_safe(&result, a, b) _passert("XYZ Failure");

Writing a wrapper function is very easy. Consider the "malloc" function. It normally returns NULL if a memory
allocation error occurs, it returns a valid pointer into the heap if there is no error. The "malloc_safe" function
takes the following form:

int malloc_safe(void **Result, size_t size)
{
    *Result = malloc(size);
    return Result == NULL;
}

This version of malloc is more portable, is easier to use (assuming you always test the malloc return result for
an error), and is easier to read and understand (remember, functions should never return two different values in
the same function return result; malloc_safe corrects this problem).

3.13 - Comments in a C/C++ Source File
Comments should take one of four basic forms in a C/C++ source file: module headers, program unit headers,
multi-line comments, and single-line/endline comments. Module headers describe the contents of a source file.
Program unit headers describe functions and global objects. Multi-line comments appear within a function or
other program unit and describe the statements that immediately follow. Single-line and endline comments are
single line comments appearing throughout the source file. Typically they describe a source statement or
declaration appearing on the same line or immediately after the comment.

3.13.1 - Module Header Comments.

A module header is a block of comments at the beginning of a source file. Module headers should look like the
following:

/************************************************************************/
/*  Copyright(c) Information Management Associates, Inc. 1990           */
/*          All Rights Reserved                                         */
/*          An Unpublished Work                                         */
/*                                                                      */
/*  This is a Proprietary program product material and is the           */
/*  property of  INFORMATION  MANAGEMENT  ASSOCIATES, INC. No           */
/*  sale, reproduction or other  use of this program  product           */
/*  is authorized  except as  granted by the  fully  executed           */
/*  INFORMATION MANAGEMENT ASSOCIATES,  INC.  product license           */

Software Development Guidelines: 3 - C (and related C++) Specific Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_3.html (20 of 24) [10/1/2000 8:02:24 PM]



/*  or by  the  separate  written  agreement  and approval of           */
/*                                                                      */
/*      INFORMATION   MANAGEMENT   ASSOCIATES,  INC.                    */
/*      6527 Main Street                                                */
/*      Trumbul, CT 94010                                               */
/*                                                                      */
/*  Author: XXXX YYYY                                                   */
/*  Revision History:                                                   */
/*    << date and explanation of each change >>                         */
/************************************************************************/
/*      str.c   Version 22.1               
**      Checked in  1/24/96 at 12:39:03                
*/      Retrieved   4/22/96 at 18:16:48                 
/************************************************************************/
/*  Purpose:                                                            */
/*  --------                                                            */
/*  This file contains the code to generate a string value              */
/*   containing a specified number of occurrences of a                   */
/*   specified string                                                   */
/************************************************************************/

3.13.2 - Function Header Comments

A function header should be a box of comments containing:

Subroutine name and short description●   

The purpose of the subroutine, its primary job, and any side-effects.●   

A description of the parameters, their types and possible values, parameter passing mechanism, and
whether they are in, out, or in/out parameters.

●   

A description of the return value (if any).●   

Any assertions or other debugging tests available while in debugging mode.●   

Data Dictionary- A description of the local variables, their types, and possible values.●   

Example:

/**********************************************************************/
/*                                                                    */
/* Name: Match                                                        */
/*                                                                    */
/* Purpose:                                                           */
/* This function matches an input string against a specified pattern. */
/* It returns true if the pattern can match the string, it returns    */
/* false if this is not possible.                                     */
/*                                                                    */
/* Parameters:                                                        */
/*                                                                    */
/* char *StringToMatch; (input-only).                                 */

Software Development Guidelines: 3 - C (and related C++) Specific Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_3.html (21 of 24) [10/1/2000 8:02:24 PM]



/* This is the input string to match.                                 */
/*                                                                    */
/* Pat *Pattern; (input-only).                                        */
/* This is the pattern to apply to the string.                        */
/*                                                                    */
/* Returns:                                                           */
/* True (1) if the pattern can match this string, false otherwise.    */
/*                                                                    */
/* Assertions:                                                        */
/* Neither StringToMatch nor Pat are NULL.                            */
/* StringToMatch points at a zero terminated character string,        */
/* Pattern points at a valid "Pat" data structure.                    */
/*                                                                    */
/* Variables:                                                         */
/* int Index -  This is the current index into the string.            */
/* Pat *SubPat- This is a pointer to the current subpattern           */
/*              we are matching.                                      */
/*                                                                    */
/* Written by:                                                        */
/* Randall Hyde 3/30/95  Version 1.0                                  */
/* Randall Hyde 7/02/95  Improved performance of recursive            */
/*                       matching function.                           */
/*                                                                    */
/**********************************************************************/

3.13.3 - Multi-line Comments

Multi-line comments are several lines of comments appearing in the middle of a function that describes the
statements immediately following. These comments should be less obtrusive than function and module headers.
Hence, you shouldn't enclose them in a box of asterisks. To avoid destroying the indentation of the program,
you should indent all comments in a function as though they were a statement. Multi-line comments should
immediately precede the code to which they apply. There should be at least one blank line between the
comment and the code it describes. There should be at least two blank lines between the preceding code and the
start of the comment. Physically, multi-line comments should look like the following:

/*
** If the string has matched the current subpattern, try
** matching the string against the "next" subpattern.
**
** On the other hand, if the string did not match the
** current subpattern, try matching the string against
** the "alternate" subpattern.
**
** Return true if the current subpattern matches
** and "next" is NULL or the "next" subpattern also matches.
**
** Return true if the current subpattern fails to match but

Software Development Guidelines: 3 - C (and related C++) Specific Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_3.html (22 of 24) [10/1/2000 8:02:24 PM]



** the "alternate" subpattern matches.
**
** Return false if neither the current subpattern nor the
** "alternate" subpattern matches.
*/

Alternately, C++ programmers can use comments like the following:

//
// If the string has matched the current subpattern, try
// matching the string against the "next" subpattern.
//
// On the other hand, if the string did not match the
// current subpattern, try matching the string against
// the "alternate" subpattern.
//
// Return true if the current subpattern matches
// and "next" is NULL or the "next" subpattern also matches.
//
// Return true if the current subpattern fails to match but
// the "alternate" subpattern matches.
//
// Return false if neither the current subpattern nor the
// "alternate" subpattern matches.
//

3.13.4 - Single Line / Endline Comments

Single line comments are exactly that- a short description that applies to a statement or a declaration. Single line
comments sit on a single line by themselves immediately before the statement to which they apply (although a
blank line always goes between the comment and the following code). Endline comments appear on the same
line as the statement to which they apply. These comments generally look like one of the following:

C Programs:

    /* After sorting, the median element is at index n/2 */
    
    sort( data, NumItems );
    
        .
        .
        .
        
    Median = data[ NumItems / 2 ];  /* Data *must* be sorted! */
    

C++ Programs:

Software Development Guidelines: 3 - C (and related C++) Specific Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_3.html (23 of 24) [10/1/2000 8:02:24 PM]



    // After sorting, the median element is at index n/2
    
    sort( data, NumItems );
    
        .
        .
        .
        
    Median = data[ NumItems / 2 ];  // Data *must* be sorted!

3.14 - C++ Specific Features and Guidelines
(This section still needs to be written).

[1] For C++, extensions like ".cc", ".cpp", and ".cxx" are common as well. [back]

< Previous section (2 - General Programming Guidelines) - Contents - Next section (4 - Pascal/Delphi
Specific Formatting Issues) >

Software Development Guidelines: 3 - C (and related C++) Specific Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_3.html (24 of 24) [10/1/2000 8:02:24 PM]



Software Development Guidelines

4 - Pascal/Delphi Specific Formatting Issues

< Previous section (3 - C (and related C++) Specific Issues) - Contents - Next section (5 - Visual BASIC Specific
Formatting Issues) >

4.1 - Control Constructs in Pascal

4.2 - Semicolons in a Pascal Program

4.3 - Modules in Pascal/Delphi

4.4 - Coding for Testability in Delphi/Pascal

4.5 - Conditional Compilation in Delphi/Pascal

4.6 - Handling Error Return Values

4.7 - Comments in a Delphi/Pascal Source File

4.7.1 - Module Header Comments.

4.7.2 - Function Header Comments

4.7.3 - Multi-line Comments

4.7.4 - Single Line / Endline Comments

4.8 - Delphi Specific Issues

4 - Pascal/Delphi Specific Formatting Issues
This section describes style guidelines for Borland's Turbo Pascal and Delphi products. Many of the guidelines
appearing in this section are generic enough to apply to any Pascal source file, however, no attempt is made to
differentiate Borland Pascal/Delphi from generic Pascal since 90% of today's Pascal programming is done with a
Borland product. A special section near the end of this section discusses Delphi-specific issues.

4.1 - Control Constructs in Pascal
Like C/C++, Pascal does not provide the modern if..elseif..else.endif, while..endwhile, etc., control structures (except,
of course, for repeat..until). Unlike C/C++, Pascal does not provide a macro mechanism that lets us create our own
versions of these statements. Therefore, we will simulate these statements rather than create them outright.

To emulate the modern control structures, we will always associate a begin..end block with each Pascal statement
(except repeat..until). The proper indentation style is to place the "begin" on the same line as the statement and line up
the corresponding "end" in the same column as the statement. The following paragraphs provide the rules for the
if..elseif..else..endif, while..endwhile, for..endfor, and loop..endloop statements.

To create an if..endif statement, you simply attach a "begin" and "end{if}" sequence to the standard Pascal if

Software Development Guidelines: 4 - Pascal/Delphi Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_4.html (1 of 15) [10/1/2000 8:02:35 PM]



statement. Note the use of the Pascal comment to denote the end of an if sequence. You should indent the statement(s)
to execute four character positions within the if..end block:

if ( expression ) then begin

    << Statement(s) to execute >>

end{if};

An if..then..else statement is similar. Note that the "{if}" comment only follows the last "end" in the if statement:

if ( expression ) then begin

    << Statement(s) to execute if "expression" is true >>

end
else begin

    << Statement(s) to execute if "expression" is false >>

end{if};

An if..then.elseif statement takes the following form:

if ( expression ) then begin

    << Statement(s) to execute if "expression" is true >>

end
else if ( expression2 ) then begin

    << Statement(s) to execute if "expression2" is true >>

end{if};

Finally, here's an example of an if..then..elseif..else..endif statement:

if ( expression ) then begin

    << Statement(s) to execute if "expression" is true >>

end
else if ( expression2 ) then begin

    << Statement(s) to execute if "expression2" is true >>

end
else begin

    << Statement(s) to execute if both expressions are false >>

Software Development Guidelines: 4 - Pascal/Delphi Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_4.html (2 of 15) [10/1/2000 8:02:35 PM]



end{if};

Of course it is perfectly reasonable to insert as many "else if" sections as you require into the sequence above.

