How To Steal Code
or
Inventing The Wheel Only Once

Henry Spencer

Zoology Computer Systems
25 Harbord St.
University of Toronto
Toronto, Ont. M5S1A1 Canada
{alegra,ihnp4,decvax,utai} ' utzoo! henry

ABSTRACT

Much is said about ‘‘standing on other peopl€’s shoulders, not their toes'’, but in
fact the whedl is re-invented every day in the Unix/C community. Worse, often it isre-
invented badly, with bumps, corners, and cracks. There are ways of avoiding this. some
of them bad, some of them good, most of them under-appreciated and under-used.

Introduction

‘‘Everyone knows'’ that that the UNIX/Ct community and its programmers are the very paragons of re-use
of software. In some ways thisis true. Brian Kernighan [1] and others have waxed eloquent about how
outstanding UNIX is as an environment for software re-use. Pipes, the shell, and the design of programs as
‘filters do much to encourage programmers to build on others work rather than starting from scratch.
Major applications can be, and often are, written without a line of C. Of course, there are always people
who insist on doing everything themselves, often citing ‘efficiency’ as the compelling reason why they
can't possibly build on the work of others (see [2] for some commentary on this). But surely these are the
lamentable exceptions, rather than the rule?

Well, in aword, no.

At thelevel of shell programming, yes, software re-use is widespread in the UNIX/C community. Not quite
as widespread or as effective as it might be, but definitely common. When the time comes to write pro-
grams in C, however, the situation changes. It took a radical change in directory format to make people
use alibrary to read directories. Many new programs still contain hand-crafted code to analyze their argu-
ments, even though prefabricated help for this has been available for years. C programmers tend to think
that *‘re-using software’’ means being able to take the source for an existing program and edit it to produce
the source for anew one. Whilethat is a useful technique, there are better ways.

Why does it matter that re-invention is rampant? Apart from the obvious, that programmers have more
work to do, | mean? Well, extra work for the programmers is not exactly an unmixed blessing, even from
the programmers’ viewpoint! Time spent re-inventing facilities that are already available istime that is not
available to improve user interfaces, or to make the program run faster, or to chase down the proverbial
Last Bug. Or, to get really picky, to make the code readable and clear so that our successors can under-
stand it.

Even more seriously, re-invented wheels are often square. Every time that a line of code is re-typed is a
new chance for bugs to be introduced. There will always be the temptation to take shortcuts based on how
the code will be used—shortcuts that may turn around and bite the programmer when the program is

T UNIX isatrademark of Bell Laboratories.

modified or used for something unexpected. An inferior algorithm may be used because it's ‘‘good
enough’’ and the better algorithms are too difficult to reproduce on the spur of the moment... but the
definition of ‘‘good enough’ may change later. And unless the program is well-commented [here we
pause for laughter], the next person who works on it will have to study the code at length to dispel the
suspicion that there is some subtle reason for the seeming re-invention. Finaly, to quote [2], if you re-
invent the square wheel, you will not benefit when somebody else rounds off the corners.

In short, re-inventing the wheel ought to be a rare event, occurring only for the most compelling reasons.
Using an existing wheel, or improving an existing one, is usually superior in a variety of ways. Thereis
nothing dishonorable about stealing code* to make life easier and better.

Theft via the Editor

UNIX historically has flourished in environments in which full sources for the system are available. This
led to the most obvious and crudest way of stealing code: copy the source of an existing program and edit it
to do something new.

This approach does have its advantages. By its nature, it is the most flexible method of stealing code. It
may be the only viable approach when what is desired is some variant of a complex algorithm that exists
only within an existing program; a good example was V7 dumpdir (which printed a table of contents of a
backup tape), visibly a modified copy of V7 restor (the only other program that understood the obscure for-
mat of backup tapes). And it certainly is easy.

