
Work
by Jeffreys Copeland and Haemer

54 SunExpert Magazine ■ August 1998

Virtual Threaded News Reader
WW

hen last we left our plucky
heroes, they had started to
organize a list of Usenet

news articles into useful order. The task
was to take a random list of articles and
output that list in the order in which a
threaded reader like trn might present
them. We had finished the input process-
ing when we ran out of time, leaving us
with a large blank space on our black-
board, onto which was scrawled “and
then a miracle occurs.”

This month, we’ll show you how to
drop articles into the data structure we
invented last time, and present a quick
recursive routine to print the list of arti-
cles in threaded order. As we mentioned
last month, we’re writing this column
using Donald Knuth and Silvio Levy’s
CWEBliterate programming tool, so the
column doesn’t contain the source code;
the original text of the column is the
source code (for details, see our Web site).

For review, the two important data
structures are for the article itself and for
the references to its predecessors. We’ll

present them here so you don’t have to
flip back to last month’s column. (We’re
cheating: We’re producing this code as a
separate source module and we should
define these structures in an include

file. Instead, we’ve just copied the lines
from last month.)

<data structures>=

typedef struct _article {

struct _article *sibling;

struct _article *child;

char *message_file;

char *message_id;

char *subject;

struct _reference *refs;

struct _reference *end_refs;

time_t date;

} ART;

typedef struct _reference {

struct _reference *next, *prev;

char *reftext;

} REF;

There are some bits of nomenclature

we need to get out of the way first. An
article’s siblings are articles with the same
number of references. In a diagram, we
list them vertically down the page. An
article’s children are articles that refer to
it, and we list them horizontally, growing
to the right.

News articles have ID strings of the
form <31415926@opennt.com> . These
strings appear in both the Message-id

and References headers of the articles.
For convenience, we’ll refer to these sym-
bolically in our examples (Message-id s
with italic letters, and we’ll use a colon to
separate the ID from the references) so an
article with ID j may have references, or
j:adf, which point to articles a, d and f.
So, when we enter place_article () ,
we may have an existing tree of articles:

a:- d:a y:adx
e:a g:ae

b:- q:b
r:b w:br z:brw

h:br
c:-

PA
UL

 S
TO

DD
AR

D

Given an article x:ad, for example, we would insert it in
the top row of this diagram between d:a and y:adx. (You
may find it easier to envision this as a directory tree. In this
analogy, the root directory of the file system contains the
articles with no references. When we find an article with
references, its “path name” consists of the references in
some order.)

We also know what the overall structure of this module
will be:

#define _ALL_SOURCE

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

<data structures>

<service routines>

<place the articles>

<print the tree>

We also need the head of the data tree:

<data structures>=

ART *root;

Insertion Sorts
As Beth, our local Lisp hacker put it, after listening to a

long-winded explanation of the problem, “It’s just an insertion
sort. Check for a null cdr and recurse.”

So we break our insertion into the tree of each new article
into two basic cases. In the base case, where the existing root
is null , we insert this article as the root. In the “normal” case,
we insert it somewhere into the tree, as in our diagram above.

With that in mind, we can begin to lay out the top level of
place_article () :

<place the articles>=

void

place_article(ART *art)

{

<null root case>

<normal case>

}

Let’s begin with the simplest case:

<null root case>=

if(root == NULL)

{

root = art;

return;

}

Because the normal case is recursive, we front it with
a function call, as follows:

<normal case>=

normal_case(root, art);

The body of the normal case breaks down into some simple
cases. We want to loop through the siblings of the root,
examining each in turn. If the sibling we’re examining is
referred to by art , we recurse with the root set to the child
of the sibling. In effect, art has asked the sibling, “are you
my mother?” (In the special case, where the sibling has no
child, we insert the new article as its child.)

If, on the other hand, art appears in the list of references
for the sibling we are examining, then art is actually the par-
ent of the sibling. (In effect, the sibling is asking art , “are you
my mother?”) In this case, we insert art as the parent of the
sibling. If we fall through the list of siblings without finding
a hit, we insert art as a new sibling.

(Returning to the directory analogy, we check the files
[articles] in each directory to see if the new file we’re trying to
insert has this file in its path name. If it does, we change into
the subdirectory and repeat the process. If the new file has no
files from this directory in its path name, then we park the file
here for the time being.)

