
Software Documentation
Guidelines

In addition to a working program and its source code, you must also author the documents discussed
below to gain full credit for the programming project. The fundamental structure of these documents is
entirely independent of project, programming language, and operating system. You will find a number of
advantages when you pursue a rigid documentation approach to programming. First of all, you will have a
firm understanding of the task at hand before you start coding. A good understand of the problem leads to
a clean design that tends to have fewer bugs. Always make your goal to program it right the first time! The
next advantage is that others will be able to use your documentation to test the program, fix bugs, and
make enhancements. In the corporate world, these duties are normally performed by different people and
often by different groups within a single company. Therefore, the more detailed, organized, and
easy-to-read your documentation is, the more you help other people do their jobs. As you learn to write
solid documentation, you will also come to appreciate reading solid documentation, and will eventually
detest reading technical crap (the world is full of poorly written technical books and manuals). In other
words, write simply and clearly. The way you write is just as important as the details you present. Always
strive to spell correctly and use proper grammar. The campus Writing Center can aid you in this respect.

User Requirements Document (URD)
Requirements Analysis Document (RAD)
User Interface Specification (UIS)
Prototype
Object Oriented Analysis (OOA) or High Level Design (HLD)
Object Oriented Design (OOD) or Low Level Design (LLD)
Code Documentation (CD)
Testing Documentation (TD)
User's Guide (UG)

User Requirements Document (URD)
This document describes the problem from the user's point of view. It briefly describes the problem
domain, e.g.. a psychology experiment or a small business accounting package. Then the document
delivers a simple and exact description of the problem. After the problem description, the user states
exactly what he/she would like the software system to do. While this may seem to indicate a user interface,
it is better to focus on the tasks to be solved rather than the interface required to solve them. However the
user may require a specific interface, e.g.. a GUI rather than a command line interface. The crux of this
document is to identify what the user requires of the program, and not what the user requires of the
programmer. This document furnishes the programmer with a formal description of the problem. Ideally,
this document would be written by someone in marketing who has talked with a customer; not by a
programmer. The most important thing to remember is that this document describes the functionality
required of the program.

The URD has:

Software Documentation Guidelines

http://www.cs.uwc.ac.za/lecturers_webpages/avahed/www/software_documentation_guideline.htm (1 of 7) [4/21/2001 8:42:52 PM]



user's view of the problem
brief description of the problem domain
complete description of the problem
what is expected from a software solution
what is not expected from a software solution

The URD does not have:
programmer's point of view
programming jargon or technical details
description of programming languages or environments unless it is a specific user requirement
description of the solution. This is not a design document. We only want requirements here.

Back to top

Requirements Analysis Document (RAD)
This document takes the URD as a starting point and looks at the problem from a designer's point of
view. However, instead of diving directly to implementation details, the analysis focuses on the
system and software requirements needed to implement the user requirements. This document gets
detailed, but does not delve into programming details. Instead, take the user's requirements and
clearly identify all of the details and mitigating factors that will affect the solution that the user
wants. An analysis may indicate a preference for a particular programming language that best suits
the problem domain rather than an algorithm to satisfy a particular requirement. The RAD looks at
the URD as defining an entire system, and then breaks the URD down into bite-size chunks (divide
and conquer). These chunks identify the subsystems of the overall solution, and the relationships
between them. But the RAD also goes further and identifies the actual details of the problem that
the user may not be aware of.

The RAD also maps the domain of software systems onto the user requirements. For example, the
RAD may indicate that a database is needed for a particular subsystem, or that an expert system
can satisfy certain other requirements. The RAD is written from the designer's perspective. An
astute software designer is one who is aware of available software systems and paradigms. He/she
should know what types of systems and solutions work best in different environments. The RAD,
then, identifies the software systems and paradigms that will best fit the user requirements. The
RAD doesn't design a solution; it merely identifies the most beneficial means for an implementation.

The RAD has:
designer's interpretation of the user's requirements: identify the "real" problem(s)
breakdown the problem into high level constituent parts
deep analysis of these parts and identification of all relevant details
identify existing solutions
identify alternative technical solutions
link these solutions to the problem(s), especially with respect to details
suggest the best solution and break it into parts
devise ways to test the solution

The RAD does not have:
user's point of view

Software Documentation Guidelines

http://www.cs.uwc.ac.za/lecturers_webpages/avahed/www/software_documentation_guideline.htm (2 of 7) [4/21/2001 8:42:52 PM]



implementation details
algorithms
user interface specification

Back to top

User Interface Specification (UIS)
This document describes exactly what the user interface is going to do, what it looks like, and how
the user interacts with the program. The UIS does not describe how the interface is implemented.
Nor does it describe what the program does behind the interface. Rather, the UIS focuses in detail
specifically on the user interface itself. For a GUI, the UIS would define the components and all
options on a MenuBar, all of the MenuBar headings, all of the submenus, and all of the options of
those submenus. The UIS may describe the functionality of each of the mouse buttons, if
appropriate. The UIS also describes the presentation of data, be it graphics, text, or a combination.
The UIS should be understandable to the user. The UIS should contain drawings or screen captures
of prototype interaces.