On the other hand, this approach also has its problems. It creates two subtly-different copies of the same
code, which have to be maintained separately. Worse, they often have to be maintained ‘‘ separately but
simultaneously’’, because the new program inherits all the mistakes of the original. Fixing the same bug
repeatedly is so mind-deadening that there is great temptation to fix it in only the program that is actually
giving trouble... which means that when the other gives trouble, re-doing the cure must be preceded by re-
doing the investigation and diagnosis. Still worse, such non-simultaneous bug fixes cause the variants of
the code to diverge steadily. Thisisalso true of improvements and cleanup work.

A program created in thisway may also be inferior, in some ways, to one created from scratch. Often there
will be vestigial code left over from the program’s evolutionary ancestors. Apart from consuming
resources (and possibly harboring bugs) without a useful purpose, such vestigial code greatly complicates
understanding the new program in isolation.

There is also the possibility that the new program has inherited a poor algorithm from the old one. Thisis
actually auniversal problem with stealing code, but it is especially troublesome with this technique because
the original program probably was not built with such re-use in mind. Even if its algorithms were good for
itsintended purpose, they may not be versatile enough to do a good job in their new role.

One relatively clean form of theft via editing is to alter the original program’s source to generate either
desired program by conditional compilation. This eliminates most of the problems. Unfortunately, it does
so only if the two programs are sufficiently similar that they can share most of the source. When they
diverge significantly, the result can be a maintenance nightmare, actually worse than two separate sources.
Given a close similarity, though, this method can work well.

Theft viaLibraries

The obvious way of using somebody else’s code is to call a library function. Here, UNIX has had some
success stories. Almost everybody uses the stdio library rather than inventing their own buffered-1/0 pack-
age. (That may sound trivia to those who never programmed on a V6 or earlier UNIX, but in fact it's a
great improvement on the earlier state of affairs) The simpler sorts of string manipulations are usualy
done with the strxxx functions rather than by hand-coding them, although efficiency issues and the wide
diversity of requirements have limited these functions to less complete success. Nobody who knows about
gsort bothers to write his own sorting function.

* Assuming no software licences, copyrights, patents, etc. are violated!

However, these success stories are pleasant islands in an ocean of mud. The fact is that UNIX’s libraries
are adisgrace. They are well enough implemented, and their design flaws are seldom more than nuisances,
but there aren’t enough of them! Ironically, UNIX's *‘poor cousin’’, the Software Tools community [3,4],
has done much better at this. Faced with a wild diversity of different operating systems, they were forced
to put much more emphasis on identifying clean abstractions for system services.

For example, the Software Tools version of |s runs unchanged, without conditional compilation, on dozens
of different operating systems [4]. By contrast, UNIX programs that read directories invariably dealt with
the raw system data structures, until Berkeley turned this cozy little world upside-down with a change to
those data structures. The Berkeley implementors were wise enough to provide a library for directory
access, rather than just documenting the new underlying structure. However, true to the UNIX pattern, they
designed a library which quietly assumed (in some of its naming conventions) that the underlying system
used their structures! This particular nettle has finally been grasped firmly by the IEEE POSIX project [5],
at the cost of yet another slightly-incompatible interface.

The adoption of the new directory libraries is not just a matter of convenience and portability: in general
the libraries are faster than the hand-cooked code they replace. Nevertheless, Berkeley’s origina
announcement of the change was greeted with a storm of outraged protest.

Directories, adas, are not an isolated example. The UNIX/C community simply hasn't made much of an
effort to identify common code and package it for re-use. One of the two major variants of UNIX till lacks
alibrary function for binary search, an algorithm which is notorious for both the performance boost it can
produce and the difficulty of coding a fully-correct version from scratch. No major variant of UNIX has a
library function for either one of the following code fragments, both omnipresent (or at least, they should
be omnipresent [6]) in simple* programs that use the relevant facilities:

if ((f = fopen(filename, mode)) == NULL)
print error message with filename, mode, and specific
reason for failure, and then exit

if ((p = malloc(amount)) == NULL)
print error message and exit

These may sound utterly trivial, but in fact programmers almost never produce as good an error message
for fopen as ten lines of library code can, and half the time the return value from malloc isn’t checked at
al!

