
PA
UL

 S
TO

DD
AR

D

Work
by Jeffreys Copeland and Haemer

SunExpert Magazine ■ July 1998 57

Cathedrals, Bazaars, and News Readers
SS

ince the birth of the notion, late last
year, of converting SunExpert exclu-
sively to columns about bazaars and

cathedrals, the editors, inspired by Eric
Raymond’s paper on Linux development
entitled “The Cathedral and the Bazaar”
(see http:// www.linuxresources.

com/Eric/cathedral.html), have
taken the route of releasing “early and
often.” The initial release, Rich Morin’s
“Of Cathedrals and Bazaars,” January
1998, Page 32, was succeeded by Mike
O’Brien’s longer version, “The Cathedral,
the Bazaar and Mr. Protocol,” April 1998,
Page 24.

Peter Collinson had been assigned
responsibility for the next release, but
became lost while doing research at
Canterbury cathedral, which is down
the street from his house.

The editors then came to us, explain-
ing that they’d decided to reassign the
task of producing an interim release to
us, owing to our familiarity with the ba-
zaar. “Homonyms,” we tried to explain,
“are tricky things.” “Jeffs,” they said, “it’s

either that or wander around the Canter-
bury catacombs looking for Peter.” As
squeamish as we are underground, we
immediately set pen to paper.

Because Peter obviously prefers to deal
with real cathedrals than metaphorical
ones–and by the time you read this Mike’s
and Rich’s columns will be as far in the
past as Boulder’s winter snow–let’s recap.

Eric’s paper is an exploration of two
different team approaches to software de-
velopment. In the first, more traditional
method, a single architect or a small
group brings a software concept to fru-
ition (that’s “small” in the special sense
that requires a team of two to implement
UNIX, and a team of thousands to imple-
ment Windows NT). The group madly
tests the software and doesn’t release it
until it is reasonably certain the program
is relatively bug-free (“relatively bug-free”
in that same special sense). The first ex-
ternal customers are usually beta testers
who are sworn to secrecy (“secrecy” in the
special sense that allows end users to be
beta testers for some manufacturers’

operating systems). The development
cycle parallels that of a 15th-century
cathedral.

By contrast, if software is built by a
loosely coupled group of developers, each
of whom is also a user and tester, in close
contact via the Internet, the development
cycle more closely resembles a noisy
bazaar. In the bazaar model, software is
released early and often. Feedback is con-
stant. The software is often better debug-
ged because the many hands have made
light work of finding, characterizing and
fixing the bugs.

Which brings us to our current
problem. About two months ago, a
friend suggested that we might want
to read a bunch of Usenet articles on
science fiction writer Arthur C. Clarke.
We didn’t have time to read them then,
so we grabbed all the articles into files
for reading at our leisure. Unfortunate-
ly, once it was too late, we remembered
that outside of a threaded reader like
trn or tin , we’ve lost all notion of the
order in which the articles need to be

Work
read. What does this have to do with Eric’s cathedral and
bazaar notion? Plenty.

First, we’re writing this column with Donald Knuth and
Silvio Levy’s literate programming tool CWEB, which combines
explanatory text formatted in TeX with code in C. We can write
our code independently of the order in which it needs to be
presented to the compiler. CWEBcame out of Knuth’s work on
TeX, which in turn resulted from his work on the multivolume
Art of Computer Programming series published by Addison-
Wesley (see http://www-cs-staff.stanford.edu/

~knuth/). Art of Computer Programming, with its long develop-
ment cycle and unifying notions pro-
vided by a single person, is a prime
example of the cathedral development
methodology. TeX itself has a number
of crossover features: while it’s still the
brainchild of one developer, it has an
army of debuggers and developers of
support software. Much of that sup-
port software follows the bazaar model
of development.

So listen up. This article isn’t just
about a program. It is the program.
Feed the source of this article to
ctangle , which extracts the code
from the CWEBsource, present the
resulting C source to gcc and you
get executable code. (The task, says

Knuth, is not to describe to the computer what to do, but to
explain to another human being what we want the computer
to do.) Because of the process of typesetting for printing in
the magazine, we lose some features like cross-references and
module numbering; you can get these back by running the
source through cweave and tex .

Those in the dark about CWEBshouldn’t feel too much
at sea, this is more or less the same approach we’ve used in
explaining code in our columns to date–a little explanation,
followed by a little code, followed by a little more explana-
tion–but with a little more structure. If you need more
background information, see our Work columns on literate
programming (“An Introduction to Literate Programming,”
RS/Magazine, January 1995, Page 26, and “Literate Pro-
gramming: Parts I and II,” RS/Magazine, February and
March 1995, Pages 32 and 31, respectively), Knuth and
Levy’s The CWEB System of Structured Documentation
(Addison-Wesley, 1994, ISBN 0-201-57569-8), Knuth’s
Literate Programming (Cambridge University Press, 1992,
ISBN 0-937073-80-6), or just pick up the CWEBsoftware
from our Web site at http://alumni.caltech.edu/

~copeland/work.html .
We’re going to be looking at data from one of the great

examples of the bazaar model in the universe, namely Usenet
news. As we develop code, we’re going to be following one of
the principles Eric cites in his paper: “Good programmers know
what to write. Great ones know what to rewrite and reuse.”