You should treat the "end/else if" and "end/else begin" sequences as a single clause that should be kept together. In
particular, you should avoid separating these clauses by a large number of comments or blank lines. Doing so would
give the impression that the previous clause has ended when this is not the case. You should place all comments that
apply to the following block within that block (and indent those comments four spaces to line up with the other
statements in the block).

To implement a while..endwhile statement, you need only attach a begin..end block to the existing while statement.
As for the if statement, a "{while}" comment should immediately follow the closing "end" clause to mark the end of
the statement. You should indent the statements inside the while..endwhile block two character positions. The
following example demonstrates this statement:

while( expression ) do begin

    << Statement(s) to repeat while "expression" is true >>

end{while};

Like the while statement, we can emulate a modern for..endfor loop in Pascal by simply attaching a begin..end block
to the Pascal "for" statement. As usual, we will follow the "end" clause with a "{for}" comment. You should indent
statements within the emulated for..endfor statement four character positions. The following example demonstrates
how to do this:

for LoopVar := Start to Stop do begin

    << Statement(s) to execute specified number of times >>

end{for};

Pascal does not provide a built-in mechanism for creating infinite loops. The convention among Pascal programmers
is to use a "while( true ) do" loop and rely upon the compiler to optimize away the expression. This standard adopts
that convention with a minor twist -- rather than just use the constant "true", you will define a constant "loop" whose
value is true and use that constant, without surrounding parenthesis on a separate line. This gives the illusion of
having a loop statement:

while 
loop do begin

    << Statement(s) to execute forever. >>

end{loop};

Note the use of the "{loop}" rather than "{while}" to mark the end of this statement. Of course, for this trick to work
properly, you must have the following statement appearing in a visible (preferably global) "const" section of your
Pascal program:

loop = true;

Borland's Pascal compilers provide "break" and "continue" statements (Borland calls these "procedures" for some

Software Development Guidelines: 4 - Pascal/Delphi Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_4.html (3 of 15) [10/1/2000 8:02:35 PM]



reason). You may use the "break" statement to exit an infinite loop. For the purposes of testing for loop termination in
the middle of a loop..endloop statement, you can use a Pascal if statement like the following:

{break}if( expression ) then break;

Note that for this special case you do not have to attach a begin..end statement since we're really simulating the
breakif statement here. If necessary, you may use this same structure with the continue statement (although it is rarely
necessary).

Unfortunately, Pascal does not provide an easy way to simulate the _context.._endcontext structure. The only
plausible way is to use the GOTO statement. An appropriate way to do this is to use a comment to mark the beginning
and end of the context as follows:

function SomeFunc:integer;
label SF_cntx;
begin

    {context SF_cntx}
            .
            .
            .
        if( expression ) then goto {leave} SF_cntx;
            .
            .
            .
    {end context} SF_cntx:

Note that when simulating an _leave, like when simulating a _breakif, you do not need to use the begin..end block.
Also note the use of the comment between the GOTO and the corresponding label. Of course, Standard Pascal
requires numeric rather than symbol statement labels; fortunately, Borland's Pascal and Delphi compilers allow the
use of symbolic labels.

Unfortunately, there is no easy way to simulate the "_return" statement with a single statement in Pascal. The only
option is to use two statements. The first should assign a value to the "Result" variable (predeclared for you in
Delphi!) or to the function return name and then jump to the end of the function.

Given the unstructured nature of the context..endcontext emulation in Pascal, you should avoid its use whenever
possible. For those using the Delphi language, the try..finally and try..except blocks provide a nicer and more readable
alternative (although you should be careful about using exception handling statements in normal flow-of-control
situations). Keep in mind that this context..endcontext emulation still uses GOTO statements and, therefore, the
guideline concerning the use of GOTOs within a program applies.

The Pascal repeat..until statement already takes the form for a modern control structure. Therefore, there is no need to
mess with it's syntax.

4.2 - Semicolons in a Pascal Program
Pascal uses semicolons to separate, rather than terminate, statements. Therefore, semicolons are not necessary after
statements that immediately appear before certain clauses like "end" or "until" in a Pascal program. Of course, it is
syntactically legal to insert a semicolon after these statements because Pascal allows the null statement (the empty

Software Development Guidelines: 4 - Pascal/Delphi Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_4.html (4 of 15) [10/1/2000 8:02:35 PM]



string) to appear anywhere a statement is legal. Therefore, semicolons immediately before one of these ending clauses
are optional. Experienced programmers know that it is a good idea to always put the optional semicolons into a
program; doing so makes the program easier to modify since one doesn't have to remember to put the semicolon in
when adding new statements to the program.

Rule:
Use a semicolon in a Pascal program wherever it is optional.

4.3 - Modules in Pascal/Delphi
Borland's Pascal and Delphi compilers use the defacto standard for Pascal modules used by UCSD Pascal- units.
Pascal units support the concept of information hiding via a public interface section and a private implementation
section. Pascal units provide a powerful facility for creating maintainable programs.

Function and variable names declared outside of any function or procedure can be either private or public. Those
identifiers appears between the interface reserved word and the implementation reserved word are public. Those
appearing after the implementation reserved word are private to the module. The scope of private objects is limited to
the current source file; that is, you cannot directly reference a private object from another module. Note, however, that
all functions and procedures within the current module may access private objects. Public objects, on the other hand,
are available (via the linker) to other modules.

Rule:
All private objects (that is, variable, function, and procedure names that should remain local to a given
source file) must appear in the implementation section in a Pascal/Delphi source file. Variables
appearing in the interface section are public objects that other modules can use.

Borland Pascal and Delphi require function headers/definitions in the interface section for all functions the module
exports. This document will hereafter refer to such definitions as prototypes. A prototype provides a mechanism
whereby the compiler can perform stronger type checking on functions that a module calls before their declaration. A
second type of prototype is the Pascal forward declaration. One would typically use a forward declaration when
mutual recursion occurs or when you want to physically reorder procedures and functions within a source file for
purposes of readability rather than calling sequence. However, many Pascal programmers have discovered that
placing a set of forward declarations at the beginning of a source module (in the implementation section, for private
functions) makes it easier to work on the programs (since the function/procedure prototypes appear all in one spot).

Guideline:
All functions (public or private) appearing in a source module will have an associated prototype or
forward declaration. Public prototypes must appear at the appropriate point in the interface section (i.e.,
after the const, type, and var sections), private prototypes and forward declarations must appear at the
appropriate spot in the implementation section (i.e., after const, type, and var sections, but before the
first real program unit bodies).

Guideline:
The order of the Pascal prototypes and forward declarations should match the order of the
functions/procedures appearing in the source module.

Rule:
Pascal functions and procedures that are also public should appear near the beginning of the source file.

Software Development Guidelines: 4 - Pascal/Delphi Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_4.html (5 of 15) [10/1/2000 8:02:35 PM]



4.4 - Coding for Testability in Delphi/Pascal
Borland's Pascal compilers provide a conditional compilation facility that is similar to C/C++'s conditional
compilation. In addition, Borland's Delphi language provides exception handling via try..except and try..finally.
Unlike C/C++, Borland's Pascal and Delphi compilers will automatically emit code to perform range checking, out of
memory checking, and other consistency checks. Together, these three techniques provide facilities for inserting code
into a program to help test the correct operation of that code.

Enforced Rule:
By default, Borland's Pascal and Delphi compilers have most of the optional run-time checks disabled.
During software development you should enable all these checks. Turn them off when shipping
production code.

4.5 - Conditional Compilation in Delphi/Pascal
The Pascal/Delphi conditional compilation directives are very similar to those found in C/C++. By convention,
Borland's engineers embedded these directives into comments that begin with the lexeme "(*$ directive *)" or "{$
directive }". Since the "{$ directive }" is less obtrusive, it makes a better choice for containing the conditional
compilation directives.

Guideline:
You should use the "{$ " and "}" symbols to surround a Delphi/Pascal compiler directive since the result
is easier to read than the same directive surrounded by "(*$" and "*)".

The following is a list of the more useful conditional compilation directives:

{$define symbol }●   

{$ifdef symbol }●   

{$ifndef symbol }●   

{$else}●   

{$endif}●   

You can easily surround a section of test code using the {$ifdef} (or {$ifndef}) directive and activate or deactivate
this code by defining or undefining the appropriate symbol. The NDEBUG symbol is special. If defined, your
program must not compile any test/debugging code. This allows whoever builds a production copy of the Pascal code
to feel they have confidently eliminated all debugging code by defining a single symbol during compilation.

Rule:
All Delphi/Pascal debugging code must disappear if the symbol "NDEBUG" is defined. That is, you must
surround all debugging code with "{$ifndef NDEBUG }" and a corresponding "{$endif}".

Although you may eliminate all test/debugging statements using a single definition (NDEBUG), you may not want to
have all debugging statements active at one time (i.e., if you have not defined NDEBUG). For example, if a particular
module has five sets of debugging statements in it, you may only be interested in one set or the other. With the
NDEBUG symbol, it's all or nothing; either all the debug statements are present or none of them are present. The
solution is to associate a name with the current debug block (or a set of debug blocks) and use a nested {$ifdef}
directive to activate or deactivate the debugging code. Consider the following code:

    {$ifndef NDEBUG    To turn off debugging for production code. }
    {$ifdef DebugCalc}

        writeln(debugLogFile,'Appropriate Logging Output');

Software Development Guidelines: 4 - Pascal/Delphi Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_4.html (6 of 15) [10/1/2000 8:02:35 PM]



    {$endif}
    {$endif}

Normally, you should indent {$ifdef} and {$ifndef} statements just like any statement in Delphi/Pascal. That would
suggest that the style above is incorrect. However, since these statements will always occur in pairs, an exception is
quite justifiable in this particular case.

Debugging statements programmers put into their programs generally fall into three categories:

One-time blocks of code that help you track down an eliminate a single bug (and, obviously, never appear in
production code).

●   

Debugging statements that log current values in a module for later perusal to see if a section of code is getting
and computing reasonable values. This code never appears in the production version of the program.

●   

Debugging statements that log values or provide information on demand in a production version of a program.
A field engineer, for example, might use such code to test the program at a customer's site.