These examples illustrate a general principle, a side benefit of stealing code: the way to encourage stan-
dardizationt and quality isto make it easier to be careful and standard than to be sloppy and non-standard.
On systems with library functions for error-checked fopen and malloc, it is easier to use the system
functions—which take some care to do ‘‘the right thing''—than to kludge it yourself. This makes converts
very quickly.

These are not isolated examples. Studying the libraries of most any UNIX system will yield other ideas for
useful library functions (as well asalot of silly nonsense that UNIX doesn’t need, usually!). A few years of
UNIX systems programming also leads to recognition of repeated needs. Does your* UNIX have library
functionsto:

e decide whether afilename is well-formed (contains no control characters, shell metacharacters, or
white space, and is within any name-length limits your system sets)?

* | include the qualification ‘‘simple’’ because complex programs often want to do more intelligent error recovery than
these code fragments suggest. However, most of the programs that use these functions don’t need fancy error recovery, and
the error responses indicated are better than the ones those programs usually have now!

T Speaking of encouraging standardization: we use the names efopen and emalloc for the checked versions of fopen and
malloc, and arguments and returned values are the same as the unchecked versions except that the returned value is
guaranteed non-NULL if the function returns at all.

* As you might guess, my system has all of these. Most of them are trivia to write, or are available in public-domain
forms.

e close al file descriptors except the standard ones?

e compute a standard CRC (Cyclic Redundancy Check ‘‘ checksum’’)?
e operate on malloced unlimited-length strings?

e do what access(2) does but using the effective userid?

e expand metacharactersin afilename the same way the shell does? (the simplest way to make sure
that the two agree is to use popen and echo for anything complicated)

e convert integer baud rates to and from the speed codes used by your system’s serial-lineioctls?
e convert integer file modes to and from the rwx strings usedt to present such modes to humans?
e do ahinary search through afile the way look(1) does?

The above are fairly trivial examples of the sort of things that ought to be in UNIX libraries. More sophisti-
cated libraries can also be useful, especially if the language provides better support for them than C does;
C++isan example[7]. Evenin C, though, there is much room for improvement.

Adding library functions does have its disadvantages. The interface to a library function is important, and
getting it right is hard. Worse, once users have started using one version of an interface, changing it is very
difficult even when hindsight clearly shows mistakes; the near-useless return values of some of the com-
mon UNIX library functions are obvious examples. Satisfactory handling of error conditions can be
difficult. (For example, the error-checking malloc mentioned earlier is very handy for programmers, but
invoking it from alibrary function would be a serious mistake, removing any possibility of more intelligent
response to that error.) And there is the perennial headache of trying to get others to adopt your pet func-
tion, so that programs using it can be portable without having to drag the source of the function around too.
For al this, though, libraries are in many ways the most satisfactory way of encouraging code theft.

Alas, encouraging code theft does not guarantee it. Even widely-available library functions often are not
used nearly as much as they should be. A conspicuous example is getopt, for command-line argument
parsing. Getopt supplies only quite modest help in parsing the command line, but the standardization and
consistency that its use produces is still quite valuable; there are far too many pointless variations in com-
mand syntax in the hand-cooked argument parsers in most UNIX programs. Public-domain implementa-
tions of getopt have been available for years, and AT&T has published (!) the source for the System V
implementation. Yet people continue to write their own argument parsers. There is one valid reason for
this, to be discussed in the next section. There are also a number of excuses, mostly the standard ones for
not using library functions:

e ‘It doesn’t do quitewhat | want.”” But often it is close enough to serve, and the combined benefits
of code theft and standardization outweigh the minor mismatches.