To the extent we can, we’ll try to steal ideas, if not code,
from the news readers. So the code you’ll read below owes

some ideas to trn ’s thread manager, a program called
mthreads . Why don’t we just use mthreads directly?
Because it assumes a fair amount of the news database cruft
is set up–remember we want to run this locally, not on our
news server. It is also optimized to build onto an existing
database of threads. We just want the simple case of thread-
ing a (relatively) small list of articles.

Program Overview
Our goal is to take a list of news articles and emit the list in

threaded order, that is, the order in which they relate to one
another. That order is almost certainly not the same as the strict
order in which they were written, nor is it likely to be the order
in which they arrived at our news server. We rely on two little
bits of information in the header of the news article to achieve
our goal: the Message-id and References headers. The first
gives a unique identifier for this article and the second lists every
article that preceded it. We’ll also save the article subject line
and date for backup information.

Our main program is very simple. We read the list of
articles from stdin , open them and then relegate processing
of the articles to a subroutine. When we’re done, we walk the
resulting article tree in another subroutine and deliver the tree
to stdout . Because we’re operating as a strict filter, we don’t
need any command-line arguments:

<main program>=

main()

{

char buf[BUFSIZ];

FILE *artf;

while(fgets(buf,BUFSIZ,stdin) != NULL)

{

chomp(buf);

artf = fopen(buf,"r");

if(artf == NULL)

{

perror(buf);

continue;

}

process_art(artf,buf);

fclose(artf);

}

display_tree();

}

We also need some data structures here. The most import-
ant is going to be the structure for holding the article data. We
need to assemble these structures into a tree so each one will
potentially link to both a sibling (at the same level in the tree)
and a child. Notice that we keep track of a list of references
and point to both the first and last in that list:

<data structures>=

typedef struct _article {

struct _article *sibling;

58 SunExpert Magazine ■ July 1998

The task, says

Knuth, is not

to describe to

the computer

what to do, but

to explain to

another human

being what

we want the

computer to do.

struct _article *child;

char *message_file;

char *message_id;

char *subject;

struct _reference *refs;

struct _reference *end_refs;

time_t date;

} ART;

Instead of storing the references as a single string, we will
store them as a linked list, which will make scanning the list
of references a bit easier at the cost of complicating the storing
of data into that structure:

<data structures>=

typedef struct _reference {

struct _reference *next, *prev;

char *reftext;

} REF;

A quick word about Message-id s: Message-id strings
in news articles are made unique by containing a domain part
and an article part, <31415926@gateway.opennt.com> ,
for example. A lot of handwaving happens in mthreads to
separate the article and domain parts of the Message-id in
order to save space in memory. On a PDP-11, this was necess-
ary, but now we’re typically running machines that have more
main memory than our first PDP-11 had disk, so we won’t
bother. (Or as the Jeffreys keep debating among themselves,
when is it OK to be profligate with memory rather than CPU
cycles?). We’re going to assume that References lines grow
to the right, which may result in some misplacements.

Reading the Files
Each time we open an article file, we need to read the head-

ers and then place the article data into the tree of articles in
some reasonable fashion. Like the main program, the structure
of this routine is pretty simple, but the problem is in the under-
lying details. The place_article() routine is sufficiently
complicated that we’ll be putting it off a while.

<service routines>=

process_art(FILE *art_fp, char *art_name)

{

<process_art local variables>

<allocate and initialize an article>

<parse the article headers>

#ifdef DEBUG

show_headers(art);

#endif

place_article(art);

}

Local variables are an interesting problem. We know before the
fact that we’re going to need an article structure and a buffer
to read lines into. We’ll also need some pointers into the buffer.
We’ll add to this list later. One of the joys of literate program-

ming, like writing in C++, is that we can declare variables as
we need them:

<process_art local variables>=

char buf[BUFSIZ];

ART *art;

char *s, *t;

Allocating the article is very simple. We also initialize
the message_file entry:

<allocate and initialize an article>=

art = (ART *) malloc(sizeof(ART));

art->message_file = strdup(art_name);

art->sibling = art->child = NULL;

art->message_id = NULL;

art->refs = art->end_refs = NULL;

Now we parse the article headers. We read from the
article file up to a blank line–the end of the header lines.
We’re only interested in a few of the headers, though. We’ll
postulate a useful routine, headerEQ , which checks a case-
invariant header tag. If it matches, the routine returns a
pointer to the text following the header; otherwise, it returns
NULL. On matches, it also strips the trailing new line. In
the case of the date header, we’ll use a variation getdate()

parser, which Steve Bellowin wrote while he was at the
University of North Carolina, and which is supplied with
the trn code to convert the date string into a time_t .
The References lines are a special case: We need to get
all the continuation lines for them, so we invoke a different
paragraph of code to do so. It is important that we check
References first for reasons we explain in the next module.