●   

The first category of statements above (one-time blocks) normally shouldn't exist - you should really be using a
debugger to track down these types of problems. However, not all debuggers are flexible enough to handle every
situation and a small block of debugging code can save the day. These debugging statements are the most dangerous
to insert into a program. Often, the programmer sees these statements as temporary additions to the code that s/he will
remove momentarily. Unfortunately, such statements invariably wind up in production code because the programmer,
in haste, forgot to remove the debugging statements and failed to protect them with a {$ifndef NDEBUG} directive.

Enforced Rule:
All "temporary" debugging statements you add to a Pascal/Delphi program, no matter how temporary
they seem, must be protected with "{$ifndef NDEBUG}" and "{$endif}" directives. This is the only line
of defense against forgetting to remove the code before compiling a production version of the program.

The second category of debug statements above will typically print parameters passed into a function, print
computations during the execution of a function, print return results from a called function, and print results that the
current function returns. Programmers often insert such statements into their programs as temporary measures to track
down an elusive defect in the software. However, such statements should be coded in as permanent fixtures in a
program. After all, once you've tracked down a current problem with a routine, there is no guarantee that there won't
be future problems with that routine. If you leave the logging code in place, you will not have to rewrite it the next
time you want to trace a routine.

Code in this second category is the type of code you should protect with two {$ifdef} or {$ifndef} directives. The
outside directive should be a "{$ifndef NDEBUG}" statement that removes debugging code from the program for a
normal (production) release. The second "{$ifdef SomeSymbol}" directive determines whether the compiler should
process this particular block of debugging code. The symbol name should either (1) Be a general name that applies to
several different blocks of debugging code or (2) be a specific name consisting of the function name followed by a
description of what the code is logging.

Example 1: an example of some generic debugging code. The "EntryExit" symbol, if defined throughout the current
source code module, prints a short message to the debug logging file on entry and exit from every function in this
module.

function MyFunction( i:integer ):integer;
begin

    {$ifndef NDEBUG}
    {$ifdef EntryExit}

Software Development Guidelines: 4 - Pascal/Delphi Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_4.html (7 of 15) [10/1/2000 8:02:35 PM]



        WriteLn( debugLogFile, 'Entering MyFunction' );

    {$endif}
    {$endif}
        .
        .   << Statements that implement MyFunction >>
        . 
    {$ifndef NDEBUG}
    {$ifdef EntryExit}

        WriteLn( debugLogFile, 'Exiting MyFunction' );

    {$endif}
    {$endif}

end{MyFunction};

function YourFunction( i:integer ):integer;
begin

    {$ifndef NDEBUG}
    {$ifdef EntryExit}

        WriteLn( debugLogFile, 'Entering YourFunction' );

    {$endif}
    {$endif}
        .
        .   << Statements that implement YourFunction >>
        . 
    {$ifndef NDEBUG}
    {$ifdef EntryExit}

        WriteLn( debugLogFile, 'Exiting YourFunction' );

    {$endif}
    {$endif}

end{YourFunction};

By defining or undefining a single label ("EntryExit" in this case) you can quickly turn on or off the logging within a
particular source module.

Often, you will want to explicitly turn on or off a single set of debugging statements. This is really no different than
the situation above except that you can use a more specific name for the symbol that controls the code expansion. A
good name generally involves the function name and the type of debugging action that occurs. The following code
provides an example of such usage:

(*

Software Development Guidelines: 4 - Pascal/Delphi Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_4.html (8 of 15) [10/1/2000 8:02:35 PM]



** Note: Presumably, "count" integer variable initialized to
**       zero by some module initialization code.
*)

procedure Recursive( i:integer );
begin

    {$ifndef NDEBUG}
    {$ifdef debugRecursive}

        inc( count );
        WriteLn( debugLogFile, 'Entry to recursive, count=', count, ' I=', i );

    {$endif}
    {$endif}

    dec( i );
    if ( i <> 0 ) then begin

        Recursive( i );

    end{if};

    {$ifndef NDEBUG}
    {$ifdef  debugRecursive }

        dec( count );

    {$endif}
    {$endif}

end{Recursive};

You should define all the debug symbols for a source module at the very beginning of the source module. If you are
not currently using a particular symbol, simply replace the "$" in the directive with another symbol like "*", do not
remove the definition from the module. Every such symbol (commented out or present) should have some associated
comments that describe the purpose of the symbol. Example:

<< Module header comments and include files >>

(*
** Debugging Symbols:
**
** EntryExit-  Defining this symbol causes many of the routines in this
**             module to log a brief message whenever you call them and
**             they return to the caller.
**
** debugRecursive- Displays the parameter and current recursive depth
**                 for a call to the "Recursive" function.
*)

Software Development Guidelines: 4 - Pascal/Delphi Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_4.html (9 of 15) [10/1/2000 8:02:35 PM]



{*define EntryExit }   (* This symbol is commented out! *)
{$define debugRecursive}

        .
        .
        .

4.6 - Handling Error Return Values
A few Pascal functions may need to return an error status as well as a function return result. Some programmers have
developed a habit of returning an illegal value to denote an error, an otherwise legal value denotes success.
Unfortunately, this is a rather bad programming practice, especially in Delphi (that provides exception handling
facilities). For Borland Pascal users, where exception handling statements are not available, you should return the
error status (a boolean value) as the function result and return any other function "result" via a reference parameter.

Rule:
Functions in Delphi code should never attempt to return two (or more) values through a single
parameter or function return result. If a function truly needs to return two different values, return them
in separate locations (e.g., through pass by reference parameters). If one of the return values denotes an
error condition, use Delphi's exception handling facilities to raise an exception.

4.7 - Comments in a Delphi/Pascal Source File
Comments should take one of four basic forms in a Delphi/Pascal source file: module headers, program unit headers,
multi-line comments, and single-line/endline comments. Module headers describe the contents of a source file.
Program unit headers describe functions and global objects. Multi-line comments appear within a function or other
program unit and describe the statements that immediately follow. Single-line and endline comments are single line
comments appearing throughout the source file. Typically they describe a source statement or declaration appearing
on the same line or immediately after the comment.

4.7.1 - Module Header Comments.

A module header is a block of comments at the beginning of a source file. Module headers should look like the
following:

(************************************************************************)
(*  Copyright(c) Information Management Associates, Inc. 1990           *)
(*          All Rights Reserved                                         *)
(*          An Unpublished Work                                         *)
(*                                                                      *)
(*  This is a Proprietary program product material and is the           *)
(*  property of  INFORMATION  MANAGEMENT  ASSOCIATES, INC. No           *)
(*  sale, reproduction or other  use of this program  product           *)
(*  is authorized  except as  granted by the  fully  executed           *)
(*  INFORMATION MANAGEMENT ASSOCIATES,  INC.  product license           *)
(*  or by  the  separate  written  agreement  and approval of           *)
(*                                                                      *)
(*      INFORMATION   MANAGEMENT   ASSOCIATES,  INC.                    *)

Software Development Guidelines: 4 - Pascal/Delphi Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_4.html (10 of 15) [10/1/2000 8:02:35 PM]



(*      6527 Main Street                                                *)
(*      Trumbul, CT 94010                                               *)
(*                                                                      *)
(*  Author: XXXX YYYY                                                   *)
(*  Revision History:                                                   *)
(*    << date and explanation of each change >>                         *)
(************************************************************************)
(*      str.pas   Version 22.1               
**      Checked in  1/24/96 at 12:39:03                
*)      Retrieved   4/22/96 at 18:16:48                 
(************************************************************************)
(*  Purpose:                                                            *)
(*  --------                                                            *)
(*  This file contains the code to generate a string value              *)
(*   containing a specified number of occurrences of a                   *)
(*   specified string                                                   *)
(************************************************************************)

4.7.2 - Function Header Comments

A function header should be a box of comments (a "flowerbox") containing:

Subroutine name and short description●   

The purpose of the subroutine, its primary job, and any side-effects.●   

A description of the parameters, their types and possible values, parameter passing mechanism, and whether
they are in, out, or in/out parameters.

●   

A description of the return value (if any).●   

Any assertions or other debugging tests available while in debugging mode.●   

Data Dictionary- A description of the local variables, their types, and possible values.●   

Example:

(**********************************************************************)
(*                                                                    *)
(* Name: Match                                                        *)
(*                                                                    *)
(* Purpose:                                                           *)
(* This function matches an input string against a specified pattern. *)
(* It returns true if the pattern can match the string, it returns    *)
(* false if this is not possible.                                     *)
(*                                                                    *)
(* Parameters:                                                        *)
(*                                                                    *)
(* StringToMatch:PChar (input-only)                                   *)
(* This is the input string to match.                                 *)
(*                                                                    *)
(* Pattern: Pat; (input-only).                                        *)
(* This is the pattern to apply to the string.                        *)
(*                                                                    *)
(* Returns:                                                           *)

Software Development Guidelines: 4 - Pascal/Delphi Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_4.html (11 of 15) [10/1/2000 8:02:35 PM]



(* True if the pattern can match this string, false otherwise.        *)
(*                                                                    *)
(* Assertions:                                                        *)
(* Neither StringToMatch nor Pat are NIL.                             *)
(* StringToMatch points at a zero terminated character string,        *)
(* Pattern points at a valid "Pat" data structure.                    *)
(*                                                                    *)
(* Variables:                                                         *)
(* Index:integer -  This is the current index into the string.        *)
(* SubPat:Pat - This is a pointer to the current subpattern           *)
(*              we are matching.                                      *)
(*                                                                    *)
(* Written by:                                                        *)
(* Randall Hyde 3/30/95  Version 1.0                                  *)
(* Randall Hyde 7/02/95  Improved performance of recursive            *)
(*                       matching function.                           *)
(*                                                                    *)
(**********************************************************************)

4.7.3 - Multi-line Comments

Multi-line comments are several lines of comments appearing in the middle of a function that describes the statements
immediately following. These comments should be less obtrusive than function and module headers. Hence, you
shouldn't enclose them in a box of asterisks. To avoid destroying the indentation of the program, you should indent all
comments in a function as though they were a statement. Multi-line comments should immediately precede the code
to which they apply. There should be at least one blank line between the comment and the code it describes. There
should be at least two blank lines between the preceding code and the start of the comment. Physically, multi-line
comments should look like the following:

(*
** If the string has matched the current subpattern, try
** matching the string against the "next" subpattern.
**
** On the other hand, if the string did not match the
** current subpattern, try matching the string against
** the "alternate" subpattern.
**
** Return true if the current subpattern matches
** and "next" is NIL or the "next" subpattern also matches.
**
** Return true if the current subpattern fails to match but
** the "alternate" subpattern matches.
**
** Return false if neither the current subpattern nor the
** "alternate" subpattern matches.
*)

Software Development Guidelines: 4 - Pascal/Delphi Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_4.html (12 of 15) [10/1/2000 8:02:35 PM]



4.7.4 - Single Line / Endline Comments

Single line comments are exactly that- a short description that applies to a statement or a declaration. Single line
comments sit on a single line by themselves immediately before the statement to which they apply (although a blank
line always goes between the comment and the following code). Endline comments appear on the same line as the
statement to which they apply. These comments generally look like one of the following:

Pascal/Delphi Programs:

    (* After sorting, the median element is at index n/2 *)
    
    sort( data, NumItems );
    
        .
        .
        .
        