<service routines>=

void

normal_case(ART *root, ART *art)

{

ART *p, *s;

s = NULL;

p = root;

while(p != NULL)

{

if(refs_in_list(p->message_id, art->refs))

{

if(p->child)

{

normal_case(p->child, art);

return;

} else {

append_child(p, art);

return;

}

}

if(refs_in_list(art->message_id, p->refs))

{

insert_parent(p, art);

return;

}

s = p;

p = p->sibling;

}

append_sibling(s,art);

}

Service Routines
We’ve postulated some routines that we now need to write:

a routine to cross-check references and a flock of insertion
routines. (Exercise for the reader: What’s the collective noun
for software? Would this be a Dilbert of insertion routines?)

SunExpert Magazine ■ August 1998 55

Work

Work
Notice that we’ve chosen to use singly-linked lists for our

data structures, which means we need to go to a little more
trouble to keep track of the structure links in our insertion
routines. With the complications caused by children and
parents and siblings and single-links, this could turn out
to be as difficult a job as being the booking agent for the
Jackson Five.

(Of course, as much fun as we have with this writing gig,
we too have suffered at the hands of booking agents. Haemer,
for example, once was booked to speak at a Usenix conference
immediately after Penn Gillette. We keep thinking that if only
we had really good agents, one of us would be attempting to
hit home runs off Robin Roberts of the Phillies and the other
would be wearing a bowler and tooling around England with
Uma Thurman. But we digress.)

We’ll begin by checking references. If the Message-id

appears in the specified References list, then we return true:

<service routines>=

int

refs_in_list(char *id, REF *ref)

{

REF *p;

for(p = ref; p != NULL; p = p->next)

if(strcmp(id, p->reftext) == 0)

return 1;

return 0;

}

Now we can begin the insertion routines. The first hangs
the given article off the current one as its child, thus:

<service routines>=

append_child(ART *current, ART *newart)

{

#ifdef DEBUG

printf("@@@ insert %s/%s as child of %s/%s\n",

newart->message_file, newart->message_id,

current->message_file, current->message_id);

#endif

current->child = newart;

}

The next insertion routine hangs the new article off the
current one as a sibling:

<service routines>=

append_sibling(ART *current, ART *newart)

{

#ifdef DEBUG

printf("@@@ insert %s as sibling of %s/%s\n",

newart->message_file, newart->message_id,

current->message_file, current->message_id);

#endif

current->sibling = newart;

}

The last one of these is the most complicated. We need to
exchange the new article and the current article, making the
current one the child of the new one. That is, we’re inserting
q:krs in front of w:krsq. (Using the directory analogy, we’ve got
a file that doesn’t belong in this directory, but rather in a sub-
directory, and we’ve found the parent of that path name. We
put the new file in this directory and put the other file in the
subdirectory.) This one is complicated because of the singly-
linked lists we’re using–we don’t necessarily know the parent
or older sibling of the current article, so we exchange the data,
leaving the links to the current article intact. We’ll do this in
a few steps, to keep our sanity:

<service routines>=

insert_parent(ART *current, ART *newart)

{

ART *temp;

#ifdef DEBUG

printf("@@@ insert %s as parent of %s/%s\n",

newart->message_file, newart->message_id,

current->message_file, current->message_id);

#endif

temp = malloc(sizeof(ART));

<copy current to temp>

<copy newart into current>

<link temp as current's child>

<clean up after parent insert>

}

First, we copy the current article to the temporary one, ensuring
that we don’t have dangling pointers to siblings or children:

<copy current to temp>=

temp->message_file = current->message_file;

temp->message_id = current->message_id;

temp->subject = current->subject;

temp->refs = current->refs;

56 SunExpert Magazine ■ August 1998

We’ve chosen
to use singly-
linked lists
for our data
structures,
which means
we need to go
to a little more
trouble to keep
track of the
structure links
in our insertion
routines.

temp->end_refs = current->end_refs;

temp->date = current->date;

temp->sibling = NULL;

temp->child = current->child;

Then, we copy the data from the new article into the
current structure:

<copy newart into current>=

current->message_file = newart->message_file;

current->message_id = newart->message_id;

current->subject = newart->subject;

current->refs = newart->refs;

current->end_refs = newart->end_refs;

current->date = newart->date;

To complete the links we need to hang the temporary structure
as a child of current :

<link temp as current's child>=

current->child = temp;

Finally, we need to clean up by freeing some allocated memory.
We only need to free a structure because we’ve copied its con-
tents. But which structure? Almost paradoxically, it’s the new
article, newart , whose data is now stored in current :

<clean up after parent insert>=

free(newart) ;

Showing the Results
Printing the results is the next step. This, too, is a recursive

process. We’ll begin with the function declaration and our inter-
face from last month’s article.