For non-GUI applications, the user interface may be either a Command Line Interface (CLI) for
which the UIS could be similar to a UNIX man page, or could be an Application Programmatic
Interface (API). An API is really nothing more than a collection of library routines that allow you to
link and/or layer software components. For an API, the UIS consists of a definition of the calling
interfaces, names of routines or object methods, parameters, and descriptions of what they will do.

The UIS has:
description of the complete user interface, CLI, or API
what the user interface looks like to the user
how the user interface behaves
how the user interacts with the system
if GUI, names for all of the interactive components, from the mouse to buttons to menus and
scrollbars, and pictures of what the interface should look like
if CLI, flags and arguments, inputs and outputs as in a UNIX man page
if API, complete description of the link/call interface

The UIS does not have:
implementation details
coverage of the mechanics beneath the user interface

Back to top

Prototype
Once you know what the user interface (GUI, CLI, or API) is going to look like, go ahead and try to
build a "shell" of the user interface as quickly as possible. This is called a prototype. You don't have
to implement the core functionality - you just code the interface to see 1) if it's possible and 2) how it
appears to the user. Ideally, you should end up throwing this prototype away. The prototype should
be shown to the user to see if it's what the user had in mind. That's why you really shouldn't put too
much effort into it because chances are the user is going to say, "No, I wanted it to look like this" or

Software Documentation Guidelines

http://www.cs.uwc.ac.za/lecturers_webpages/avahed/www/software_documentation_guideline.htm (3 of 7) [4/21/2001 8:42:52 PM]



"I like this screen, but that one sucks", etc. You want to ensure that the user sees what they want to
see - and this applies to GUI, CLI, and API. It's much easier to change a prototype than it is to do all
the work on the internals first and then have to change things. The prototype helps you design
things in such a way that the interface is independent of the underlying implementation of the actual
problem. The interface is not the solution to the problem. But the interface is the user's window to
that functionality. That functionality, or solution to the problem, begins with the next step.

Object Oriented Analysis (OOA) or High Level Design
(HLD)
The OOA applies an object-oriented view to the problem. The easiest way to do this is to pick out all
of the nouns in the RAD. Each noun is usually an object. Through out nouns that aren't substantive
objects. The next step is to write a detailed description of each object, no matter how trivial it may
seem or how much you take this object for granted. Each object must be completely and succinctly
documented. This is called a data dictionary. Next, look for overlap between objects and remove
objects that are not important to the problem domain. For example, take out user interface
components. You will deal with those separately. Once you have removed unnecessary objects,
identify their attributes and methods. More often than not, you will find that some of the objects you
have are merely attributes of other objects. Next, establish relationships between objects. For
example, an employee works for a company. Here, both company and individual are objects. An
individual works for a company. A company employs an individual. A company has many workers.
An individual usually works for a single company. Here, we have both defining and numerical
(cardinality) relationships. Find such relationships between your objects, and define the cardinality,
eg. one-to-one, one-to-many, many-to-many.

The next step of the OOA is to do the same thing with your UIS. The user interface and underlying
application subsystems should be completely independent of one another. In fact, you should be able
to design and develop your interface and your underlying application independently of one another.
You should make your user interface classes as generic as possible, and subclass off of them to get
application-specific behavior. For example, to make a list of colors you would probably use a generic
List object. A List has a series of text string labels for each choice, lets the user make a choice,
activates some function when such a choice is made, allows the user to add an item to the list, delete
one, and so on. So far, you could use this List object in almost any application that requires a List
interface object. However, for a color selector, you may want to show the actual color in the
rectangular slot where you usually show the textual name of the color. In this case, design the object
hierarchy such that most of the functionality is encapsulated in the List object, but then subclass a
ColorList class to present the colors rather than the textual labels. Design interactive objects in a
similar way: allow an application to register actions with an object rather than defining that an
object performs specific tasks. Most of the appearance and functionality is then abstracted away
from the end user in a particular program. This way you can share an object between applications,
and assign application-specific behavior with registration rather than explicit coding.

If you are not using an object oriented programming language like C++ or Java, you can still use
object oriented design techniques. However, if you prefer, you can write a High Level Design
document in place of the OOA. The HLD accomplishes many of the same goals, but from a non-OO
approach.