    Median = data[ NumItems / 2 ];  { Data *must* be sorted! }
  

Note the use of the "(*" and "*)" delimiters for single line comments and the "{" and "}" delimiters for endline
comments. The "{" and "}" delimiters are less obtrusive and, therefore, are better candidates for endline comments
since they produce less of a distraction. Single line comments, on the other hand, should stand out more; hence the
use of the "(*" and "*)" symbols for single line comments.

Guideline:
Use the "{" and "}" delimiters for endline comments (comments appearing at the end of a line that
contains some other statement). Use the "(*" and "*)" delimiters for single line comments (a single
comment appearing on a line by itself).

4.8 - Delphi Specific Issues
The layout of a typical Delphi program is often somewhat arbitrary because Delphi appends event handling
procedures to the end of a source code module as the programmer adds objects to a form. Since the order that a
programmer writes event handlers is sufficiently random, it is often difficult to find corresponding routines in a
Delphi source listing. Most Delphi programmers depend on the code browser to help them locate the code associated
with a particular item on a form. Alas, when one does have to consult the source file, the result is less than acceptable.
Fortunately, Delphi does not prevent you from rearranging procedures and functions within a source module.
Therefore, you can organize the source code rationally rather than randomly.

One good source file organization for a Delphi unit is to place all the procedures and functions (that are not associated
with some class) at the beginning of an implementation section. Following the stand-alone procedures and functions
in a unit come the methods (procedures and functions) associated with each class appearing in the unit. The methods
associated with a single class should appear adjacent to one another in the source file. Furthermore, these groups of
methods should appear in the same order as the class definitions in the source file except for the class associated with
a form. The methods for items associated with the form should appear last in the source file (this is done because
Delphi automatically appends new event handlers for components on the form to the end of the source file).

Guideline:
You should organize Delphi unit source files with the procedures and function that are not attached to a
particular class at the beginning of the implementation section. Methods associated with local class

Software Development Guidelines: 4 - Pascal/Delphi Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_4.html (13 of 15) [10/1/2000 8:02:35 PM]



objects should follow these procedures and functions. Finally, methods associated with event handlers for
components on a form should appear at the end of the source file.

A minor problem with naming occurs in Delphi programs that place components on forms. Each component must
appear as a direct field within the form's class definition[1]. Often there are several related components on a form:

Ideally one would like to encapsulate these related items into a class or record data structure and refer to them by
names like DataEntry.edit, DataEntry.Btn, and DataEntry.Lbl. Unfortunately, Delphi does not let you (easily) do this.
However, we can simulate this, to a degree, by simply naming the objects as though they were record or class objects
and substitute an underscore for the period. This produces names like "DataEntry_Btn" and "DataEntry_Lbl". The
following table suggests different suffixes for the common components found in Delphi:

Delphi Type Suffixes

Component Type Name Typical Suffix
TMainMenu menu
TPopupMenu popup
TLabel lbl
TEdit (no suffix)
TMemo memo
TButton btn
TCheckBox chk
TRadioButton rbtn
TListBox list
TComboBox cmbo
TScrollBar scrl
TGroupBox box
TRadioGroup grp
TPanel pan
TBitBtn btn
TSpeedBtn btn
TMaskEdit msk
TStringGrid grid
TDrawGrid dgrid
TShape shp
TBevel bvl
TScrollBox scrl
TTabControl tab
TPageControl pag

Software Development Guidelines: 4 - Pascal/Delphi Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_4.html (14 of 15) [10/1/2000 8:02:35 PM]



TTreeView tree
TListView view
TImageList ilst
TRichEdit rtf
TStatusBar sts
TImage img

This is but a partial list of suggestions. Note that not all the names are unique; those that share the same suffix would
rarely appear together. For those components not appearing in the table above, choose an abbreviation in the style of
these suffixes and use it consistently.

Guideline:
When naming Delphi components you place on a form, append a suffix string that consists of an
underscore followed by a standard string that denotes the type of that component (e.g., "_lbl" for TLabel
objects).

Guideline:
If two or more components are related (e.g., a TLabel object that describes the type of input for a
TEdit object) then use the same name with different suffixes (e.g., Month and Month_lbl). Note that this
is an exception to the rule that identifiers should not have more than a few characters in common as their
prefix characters; it also violates the rule that two identifiers should not be the same except for a type
suffix. This exception exists to help overcome the limitation that a component cannot be a field of a
record or class except a TForm object.

[1] Actually, this isn't quite true. If you create the component dynamically this restriction does not apply. However,
creating all your component dynamically is a lot of work and doing so destroys one of the major reasons for using
Delphi in the first place. [back]

< Previous section (3 - C (and related C++) Specific Issues) - Contents - Next section (5 - Visual BASIC Specific
Formatting Issues) >

Software Development Guidelines: 4 - Pascal/Delphi Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_4.html (15 of 15) [10/1/2000 8:02:35 PM]



Software Development Guidelines

5 - Visual BASIC Specific Formatting Issues

< Previous section (4 - Pascal/Delphi Specific Formatting Issues) - Contents - Next section (6 -
Lex/Flex and Yacc/Bison Specific Formatting Issues) >

5 - Visual BASIC Specific Formatting
Issues

< Previous section (4 - Pascal/Delphi Specific Formatting Issues) - Contents - Next section (6 -
Lex/Flex and Yacc/Bison Specific Formatting Issues) >

Software Development Guidelines: 5 - Visual BASIC Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_5.html [10/1/2000 8:02:36 PM]



Software Development Guidelines

6 - Lex/Flex and Yacc/Bison Specific Formatting
Issues

< Previous section (5 - Visual BASIC Specific Formatting Issues) - Contents - Next section (7 - Other
Languages (Formatting Issues)) >

6.1 - Lex/Flex Specific Issues

6.1.1 - The Flex Definitions Section

6.1.2 - The Flex Rules Section

6.2 - Yacc/Bison Specific Issues

6.2.1 - The Yacc/Bison Definitions Section

6.2.2 - The Yacc/Bison Rules Section

6 - Lex/Flex and Yacc/Bison Specific
Formatting Issues
The Lex/Flex and Yacc/Bison languages process regular expressions and context free grammars
(respectively). Whenever an input string matches a pattern specified in a regular expression or context
free grammar, the program executes a corresponding "semantic rule" (some C/C++ code). Clearly, the
rules specified in this document for C/C++ code applies to those statements. This section will deal with
the explicit Lex/Flex and Yacc/Bison code and ignore the C/C++ code that is also a part of a typical
Lex/Flex or Yacc/Bison program.

Lex/Flex and Yacc/Bison programs have a very similar structure. The structure of programs in both
languages is

        ...Definition Section...
%%
        ...Rules Section...
%%
        ...Auxiliary Code/User Section...

The definition section contains language specific statements and C/C++ code. There are two ways to

Software Development Guidelines: 6 - Lex/Flex and Yacc/Bison Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_6.html (1 of 12) [10/1/2000 8:02:42 PM]



insert C/C++ code into the definition section: (1) if a line begins with a whitespace character, the
Lex/Flex or Yacc/Bison processor copies the entire line directly to the output C/C++ file; (2) the
Lex/Flex and Yacc/Bison translators copy all lines of text between a line beginning with "%{" and a line
beginning with "%}" to the C/C++ output file. C/C++ statements appearing outside the "%{" and "%}"
lines are easy to confuse with other Lex/Flex or Yacc/Bison definitions, therefore

Rule:
All C/C++ statements appearing in the definitions section of a Lex/Flex or Yacc/Bison
program should appear at the beginning of the sections bracketed by a pair of lines
containing the "%{" and "%}" tokens.

The translator copies C/C++ code from the definition section to the output C/C++ source file.
Technically, you can place any C/C++ code you desire into this portion of the program. By convention,
however, most programmers only place global type, constant, and variable declarations and definitions or
function prototypes into this portion of the program. You should only define those C/C++ objects that the
rules section uses in this section of the source file; you should declare and define all other C/C++ objects
in the auxiliary code section.

Rule:
The definition section of a Flex/Lex or Yacc/Bison program should contain only those C/C++
definitions and declarations necessary for the rules section of the program. You should place
all other C/C++ code in the auxiliary code section of the program.

The rules section of a Lex/Flex or Yacc/Bison program contains the "real" program. Since these two
sections vary considerably between the two languages, we will consider the formatting issues related to
the rules section in later sections of this document.

The Lex/Flex and Yacc/Bison translators simply copy all statements appearing in the auxiliary code
section to the output C/C++ program. Since this section must contain C/C++ code, see the section in this
document covering C/C++ specific issues for the correct style.

6.1 - Lex/Flex Specific Issues
This section documents style and formatting issues specific to the Lex/Flex (Flex, hereafter) language.
Keep in mind that a large portion of a typical Flex program is C/C++ code and most of the C/C++
specific guidelines apply to that code.

6.1.1 - The Flex Definitions Section

The definitions section in a Flex program typically contains four types of items: comments, C/C++ code,
definitions (substitutions), and starting symbol definitions.

Comments are really just a special case of C/C++ code; for portability reasons, any line containing a
comment should contain whitespace at the beginning of a line or appear within a "%{" .. "%}" block.
Generally, comments appearing within a "%}" .. "%}" block should document the C/C++ code

Software Development Guidelines: 6 - Lex/Flex and Yacc/Bison Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_6.html (2 of 12) [10/1/2000 8:02:42 PM]



associated with that block, comments outside the block should apply to the Flex specific code they
immediately proceed[1].