If we’re debugging, we want to separate the trace output
as we read and constructed the tree from the display of the
tree itself:

<print the tree>=

display_tree()

{

#ifdef DEBUG

printf("\n\n==========\n");

#endif

display_subtree(root);

}

We want to show each subtree in chronological order. This is
made easier because we’ve already stored the article time stamps
from the UNIX epoch in a variable of type time_t , correcting
for time zone differences. This means that (barring a posting
host with its clock set incorrectly) the subtrees should be in
chronological order if we run through the siblings in the order
of the time stamps. We reset the time to zero after we’ve pro-
cessed each sibling’s subtree. Thus, we look through the list of
siblings repeatedly, picking out the oldest, printing it and

processing its children, until we have no more siblings with
non-zero time stamps:

<print the tree>=

display_subtree(ART *root)

{

ART *p, *earliest;

#ifdef DEBUG

printf("displaying subtree from %s\n",

root->message_id);

#endif

do {

earliest = NULL;

for(p = root; p != NULL; p = p->sibling)

{

if(p->date == (time_t) 0)

continue;

if(!earliest ||

earliest->date > p->date)

earliest = p;

}

if(earliest) {

<show this article>

if(earliest->child)

display_subtree(earliest->child);

earliest->date = (time_t) 0;

}

} while(earliest != NULL);

}

Showing the results of the article in question is very easy.
For our purposes, we just print the article file name. We also
optionally provide some debugging output showing the sibling
and parent of this article. However, we can envision applications
where we’d want to do something more complicated, such as to
provide a graphic representation of the tree structure:

<show this article>=

printf("%s", earliest->message_file);

#ifdef DEBUG

if(earliest->sibling)

printf(" v%s",

earliest->sibling->message_file);

if(earliest->child)

printf(" >%s",

earliest->child->message_file);

#endif

printf("\n");

Wrapping Up
That’s more or less it. Like the other software we’ve

written for this series, this represents a real problem that
we’ve run across and solved. The problem provides an
interesting technique or lesson: In this case, the problem is

SunExpert Magazine ■ August 1998 57

Work

solved by a good data structure. Programming around the data
structure gives us some interesting utilities. You probably won’t
run into the same problem, but if you do, you’ve now got soft-
ware to solve it. More likely, you’ll run into a problem–it may
be sitting on your desk right now–where data structures like
these, or other tricks we have shown you, will be useful.

Meanwhile, we took a few minutes to visit Chez Protocol
earlier in the month and talk to Mike O’Brien about cathedrals
and bazaars, our launching point for last month’s column. In
April (“The Cathedral, the Bazaar and Mr. P.,” SunExpert, Page
24), he noted that Mr. Protocol has “this picture–I think it’s the
only one he owns–which has a single vertical black bar on it,
and underneath, in script, the words, ‘Ceci n’est pas une pipe.’
I don’t want to think about it.”

We were amused to discover that’s not exactly the whole
story. In fact, in Mr. P.’s wing of Chez Protocol, one wall is
entirely covered with the following text:

%!

% The Betrayal of Special Characters

/center {

dup 8.5 72 mul 2 div exch stringwidth

pop 2 div sub 3 2 roll moveto show

} def

/Helvetica 512 selectfont

11 72 mul 500 sub (\174) center

/KuenstlerScript-Black 50 selectfont

11 72 mul 600 sub

(Ceci n'est pas une pipe) center

showpage

This, of course, means that Mr. Protocol’s mutterings aren’t
the only thing Mike interprets.

What next? We may explore data compression. Or we may
discuss some database problems and how UNIX is better than
single-purpose tools for solving them. Or we may talk about
entertaining off-by-one bugs we’ve encountered. Or we may
spend the month brewing beer. Until then, happy trails. ✒

Jeffrey Copeland (copeland@alumni.caltech.edu) lives in
Boulder, CO, and works at Softway Systems Inc. on UNIX interna-
tionalization. He spends his spare time rearing children, raising cats
and being a thorn in the side of his local school board.

Jeffrey S. Haemer (jsh@usenix.org) works at QMS Inc. in
Boulder, CO, building laser printer firmware. Before he worked for
QMS, he operated his own consulting firm, and did a lot of other
things, like everyone else in the software industry.

Note: The software from this and past Work columns is avail-
able at http://alumni.caltech.edu/ ~copeland/work.html .

SunExpert Magazine ■ August 1998 59

Work

	Virtual Threaded News Reader
	Insertion Sorts
	Service Routines
	Showing the Results
	Wrapping Up