<parse the article headers>=

while (fgets(buf,BUFSIZ,art_fp) != NULL)

{

if(*buf == '\n')

break;

if((s = headerEQ("references",buf)))

<get all references lines>

if((s = headerEQ("message-id",buf)))

art->message_id = strdup(s);

else if((s = headerEQ("subject",buf)))

art->subject = strdup(s);

else if((s = headerEQ("date",buf)))

art->date = getdate(s);

}

We want to collect all the continuation lines for References

headers, so that we can have all the references. Continuation
lines begin with a space or tab. Notice we fall out of this routine
when we find a noncontinuation line, passing that line unpro-
cessed to the main header parser in the previous module:

<get all references lines>=

{

SunExpert Magazine ■ July 1998 59

Work

Work
extract_refs(art, s);

while(fgets(buf,BUFSIZ,art_fp) != NULL)

{

chomp(buf);

if(*buf != ' ' && *buf != '\t')

break;

extract_refs(art, buf);

}

}

We need to talk about the routine that extracts references
from the References line. We’re given the article pointer,
so we can update the first and last references. We scan for
each reference on the line delimited by open and close angle
brackets and add it to the linked list of REFs in the article:

<service routines>=

void

extract_refs(ART *art, char *line)

{

REF *this;

REF *last;

char *s, *t;

char save;

s = line + strspn(line," \t");

while(s && *s)

{

if((s = strchr(s,'<')) == NULL)

return;

if((t = strchr(s,'>')) == NULL)

return;

this = malloc(sizeof(REF));

save = *(++t);

*t = 0;

this->reftext = strdup(s);

this->next = NULL;

this->prev = art->end_refs;

if(this->prev)

this->prev->next = this;

if(art->refs == NULL)

art->refs = this;

art->end_refs = this;

*t = save;

s = t;

}

}

Utility Routines
We’ve used a number of utility routines that we haven’t

defined yet. We’ll start with the easy Perl analog, chomp() ,
which removes the trailing new line from a string:

<service routines>=

char *

chomp(char *buf)

{

char *s;

s = strpbrk(buf,"\r\n");

if(s)

*s = 0;

return buf;

}

We need to define the headerEQ() routine, too. We do
a case-insensitive comparison of the given string against the
supplied buffer and return a pointer the first character of the
header line’s text. As a side effect, we remove the trailing new
line on matching lines.

<service routines>=

char *

headerEQ(char *hdr, char *buf)

{

char *s;

if(strncasecmp(hdr,buf,strlen(hdr)) != 0)

return NULL;

chomp(buf);

if((s = strchr(buf,':')) == NULL)

s = strchr(buf,' ');

while(isspace(*(++s))) continue;

return s;

}

A debugging routine:

<service routines>=

void

show_headers(ART *art)

{

REF *t;

printf("===== ");

printf("%s: date %ld; subj %.25s\n id %s\n",

art->message_file, art->date,

art->subject, art->message_id);

printf(" refs from 0x%x to 0x%x\n",

art->refs, art->end_refs);

for(t = art->refs; t; t = t->next)

printf(" %s @ 0x%x\n", t->reftext, t);

}

We finish up the utilities by completing our collection of
function prototypes:

<function prototypes>=

char *headerEQ(char *, char *);

char *chomp(char *);

void extract_refs(ART *, char *);

void show_headers(ART *);

Wrapping Up
We’ve almost run out of space for this month, but there’s

one thing we need to finish. We need to outline the complete
program by collecting all the source code together and wrap-
ping it with include files:

60 SunExpert Magazine ■ July 1998

#define _ALL_SOURCE

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

<data structures>

<function prototypes>

<main program>

<service routines>

We’ve left the playing field with a
big blank space in the middle, much
like that old American Scientist cartoon
where there’s a flock of equations on the
left side of the blackboard, a flock of
equations on the right side, and, in the

middle, the legend “and then a miracle
occurs.” (The caption reads, “I think
you’re a little vague in step two here.”)

In our case, the missing miracle comes
in the form of the place_article()

routine, which drops the parsed article
into the tree, and the display_tree()

routine, which prints the final result.
We’ll cover those and other stories

from the bazaar next month.
Until then, happy trails. ✒

Jeffrey Copeland (copeland@alumni.

caltech.edu) lives in Boulder, CO, and
works at Softway Systems Inc. on UNIX
internationalization. He spends his spare
time rearing children, raising cats and being
a thorn in the side of his local school board.

Jeffrey S. Haemer (jsh@usenix.org)
works at QMS Inc. in Boulder, CO, building
laser printer firmware. Before he worked
for QMS, he operated his own consulting
firm, and did a lot of other things, like
everyone else in the software industry.

Note: The software from this and past
Work columns is available at http://

alumni.caltech.edu/ ~copeland/

work.html .

SunExpert Magazine ■ July 1998 61

Work

	Cathedrals, Bazaars, and News Readers
	Program Overview
	Reading the Files
	Utility Routines
	Wrapping Up