For some strange reason, programmers who normally do an excellent job of commenting their C/C++
programs will often write Flex programs with few, or no, comments. Although Flex is a very high level
language, programs written in this language still need a large number of comments. This is especially
true when defining complex regular expressions. Don't assume the reader can easily make sense of a Flex
program just because it's short.

Rule:
The Flex and C/C++ statements in a Flex program must contain a liberal number of
comments describing the code. Do not assume that the regular expression is "self
documenting."

As discussed earlier, the only C/C++ code that should appear in a Flex definitions section should be
global definitions, function prototypes, and include statements that define objects used by the C/C++
code appearing in the rules section of the program. You should place all other C/C++ code in the
auxiliary section.

Definitions are, essentially, simple macros that let you substitute meaningful names for regular
expressions. In a sense, Flex definitions are like "consts" in a C/C++ program. Unfortunately, the
widespread use of definitions in a Flex program is not common. Programmers who would never dream of
embedding "magic" literal values into the middle of a C/C++ program don't even think twice about using
pure regular expressions throughout a Flex program, even if that regular expression appears several
times. If a regular expression describes some pattern whose purpose you can easily articulate, you should
create a definition for it (examples: identifier, intconst, floatconst, etc.).

Guideline:
Use Flex definitions to give meaningful names to common or oft-used regular expressions
within a program. Once you create a definition, be sure to use the definition's name as
appropriate throughout the Flex program.

Rule:
Always precede each Flex definition with a comment that describes the pattern matched by
the corresponding regular expression. Also provide several example strings that the regular
expression matches. Don't assume that the definition's name completely documents the
corresponding regular expression.

A Flex definitions section may also contain a set of start conditions. These statements in a Flex program
generally begin with a "%s" or "%x" in column one followed by a list of C/C++ identifiers. These
symbols identify blocks of code that Flex processes in a context-sensitive fashion (see the Flex
documentation for more details). These identifiers, like all identifiers in a program, should be meaningful
and describe the context in which the program uses the corresponding rules. For example, the following
Flex code processes "C" style comments in a program:

%x ProcessComments
%%

Software Development Guidelines: 6 - Lex/Flex and Yacc/Bison Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_6.html (3 of 12) [10/1/2000 8:02:42 PM]



      .
      .
      .
"/*"  {

        BEGIN ProcessComments;

    }
      .
      .
      .
<ProcessComments>.    {}
<ProcessComments>"*/" {

        BEGIN 0;

    }

Rule:
The identifiers you specify for Flex "starting conditions" should be meaningful; they should
describe the context handled by the starting condition.

Traditionally, (as exemplified above), Flex programmers have used the "BEGIN 0;" statement to revert
back to the standard set of regular expressions appearing in the rules section. A better solution is to create
a C/C++ constant using the "#define" directive to give this a more meaningful name, e.g.,

%{
#define StandardREs
}

%x ProcessComments
%%
      .
      .
      .
"/*"  {

        BEGIN ProcessComments;

    }
      .
      .
      .
<ProcessComments>.    {}
<ProcessComments>"*/" {

        BEGIN StandardREs;

Software Development Guidelines: 6 - Lex/Flex and Yacc/Bison Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_6.html (4 of 12) [10/1/2000 8:02:42 PM]



    }

Guideline:
Define the macro "StandardREs" to be replaced by the literal constant "0". Then use
"BEGIN StandardREs;" rather than "BEGIN 0;" to turn off context sensitivity in a Flex
program.

Each starting condition statement ("%s" or "%x") should define the symbols associated with a common
context. The symbols for different contexts belong on separate lines. For example, you should put
symbols like "ProcessComments" and "EndComments" together in the same statement if these symbols
describe contexts used to process comments; however, something like "StringConstant" really belongs in
a separate statement since it has nothing to do with processing comments:

%x ProcessComments  EndComments
%x StringConstant

The use of starting conditions to handle context sensitivity within a Flex program indicates a fair amount
of complexity within a program. Therefore, there should always be a set of comments preceding the
definition of a set of starting conditions explaining their purpose within a Flex program:

 /*
 ** ProcessComments and EndComments labels precede those regular
 ** expressions that process (and throw away) the characters
 ** appearing between the "/*" and "*/" lexemes in a C/C++ program.
 */

%x ProcessComments  EndComments

 /*
 ** The "StringConstant" label precedes those regular expressions that
 ** process all the characters in a C/C++ string constant.
 */

%x StringConstant

Rule:
When defining starting condition labels in a Flex program, use meaningful names that
describe the nature of the context-sensitive set of regular expressions. Group related starting
symbols into the same statement; separate unrelated names into separate starting condition
statements. Always preface each starting condition statement with a set of comments
explaining the purpose of the context sensitive section.

The definition section of a Flex program should take the following form:

Header comments explaining the nature of the program.●   

C/C++ header file includes and global definitions.●   

Definitions for named regular expressions.●   

Software Development Guidelines: 6 - Lex/Flex and Yacc/Bison Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_6.html (5 of 12) [10/1/2000 8:02:42 PM]



Starting condition definitions.●   

Organizing the file in this fashion makes it easier to locate specific items in a large Flex program.

Guideline:
The definitions section of a Flex program should begin with a set of header comments,
followed by C/C++ include statements and global definitions, then the definitions for named
regular expression, and ending with the starting condition symbol definitions.

6.1.2 - The Flex Rules Section

The Flex rules section consists of a set of statements that take the following form:

regular_expression  action

At least one (non-quoted) whitespace character separates the regular expression from the action. The
action can be nothing, a single C/C++ statement, or a sequence of C/C++ statements enclosed within a
pair of braces. To produce consistent looking programs, this standard requires that you enclose all
statements (even the null statement) within a set of braces. For null actions, the Flex/Lex statement may
take the following form:

regular_expression  {}

For Flex actions that require one or more C/C++ statements, the Flex statement should take the following
form:

                   <--> At least four spaces  (typically one tab stop)
regular_expression     {

        << C/C++ statements go here >>

    }
<-->  Four spaces
<------> Eight Spaces

The regular expression (as per Flex rules) must begin in column one. You must follow this with a tab or
at least four spaces (whichever produces the most white space) and end with a brace. A single blank line
must separate the line containing the regular expression and the first C/C++ statement. A blank line also
separates the last C/C++ statement and a single line containing the closing brace (that you must indent
four character positions).

If you want to assign the same semantic action to several regular expressions using the alternation
symbol ("|"), you would use a sequence like the following:

                   <--> At least four spaces  (typically one tab stop)
regular_expression1    |
regular_expression2    |
    .

Software Development Guidelines: 6 - Lex/Flex and Yacc/Bison Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_6.html (6 of 12) [10/1/2000 8:02:42 PM]



    .
    .
regular_expressionN    {

        << C/C++ statements go here >>

    }
<-->  Four spaces
<------> Eight Spaces

As best you can, you should attempt to line up the "|" symbols in the same column (this may not be
practical since the regular expressions may vary considerably in length).

A block of comments should precede each statement in the rules section. If it serves no other purpose, the
comment will, at least, separate the start of a regular expression from the end of the previous regular
expression in the rules section. If a statement contains a non-trivial regular expression[2], the comment
will explain the types of strings the regular expression matches and provide several sample strings.
Unless the corresponding action is also trivial (e.g., simply returning a token value), the comments
should also give a basic description of the action associated with the regular expression (this does not
excuse you from commenting the C/C++ code within the action, if appropriate).

Rule:
Every non-trivial regular expression appearing in the rules section of a Flex program should
have a block of comments immediately preceding the statement. The comments should
describe the type of patters the regular expression matches, provide several examples of
strings the regular expression matches, and describe the actions taken if the lexer matches a
string with this regular expression.

You should always attempt to group logically related regular expression together in a Flex program. For
example, one would normally expect to find the regular expressions for a set of reserved words adjacent
to one another, likewise, one would expect the regular expressions for character and string constants or
integer and floating point constants to be near one another. Organizing Flex programs in this fashion
makes them easier to read.

Guideline:
Organize your Flex rules so that logically related regular expressions are adjacent to one
another in the source file..

6.2 - Yacc/Bison Specific Issues
This section documents style and formatting issues specific to the Yacc/Bison language. Keep in mind
that a large portion of a typical Yacc/Bison program is C/C++ code and most of the C/C++ specific
guidelines apply to that code.

Software Development Guidelines: 6 - Lex/Flex and Yacc/Bison Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_6.html (7 of 12) [10/1/2000 8:02:42 PM]



6.2.1 - The Yacc/Bison Definitions Section

A Yacc/Bison (Yacc, hereafter) definitions section contains the following (optional) items:

Comments.●   

A literal block of C/C++ code.●   

A "%union" definition.●   

A "%start" statement.●   

A set of "%token" definitions.●   

A set of "%type" definitions.●   

A set of "%left" definitions.●   

A set of "%right" definitions.●   

A set of "%nonassoc" definitions.●   

The definitions section should begin with a set of header comments (see the C/C++ section for details).
Immediately following this should be any embedded C/C++ statements (typically include directives,
global declarations, and function prototypes). This literal block of C/C++ code should not contain any
functions, those belong in the auxiliary section at the end of the Yacc program.

Typically the "%union" sequence should follow the embedded C/C++ code. If the declarations in the
"%union" section do not depend on any of the C/C++ statements (e.g., typedefs or include files), then the
"%union" section should probably precede the literal block of C/C++ code. You should include an entry
in the "%union" structure that takes the following form:

%union {
          .
          .
          .
        char nil;
    }

The purpose of the nil variable is to create a Yacc "type" that corresponds to a "void" function return
result. You will see the purpose for this shortly.

The list of nonterminal symbol definitions (i.e., the "%type" definitions) should appear next in the source
file. These definitions should all be grouped together. To make the code easier to read, you should
specify the attribute type for all non-terminal symbols. If a particular non-terminal does not have an
attribute associated with it, specify the "nil" type (defined above).

Rule:
Define all non-terminal symbols in a Yacc/Bison program in a %type definition (do not rely
upon the implicit declaration that Yacc provides). Always associate an attribute type with
that non-terminal. Use the dummy type "nil" (defined in the "%union" section) for those
non-terminals that do not have a specific attribute value.

Terminal symbol declarations (using "%token") should follow the non-terminal declarations. You should
declare all terminal symbols other than single ASCII characters in this section. Be sure to define an

Software Development Guidelines: 6 - Lex/Flex and Yacc/Bison Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_6.html (8 of 12) [10/1/2000 8:02:42 PM]



attribute type ("nil" if the terminal symbol doesn't have an attribute type) for each terminal symbol. There
should be only one token definition per "%token" statement. You should let Yacc assign the token value
to this symbol.