Software Documentation Guidelines

http://www.cs.uwc.ac.za/lecturers_webpages/avahed/www/software_documentation_guideline.htm (4 of 7) [4/21/2001 8:42:52 PM]



The OOA has:
data dictionary defining exactly what each object represents (in English)
class diagrams showing the name, attributes, and methods of each class
relationships between the classes, depicting graphically and textually
a set of class diagrams and data dictionary for the application domain
a set of class diagrams and data dictionary for the interface domain
end-user readability

The HLD has:
detailed breakdown of technical solution in subsystems
descriptions of data structures and operations required for eachs subsystem
detailed interaction between subsystems, including interface subsystem(s)

The OOA and HLD do not have:
algorithms
implementation details

Back to top

Object Oriented Design (OOD) or Low Level Design (LLD)
The OOD is as close to coding as you can get without actually coding. If you do this document
correctly, the code will just fall out naturally. The OOD takes the classes in the OOA a level deeper
into the realm of pseudo-code. The OOD defines the datatypes for the attributes. The OOD also
defines the algorithms and implementation details of the class methods. However, you are not
writing code yet. The OOD should be language-independent. You are merely specifying more
exactly what the attributes and methods consist of. Like the OOA, the OOD addresses both the
interface and application class hierarchies. Also like the OOA, it keeps the two domains separate
and independent of one another.

The OOD goes another step beyond the OOA by identifying the objects, rather than the classes,
required to implement the software system. While the user may be able to comprehend the OOA,
the OOD goes very deep into software design. The OOD is much more detailed than the OOA and
establishes instantiations from the class hierarchy and their relationships to one another, especially
associations and cardinality.

The OOD also provides the algorithms for all class/object methods pseudo-code. For a graphical
environment, the OOD would specify how the event loop dispatches events to specific objects. For
example, a mouse-down in a drawing canvas would activate the pen object to start drawing, while a
mouse-up would terminate the line. The OOD often makes use of state and event diagrams that
define exactly what happens when the user interacts with the graphical components. It maps the
user interactions with graphical components to underlying application subsystems. For the drawing
example, the OOD maps the mouse down to the pen object that draws the line. The mouse doesn't
draw the line, the pen object does, using the mouse coordinates as a guide.

For non-OO design, the LLD contains essentially the same contents as the OOD, namely, explicit
detail of all datatypes and functions. You should provide psuedo-code for all algorithms and flesh
out all aspects of the programming effort without yet resorting to actual code. If you were to

Software Documentation Guidelines

http://www.cs.uwc.ac.za/lecturers_webpages/avahed/www/software_documentation_guideline.htm (5 of 7) [4/21/2001 8:42:52 PM]



compare this documentation process to writing a research paper, you could regard the HLD as the
chapter and section titles, the LLD as the bullet items for each section, and the code as the text of the
paper. Each document just gets more and more detailed.

The OOD and LLD have:
inner details of class attributes (datatypes) and methods (functions)
detailed object (as opposed to class) diagrams for OOD
state diagrams
event diagrams
pseudo-code
algorithmic descriptions

The OOD and LLD do not have:
code

Back to top

Code Documentation (CD)
You are expected to fully document your code. Every class and class method should have a name, a
brief one-line description, and a detailed description of the algorithm. All methods also require
descriptions of all inputs and outputs. If applicable, you should also note any caveats - things that
could go wrong or things that the code doesn't address. Put assumptions in the caveats section. If
you are coding in Java, you should use the documentation tags that work with the javadoc utility.
This utility automatically generates web pages for your documentation. To make things consistent,
simply cut and paste the textual descriptions of your classes, objects, and methods from your OOD
directly into the code. Then let javadoc do the dirty work. If you are not coding in Java, you can still
use the same tags and see if javadoc operates on your source files. Otherwise, you could write such a
utility yourself!

Back to top

Testing Documentation (TD)
The TD describes how you tested your program to prove that it works sucessfully. You should
include testbeds for both the user interface and application aspects of your program. You should
also provide test datasets where applicable. For example, if you program does some form of text
processing, you should provide example file inputs that test specific features of the program
requirements. You should pay special attention to borderline values and bogus user input. The TD
should also include evaluation criteria, so you know what you are actually testing for.

Back to top

 User's Guide (UG)
This document tells a user how to use your system. The format is up to you. Pick your favorite
User's Guide and copy its format. You may even want to use the UNIX man page system. Assume
that the user knows nothing about your project. Provide an overview and then details of each

Software Documentation Guidelines

http://www.cs.uwc.ac.za/lecturers_webpages/avahed/www/software_documentation_guideline.htm (6 of 7) [4/21/2001 8:42:52 PM]



subsystem. Make sure you explain how the whole system works before delving into the details. This
document is for the end-user or another programmer, so you have to explain the obvious, e.g..
Basically, you have to tell someone how to use your system.

Back to top

Software Documentation Guidelines

http://www.cs.uwc.ac.za/lecturers_webpages/avahed/www/software_documentation_guideline.htm (7 of 7) [4/21/2001 8:42:52 PM]


	www.cs.uwc.ac.za
	Software Documentation Guidelines