Rule:
Define all terminal symbols in a Yacc/Bison program in a %token definition (ASCII
character terminal symbols are an exception). Always associate an attribute type with that
terminal symbol. Use the dummy type "nil" (defined in the "%union" section) for those
non-terminals that do not have a specific attribute value.

Guideline:
Let Yacc/Bison choose the token value associated with terminal symbols.

Following the %token definitions, you should place any necessary %left, %right, and %nonassoc
declarations. Use these declarations only to specify the precedence and associativity of your terminal
symbols. Since the average person will be looking in the "%token" section for type declarations, you
should not use these statements to define terminal symbols; doing so makes your program harder to read.

Rule:
Use the Yacc/Bison %left, %right, and %nonassoc statements to specify precedence and
associativity only. Do not use these statements to define terminal symbols or attach a type to
a terminal symbol.

The Yacc definition section may also contain a "%start" statement that specifies the starting symbol for
the context free grammar. If the "%start" statement is not present, Yacc uses the first production in the
rules section as the starting production. Since most Yacc programmers use the default (and, therefore,
expect others to use the default), you should not use a %start statement in your program. Instead, specify
the starting production as the first production in the rules section.

Rule:
The starting production should be the first production in the rules section of a Yacc/Bison
program. Do not specify the starting symbol by using the "%start" statement.

6.2.2 - The Yacc/Bison Rules Section

The Yacc rules section consists of a syntax directed definition (a syntax directed definition is a grammar
where productions may have an associated semantic rule). Each production in a Yacc syntax directed
definition takes the following form:

NonTermSym : Right_Hand_Side { Semantic_Action };

The NonTermSym item is the name (declared in the "%type" section) of the non-terminal that this
production defines. The Right_Hand_Side is a sequence of terminal and non-terminal symbols[3]. The
semantic action is a sequence of zero or more C/C++ statements surrounded by braces. Note that you
may combine several productions using the "|" symbol. For example, you may combine the following
two productions:

A : 'a' B C { ++ACnt; };

Software Development Guidelines: 6 - Lex/Flex and Yacc/Bison Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_6.html (9 of 12) [10/1/2000 8:02:42 PM]



A : 'b' B C { ++BCnt; };

into the single Yacc statement:

A : 'a' B C { ++ACnt; }
  | 'b' B C { ++BCnt; };

Note, however, that this still represents two separate productions. This is just a convenient shorthand for
the former two statements.

The first thing to consider is how to format these productions. A typical Yacc production should take the
following form:

NonTerm :
    Grammar Symbols For The Right Hand Side
    {

        << C/C++ Statements that implement the semantic action >>

    }
<--> Four character positions
<------> Eight character positions.

If you wish to merge two or more productions into a single production, the formatting should look like
the following:

NonTerm :
    Grammar Symbols For The Right Hand Side
    {
        << C/C++ Statements that implement the semantic action >>
    }

|   Grammar Symbols for Right Hand Side #2
    {
        << C/C++ Statements that implement the semantic action >>
    }
<--> Four character positions
<------> Eight character positions.

Note that the left hand side (i.e., the non-terminal you are defining) sits on a separate line from the right
hand side of the production. If necessary, the right hand side may be spread across several lines although
you should indent each new line an appropriate amount.

Before each production in the Yacc rules section, you must place a block of comments explaining the
purpose of the production, describe the type of strings it maches, provide some sample strings it matches,
and give a basic description of the semantic action that takes place when a match occurs. The comments
should also describe any attribute values (if any) returned through the non-terminal whenever a match
occurs. These comments are especially important because syntax directed definitions are not easy to

Software Development Guidelines: 6 - Lex/Flex and Yacc/Bison Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_6.html (10 of 12) [10/1/2000 8:02:42 PM]



read; none but the most trivial could be considered "self-documenting."

Rule:
Every production in a Yacc/Bison program shall be preceded by a block of comments that
describes the type of strings it matches, gives some sample strings it matches, discusses the
attribute return value(s) for the production, and describes any semantic actions that take
place when the parser successfully reduces a production.

Semantic actions (the C/C++ code) should only appear at the end of a production. Indeed, the parsing
technique that Yacc-generated parsers employ only execute a semantic rule when a reduction occurs.
However, if you want to embed semantic actions in the middle of a production, it is easy to do so by
simply creating a new production whose right hand side is the empty string (except for the semantic
action). For example, you can easily translate the following production containing an embedded semantic
action to a (nearly) equivalent set of productions that do not have embedded semantic actions:

A : B { semantic action #1 } C { semantic action #2 };

becomes:

A : B D C { semantic action #2 };
D : { semantic action #1 };

Indeed, this is such a simple translation that Yacc will actually do it for you automatically. While this
translation, in theory, produces an equivalent syntax directed translation, there are a few Yacc restrictions
that create some unusual results. First, any use of the "$$" token within an embedded semantic rule sets
the attribute value for that embedded semantic action, not for the whole production as one might expect;
therefore, this behaves exactly as though the embedded action appeared in a separate production.
However, if you use tokens like $1, $2, $3, etc., in an embedded semantic action, this refers to the
attribute values in the production containing the embedded semantic action, not the attributes in the
dummy production. Several bugs occur in Yacc programs because of the inconsistent nature of the way
Yacc handles the attributes in embedded semantic actions.

Another problem with embedded semantic actions is that they force the parse to use a given production
whenever the match encounters an embedded semantic action during parsing. As a result, grammars that
contain a large number of embedded semantic actions often wind up with reduce/reduce conflicts or
shift/reduce conflicts. For this reason, and the reasons mentioned above, you should not use any
embedded semantic actions in a Yacc grammar.

Enforced Rule:
Do not insert any embedded sematic actions into the right hand side of a production in a
Yacc/Bison program. Instead, create a separate production whose right hand side is only the
semantic action and insert the associated non-terminal for that production in place of the
embedded semantic action.

[1] This is the one exception to the rule that all C/C++ code must appear within the "%{" .. "%}" block.
C/C++ comments (the only type of comments that may appear in a Flex program) may appear outside the
C/C++ block to document the Flex code. [back]

Software Development Guidelines: 6 - Lex/Flex and Yacc/Bison Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_6.html (11 of 12) [10/1/2000 8:02:42 PM]



[2] We will define non-trivial to mean anything other than a simple character string. [back]

[3] Yacc also allows embedded semantic actions in the Right_Hand_Side; you will shortly see that this
standard does not allow you to embed rules within a production. [back]

< Previous section (5 - Visual BASIC Specific Formatting Issues) - Contents - Next section (7 - Other
Languages (Formatting Issues)) >

Software Development Guidelines: 6 - Lex/Flex and Yacc/Bison Specific Formatting Issues

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_6.html (12 of 12) [10/1/2000 8:02:42 PM]



Software Development Guidelines

7 - Other Languages (Formatting Issues)

< Previous section (6 - Lex/Flex and Yacc/Bison Specific Formatting Issues) - Contents - Next section
(8 - Appendices) >

7 - Other Languages (Formatting Issues)

< Previous section (6 - Lex/Flex and Yacc/Bison Specific Formatting Issues) - Contents - Next section
(8 - Appendices) >

Software Development Guidelines: 7 - Other Languages (Formatting Issues)

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_7.html [10/1/2000 8:02:44 PM]



Software Development Guidelines

8 - Appendices

< Previous section (7 - Other Languages (Formatting Issues)) - Contents - Next section (9 - Glossary)
>

8.1 - Appendix A: Guidelines

8.2 - Appendix B: Rules

8.3 - Appendix C: Enforced Rules

8 - Appendices

8.1 - Appendix A: Guidelines
Guideline: All routines should exhibit good cohesiveness. Functional cohesiveness is best, followed by
sequential and global cohesiveness. Temporal cohesiveness is okay on occasion. You should avoid the
other forms.

Guideline: Coupling between routines should be loose;

Guideline: Do not let artificial constraints affect the size of your routines. If a routine exceeds 150-200
lines of code, make sure the routine exhibits functional or sequential cohesion. Also look to see if there
aren't some generic subsequences in your code that you can turn into stand alone routines.

Guideline: A module should implement an abstract data type. All interface to the module should be
through a well-defined set of operations.

Guideline: If the data type you are creating depends upon a specific format, use names like int8, int16,
int32, int64, real32, real64, and real80 (that is, a type name with the number of bits appended) to denote
your types. If the data type does not depend on a specific representation, use a descriptive name (see the
next section on naming conventions). Try to avoid the use of types in a program that rely on the
underlying machine representation (alas, this is not always possible).

Guideline: Variable declarations should appear on separate lines. If desired, the type specification should
appear on a separate line as well. Variable and type names should be aligned in columns and easy to find
and read.

Guideline: Avoid all identifier abbreviations in your programs. When necessary, use standardized
abbreviations or ask someone to review your abbreviations. Whenever you use abbreviations in your

Software Development Guidelines: 8 - Appendices

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_8.html (1 of 10) [10/1/2000 8:02:49 PM]



programs, create a "data dictionary" in the comments near the names' definition that provides a full name
and description for your abbreviation.

Guideline: Try to make most identifiers unique in the first few character positions of the identifier. This
makes the program easier to read.

Corollary: Never use a numeric suffix to differentiate two names.

Guideline: Avoid using Hungarian notation and any other formal naming convention that attaches
low-level type information to the identifier.

Guideline: If you want to differentiate identifiers that are constants, type definitions, and variable names,
use the suffixes "_c", "_t", and "_v", respectively.

Guideline: Avoid using symbols in identifiers that are easily mistaken for other symbols .

Guideline: Avoid homonyms in identifiers.

Guideline: Avoid misspelled words and names that are often misspelled in identifiers.

Guideline: When using multi-way selection statements (case/switch) sort the cases numerically
(alphabetically) or by frequency of expected occurrence.

Guideline: Loops with a single exit point are more easily understood.

Guideline: Avoid empty loops. If testing the loop termination condition produces some side effect that is
the whole purpose of the loop, move that side effect into the body of the loop. If a loop truly has an
empty body, place a comment like "/* nothing */" or "{null statement}" within your code.

Guideline: Make each loop perform only one function.

Guideline: An expression should not produce any side effects.

Guideline: There should be no spaces between a unary operator (e.g., "-") and the object on which it
operates.

Guideline: There should be at least one space on either side of a binary operator.

Guideline: Operators that select a component of a larger object (e.g., "." for records/structures and "[ ]"
for arrays) should be adjacent to the object(s) they operate upon.

Guideline: Objects that separate items (e.g., "," and ";") should immediately follow the previous object. If
a second object follows the separator, there should be a space between the separator and the second
object.

Guideline: Bracketing symbols (e.g., "(" and ")", "[" and "]", and "{" and "}" ) should have one space on

Software Development Guidelines: 8 - Appendices

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_8.html (2 of 10) [10/1/2000 8:02:49 PM]



the "open" end of the symbol, that is, to the right of "(", "[", and "[" and to the left of ")", "]", and "}".

Guideline: Indentation should be three to four spaces in an indented control structure with four spaces
probably being the optimal value.

Guideline: For statements that are too long to fit on one physical 80-column line, you should break the
statement into two (or more) lines at points in the statement that will have the least impact on the
readability of the statement. This situation usually occurs immediately after low-precedence operators or
after commas.

Guideline: If a module contains some cross references to other documents, there should be a comment
that takes the form "@ text #link#location text @" that provides the reference to that other document. In
this comment, the "@" represents the language's comment delimeter(s), "text" represents some optional
text (typically reserved for html tags), and "location" is some descriptive text that describes the document
(and a position in that document) related to the current section of code in the program.

Guideline: The order of the prototypes in a C/C++ program should match the order of the functions
appearing in the source module.

Guideline: For internal use, all compiles should expand all assertions to abort the program if the assertion
turns out to be false.

Guideline: Don't avoid the use of #ifdef and #ifndef statements in your program because you are worried
about making your program harder to read. Tools exist to remove these #ifdef and #ifndef statements
thus eliminating the clutter.

Guideline: Avoid fancy formatting that will not transfer well to HTML.

Guideline: All functions (public or private) appearing in a source module will have an associated
prototype or forward declaration. Public prototypes must appear at the appropriate point in the interface
section (i.e., after the const, type, and var sections), private prototypes and forward declarations must
appear at the appropriate spot in the implementation section (i.e., after const, type, and var sections, but
before the first real program unit bodies).

Guideline: The order of the Pascal prototypes and forward declarations should match the order of the
functions/procedures appearing in the source module.

Guideline: You should use the "{$ " and "}" symbols to surround a Delphi/Pascal compiler directive
since the result is easier to read than the same directive surrounded by "(*$" and "*)".

Guideline: Use the "{" and "}" delimiters for Delphi/Pascal endline comments (comments appearing at
the end of a line that contains some other statement). Use the "(*" and "*)" delimiters for single line
comments (a single comment appearing on a line by itself).

Guideline: You should organize Delphi unit source files with the procedures and function that are not
attached to a particular class at the beginning of the implementation section. Methods associated with

Software Development Guidelines: 8 - Appendices

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_8.html (3 of 10) [10/1/2000 8:02:49 PM]



local class objects should follow these procedures and functions. Finally, methods associated with event
handlers for components on a form should appear at the end of the source file.

Guideline: When naming Delphi components you place on a form, append a suffix string that consists of
an underscore followed by a standard string that denotes the type of that component (e.g., "_lbl" for
TLabel objects).

Guideline: If two or more components are related (e.g., a TLabel object that describes the type of input
for a
TEdit object) then use the same name with different suffixes (e.g., Month and Month_lbl). Note that this
is an exception to the rule that identifiers should not have more than a few characters in common as their
prefix characters; it also violates the rule that two identifiers should not be the same except for a type
suffix. This exception exists to help overcome the limitation that a component cannot be a field of a
record or class except a TForm object.

Guideline: Use Lex/Flex definitions to give meaningful names to common or oft-used regular
expressions within a program. Once you create a definition, be sure to use the definition's name as
appropriate throughout the Lex/Flex program.

Guideline: Define the macro "StandardREs" to be replaced by the literal constant "0". Then use "BEGIN
StandardREs;" rather than "BEGIN 0;" to turn off context sensitivity in a Lex/Flex program.

Guideline: The definitions section of a Lex/Flex program should begin with a set of header comments,
followed by C/C++ include statements and global definitions, then the definitions for named regular
expression, and ending with the starting condition symbol definitions.

Guideline: Organize your Lex/Flex rules so that logically related regular expressions are adjacent to one
another in the source file..

Guideline: Let Yacc/Bison choose the token value associated with terminal symbols.

8.2 - Appendix B: Rules
Rule: Never shorten a routine by dividing it into n parts that you would always call in the appropriate
sequence as a way of shortening the original routine.

Rule: Each module should completely reside in a single source file. If size considerations prevent this,
then all the source files for a given module should reside in a subdirectory specifically designated for that
module.

Rule: If a particular language processing system does not support modules of any kind, simulate those
modules by physically grouping the objects in the source code. Be sure to access the module using only
"approved" interfaces. Always check for inconsistencies when reviewing your code.

Software Development Guidelines: 8 - Appendices

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_8.html (4 of 10) [10/1/2000 8:02:49 PM]



Rule: If a built-in type has different semantics on different architectures or in different compilers, always
use a set of type definitions that let you easily change adjust the program to a different architecture. It is
dangerous to assume a particular object uses a specific data format (e.g., two's complement binary or
IEEE floating point). It is even worse to assume an object has a fixed number of bits. You should avoid
using predefined types in a language.

Rule: All variable, constant, and type definitions should occur at the very beginning of the program unit
whose limits define the scope of the object.

Rule: If you cannot define an object at the beginning of the program unit to which it belongs, then put a
place-holder comment at the beginning of the block and define the variable as soon as possible within the
program unit. You should place a comment near such a definition to remind the reader to update the
comment at the beginning of the block if the actual definition ever changes.

Rule: Associated with any set of variable declarations will be a set of comments known as the "Data
Dictionary." This data dictionary will describe the name and purpose for each variable. The Data
Dictionary will also describe any constraints or assumptions on the use of the variables.

Rule: All identifiers that represent words or phrases must be English words or phrases.

Rule: You should never use alphabetic case to denote the type, classification, or any other
program-related attribute of an identifier (unless the language's syntax specifically requires this).

Rule: Capitalize the first letter of interior words in all multi-word identifiers.

Rule: Avoid using all upper case characters in an identifier.

Rule: All identifiers should be pronounceable (in English) without having to spell out more than one
letter.

Rule: The classification suffix should not be the only component that differentiates two identifiers.

Rule: Avoid misleading abbreviations and names.

Rule: Do not use names with similar meanings for different objects in your programs.

Rule: Do not use similar names that have different meanings.

Rule: Programs written in a standard imperative language (e.g., C/C++, Pascal, Ada, Visual BASIC,
Delphi, etc.) will use the modern versions of the standard control constructs. If the language does not
directly support these control structures, the programmer will simulate them using rules appearing
elsewhere in this document.

Rule: If your code contains a chain of if..elseif..elseif.......elseif..... statements, do not use the final else
clause to handle a remaining case. Only use the final else to catch an error condition. If you need to test
for some value in an if..elseif..elseif.... chain, always test the value in an if or elseif statement.

Software Development Guidelines: 8 - Appendices

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_8.html (5 of 10) [10/1/2000 8:02:49 PM]



Rule: Always use the most appropriate type of loop (categorized by termination test position). Never
force one type of loop to behave like another.

Rule: "FOR" loops should always use an ordinal loop control variable (e.g., integer, char, boolean,
enumerated type) and should always increment or decrement the loop control variable by one.

Rule: All loops should have one entry point. The program should enter the loop with the instruction at
the top of the loop.

Rule: Avoid side-effects in the computation of the loop termination expression (others may not be
expecting such side effects). Also see the guideline about empty loops.

Rule: Code, as much as possible, should read from top to bottom.

Rule: Related statements should be grouped together and separated from unrelated statements with
whitespace or comments.

Rule: The assumable precedences are: [highest]: {operands} {unary operators} {*,/,mod} {+.-} {<, <=,
=, <>, >, >=} {and, or}. Note that you can only assume left associativity for {*,/,mod} and {+,-}.
Assume all other operators are non-associative and that you must use parentheses if they are next to one
another in an expression. If you cannot assume the precedence according to the rule above, use
parentheses to explicitly state the precedence.

Rule: If an expression depends upon short-circuit evaluation to produce a correct answer, you must
explicitly state this in a comment nearby.

Rule: A program should never use the value of a variable modified as a result of a side effect within that
same expression.

Rule: Never execute an expression solely for the side effects it produces.

Rule: At least one blank line must separate a comment on a line by itself from a line of code following or
preceding the comment.

Rule: The standard layout scheme is the Pure Block format. For languages that do not support modern
structured control statements, this coding standard specifies an emulation of these statements that allows
the use of the Pure Block layout format.

Rule: Always put a blank line between any block statement and the statement(s) it encloses.

Rule: If an actual or formal parameter list is too long to fit a function call or definition on a single line,
then place each parameter on a separate line and align them so they are easy to read.

Rule: All comments will be high-quality comments.

Software Development Guidelines: 8 - Appendices

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_8.html (6 of 10) [10/1/2000 8:02:49 PM]



Rule: All C/C++ programs will use the control structures found in the "ratc.h" header file in place of the
traditional C/C++ control structures.

Rule: All private objects (that is, variable and function names that should remain local to a given source
file) must have the keyword "static" preceding them in a C/C++ source file.

Rule: C/C++ Functions that are also public (non-static) should appear near the beginning of the source
file.

Rule: The makefile for a given project must offer a "standard/debug" compilation and a "production"
compilation option. The "production" compilation option should define the macro symbol NDEBUG for
every C source file it processes.

Rule: You should use assertions throughout your code to check degenerate and "impossible" conditions.
You should also use assertions to check the sanity of parameters input to a function.

Rule: If a function can succeed or fail in addition to returning some value, the function should return the
failure status as the function result and return the other value through a reference parameter. This allows
you to use the _assert and _nassert macros to check the return status of the function.

Rule: If your language provides exception handling capabilities, use them rather than manufacturing your
own tests for exceptional conditions.

Rule: All debugging code must disappear if the symbol "NDEBUG" is defined. That is, you must
surround all debugging code with "#ifndef NDEBUG" and a corresponding #endif.

Rule: Functions should never attempt to return two (or more) values through a single parameter or
function return result. If a function truly needs to return two different values, return them in separate
locations (e.g., through pass by reference parameters).

Rule: Use a semicolon in a Pascal program wherever it is optional.

Rule: All private objects (that is, variable, function, and procedure names that should remain local to a
given source file) must appear in the implementation section in a Pascal/Delphi source file. Variables
appearing in the interface section are public objects that other modules can be use.

Rule: Pascal functions and procedures that are also public should appear near the beginning of the source
file.

Rule: Functions in Delphi code should never attempt to return two (or more) values through a single
parameter or function return result. If a function truly needs to return two different values, return them in
separate locations (e.g., through pass by reference parameters). If one of the return values denotes an
error condition, use Delphi's exception handling facilities to raise an exception.

Rule: All C/C++ statements appearing in the definitions section of a Lex/Flex or Yacc/Bison program
should appear at the beginning of the sections bracketed by a pair of lines containing the "%{" and "%}"

Software Development Guidelines: 8 - Appendices

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_8.html (7 of 10) [10/1/2000 8:02:49 PM]



tokens.

Rule: The definition section of a Flex/Lex or Yacc/Bison program should contain only those C/C++
definitions and declarations necessary for the rules section of the program. You should place all other
C/C++ code in the auxiliary code section of the program.

Rule: The Lex/Flex and C/C++ statements in a Lex/Flex program must contain a liberal number of
comments describing the code. Do not assume that the regular expression is "self documenting."

Rule: Always precede each Lex/Flex definition with a comment that describes the pattern matched by the
corresponding regular expression. Also provide several example strings that the regular expression
matches. Don't assume that the definition's name completely documents the corresponding regular
expression.

Rule: The identifiers you specify for Lex/Flex "starting conditions" should be meaningful; they should
describe the context handled by the starting condition.

Rule: When defining starting condition labels in a Lex/Flex program, use meaningful names that describe
the nature of the context-sensitive set of regular expressions. Group related starting symbols into the
same statement; separate unrelated names into separate starting condition statements. Always preface
each starting condition statement with a set of comments explaining the purpose of the context sensitive
section.

Rule: Every non-trivial regular expression appearing in the rules section of a Lex/Flex program should
have a block of comments immediately preceding the statement. The comments should describe the type
of patters the regular expression matches, provide several examples of strings the regular expression
matches, and describe the actions taken if the lexer matches a string with this regular expression.

Rule: Define all non-terminal symbols in a Yacc/Bison program in a %type definition. Always associate
an attribute type with that non-terminal. Use the dummy type "nil" (defined in the "%union" section) for
those non-terminals that do not have a specific attribute value.

Rule: Define all terminal symbols in a Yacc/Bison program in a %token definition (ASCII character
terminal symbols are an exception). Always associate an attribute type with that terminal symbol. Use
the dummy type "nil" (defined in the "%union" section) for those non-terminals that do not have a
specific attribute value.

Rule: Use the Yacc/Bison %left, %right, and %nonassoc statements to specify precedence and
associativity only. Do not use these statements to define terminal symbols or attach a type to a terminal
symbol.

Rule: The starting production should be the first production in the rules section of a Yacc/Bison program.
Do not specify the starting symbol by using the "%start" statement.

Rule: Every production in a Yacc/Bison program shall be preceded by a block of comments that
describes the type of strings it matches, gives some sample strings it matches, discusses the attribute

Software Development Guidelines: 8 - Appendices

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_8.html (8 of 10) [10/1/2000 8:02:49 PM]



return value(s) for the production, and describes any semantic actions that take place when the parser
successfully reduces a production.

8.3 - Appendix C: Enforced Rules
Enforced Rule: Never redefine an existing type.

Enforced Rule: Always explicitly declare all variables (and other identifiers) unless the language does
not allow this.

Enforced Rule: All identifiers must be "case-neutral."

Enforced Rule: Do not reuse existing standard library routine names in your program unless you are
specifically replacing that routine with one that has similar semantics (i.e., don't reuse the name for a
different purpose).

Enforced Rule: GOTOs, if they appear at all in a program, must be okayed by a peer review of at least
two peers, both of whom agree the resulting code with a GOTO is easier to understand than equivalent
code without a GOTO. GOTOs should only be used in exception processing statements or after
exhausting several other attempts at writing clear code without the GOTO. Some code is actually easier
to read with a GOTO statement than without, but it is easy to develop a mental block that would suggest
the use of a GOTO when a clearer solution exists, hence the peer review.

Enforced Rule: If you use tabs to indent your code, insert a comment at the very beginning of the
program that states the number of positions for each tab stop. E.g., "/* This program is formatted using
four character position tabstops. */"

Enforced Rule: Source code lines will not exceed 80 characters in length.

Enforced Rule: All comments will be up to date. If a programmer makes changes to the code, that
programmer is responsible for updating the internal comments and any external documentation affected
by those changes.

Enforced Rule: If a modules contains some defects that cannot be immediately removed because of time
or other constraints, the program will insert a standardized comment before the code so that it is easy to
locate such problems in the future. The four standardized comments are "@_#defect#severe_@,
"@_#defect#functional_@", "@_#defect#suspect @", and "@_#defect#enhancement_@" where "@"
denotes the comment delimiter and "_" denotes a single space. The spelling and spacing should be exact
so it is easy to search for these strings in the source tree.

Enforced Rule: All intermodule communication in C/C++ programs must take place through header files
(".h" files). All extern directives, public class definitions, public type definitions, and public constants
must appear in the header file that all interested modules will include.

Software Development Guidelines: 8 - Appendices

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_8.html (9 of 10) [10/1/2000 8:02:49 PM]



Enforced Rule: All C/C++ functions (public or private) appearing in a source module will have an
associated prototype. The prototypes for all functions will appear near the beginning of the source file
(typically after the include and define directives and any other type definitions also appearing there).

Enforced Rule: All "temporary" debugging statements you add to a program, no matter how temporary
they seem, must be protected with "#ifndef NDEBUG" and "#endif" statements. This is the only line of
defense against forgetting to remove the code before compiling a production version of the program.

Enforced Rule: By default, Borland's Pascal and Delphi compilers have most of the optional run-time
checks disabled. During software development you should enable all these checks. Turn them off when
shipping production code.

Enforced Rule: All "temporary" debugging statements you add to a Pascal/Delphi program, no matter
how temporary they seem, must be protected with "{$ifndef NDEBUG}" and "{$endif}" directives. This
is the only line of defense against forgetting to remove the code before compiling a production version of
the program.

Enforced Rule: Do not insert any embedded sematic actions into the right hand side of a production in a
Yacc/Bison program. Instead, create a separate production whose right hand side is only the semantic
action and insert the associated non-terminal for that production in place of the embedded semantic
action.

< Previous section (7 - Other Languages (Formatting Issues)) - Contents - Next section (9 - Glossary)
>

Software Development Guidelines: 8 - Appendices

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_8.html (10 of 10) [10/1/2000 8:02:49 PM]



Software Development Guidelines

9 - Glossary

< Previous section (8 - Appendices) - Contents

9 - Glossary
Big Bang Testing: A testing strategy wherein you design and code the entire program before
testing. Suitable only for very small programs.

Big Bang

Integration

Testing: As you develop each module, you test it. This localizes any errors to that one
module (so they are easy to find and correct). After writing and testing all modules, you
integrate them into the program and test the entire product. Assuming you've removed all
the bugs within the modules themselves, the only bugs remaining are in the interfaces
between the modules.

Black box test

Data Generation: Generating test data for a program using the functional specification alone
(no source code).

Case-Neutral: An identifier is "case-neutral" if you can compile a program using it with two
different compilers -one that is case sensitive (with respect to identifiers) and one that
ignores the case of alphabetic characters in an identifier. This means that you must spell the
identifier exactly the way you declared it (with respect to case) and that no two (different)
identifiers exist whose spelling differs only with respect to the case of the alphabetic
symbols.

Debugging: The process of locating and removing defects in a software system. Not to be
confused with testing (a different activity).

Driver: An empty function that calls functions under test. Generally it contains just enough
code to set up parameters and globals prior calling the function.

Identifier Class: The object an identifier specifies can be classified as a constant, type
definition, variable, function, procedure, iterator, program identifier, etc.

Software Development Guidelines: 9 - Glossary

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_9.html (1 of 2) [10/1/2000 8:02:52 PM]



Incremental

Testing: A testing strategy in which you develop a module, test it, integrate it into the
system (such as it exists at that point), and then test the system. This is an excellent testing
strategy for very large systems.

LOC: Lines of code.

KLOC: Thousands of lines of code.

Program Unit: A function, procedure, iterator, subroutine, process, main program, or other
comparable object. Sometimes includes a compound statement (block). One salient, defining
feature of a program unit is that it limits the scope of objects (e.g., variables) defined within
the unit.

RatC: RATional C. This is a macro package that adds modern control structures to the C and
C++ programming languages.

Regression

Testing: Regression testing is the process of always running the same sequence of tests on a
program unit every time the program unit changes. This verifies (within the bounds of the
test) that the new code works and it doesn't break any old code, either.

Scaffolding: Any code written to help test a program that isn't actually part of the program
under test. Stubs and drivers are examples of scaffolding code.

Stub: An empty function that replaces a function that is yet to be written. Generally, a stub
provides absolute minimal functionality, it accomplishes just enough to test the calling code
with just a few special cases. Also see Driver.

Testing: The process of supplying data to a program with the hope of encountering defects
in the software. Generally involves test data generation, experimentation, and analysis
phases.

Waterfall Model: A software development model in which work flows from one step to the
next. See the text of this document for details.

White box test

Data Generation: Generating test data for a program by studying the source code and
choosing sets of input values to feed the program that will achieve certain goals like
executing each statement in the program at least once.

< Previous section (8 - Appendices) - Contents

Software Development Guidelines: 9 - Glossary

http://webster.cs.ucr.edu/Page_softeng/softDevGuide_9.html (2 of 2) [10/1/2000 8:02:52 PM]


	ucr.edu
	Software Development Guidelines: Contents
	Software Development Guidelines: 1 - Introduction
	Software Development Guidelines: 2 - General Programming Guidelines
	Software Development Guidelines: 3 - C (and related C++) Specific Issues
	Software Development Guidelines: 4 - Pascal/Delphi Specific Formatting Issues
	Software Development Guidelines: 5 - Visual BASIC Specific Formatting Issues
	Software Development Guidelines: 6 - Lex/Flex and Yacc/Bison Specific Formatting Issues
	Software Development Guidelines: 7 - Other Languages (Formatting Issues)
	Software Development Guidelines: 8 - Appendices
	Software Development Guidelines: 9 - Glossary