e ‘‘Calling alibrary function is too inefficient.”” Thisis mostly heard from people who have never
profiled their programs and hence have no reliable information about what their code’s efficiency
problemsare[2].

e ‘I didn’'t know about it.”” Competent programmers know the contents of their toolboxes.

e ‘‘That whole concept is ugly, and should be redesigned.”” (Often said of getopt, since the usual
UNIX single-letter-option syntax that getopt implements is widely criticized as user-hostile) How
likely isit that the rest of the world will go along with your redesign (assuming you ever finish it)?
Consistency and a high-quality implementation are valuable even if the standard being imple-
mented is suboptimal.

e ‘| would have done it differently.’”” The triumph of personal taste over professional program-
ming.

T If you think only Is uses these, consider that rm and some similar programs ought to use rwx strings, not octal modes,
when requesting confirmation!

Theft via Templates

Templates are a major and much-neglected approach to code sharing: ‘‘boilerplate’’ programs which con-
tain a carefully-written skeleton for some moderately stereotyped task, which can then be adapted and
filled in as needed. This method has some of the vices of modifying existing programs, but the template
can be designed for the purpose, with attention to quality and versatility.

Templates can be particularly useful when library functions are used in a stereotyped way that is a little
complicated to write from scratch; getopt is an excellent example. The one really valid objection to getopt
isthat itsinvocation is not trivial, and typing in the correct sequence from scratch is areal test of memory.
The usual getopt manual page contains alengthy example which is essentially atemplate for a getopt-using
program.

When the first public-domain getopt appeared, it quickly became clear that it would be convenient to have
atemplate for its use handy. Thistemplate eventually grew to incorporate a number of other things: a use-
ful macro or two, definition of main, opening of files in the standard UNIX filter fashion, checking for mis-
takes like opening a directory, filename and line-number tracking for error messages, and some odds and
ends. Thefull current version can be found in the Appendix; actualy it diverged into two distinct versions
when it became clear that some filters wanted the illusion of a single input stream, while others wanted to
handle each input file individually (or didn’t care).

The obvious objection to this line of development is *‘it's more complicated than | need’’. In fact, it turns
out to be surprisingly convenient to have al this machinery presupplied. It ismuch easier to alter or delete
lines of code than to add them. If directories are legitimate input, just delete the code that catches them. |If
no filenames are alowed as input, or exactly one must be present, change one line of code to enforce the
restriction and a few more to deal with the arguments correctly. If the arguments are not filenames at all,
just delete the bits of code that assume they are. And so forth.

The job of writing an ordinary filter-like program is reduced to filling in two or three blanks* in the tem-
plate, and then writing the code that actually processes the data. Even quick improvisations become good-
quality programs, doing things the standard way with all the proper amenities, because even a quick impro-
visation is easier to do by starting from the template. Templates are an unmixed blessing; anyone who
types a non-trivial programin from scratch is wasting his time and his employer’s money.

Templates are also useful for other stereotyped files, even ones that are not usually thought of as programs.
Most versions of UNIX have a simple template for manual pages hiding somewhere (in V7 it was
/usr/man/man0/xx). Shell files that want to analyze complex argument lists have the same getopt problem
as C programs, with the same solution. There is enough machinery in a ‘**production-grade’” make file to
make a template worthwhile, although this one tends to get altered fairly heavily; our current one isin the
Appendix.

Theft vialnclusion

Source inclusion (#include) provides a way of sharing both data structures and executable code. Header
files (e.g. stdio.h) in particular tend to be taken for granted. Again, those who haven't been around long
enough to remember V6 UNIX may have trouble grasping what a revolution it was when V7 introduced
systematic use of header files!

However, even mundane header files could be rather more useful than they normally are now. Data struc-
tures in header files are widely accepted, but there is somewhat less use of them to declare the return types
of functions. One or two common header files like stdio.h and math.h do this, but programmers are still
used to the idea that the type of (e.g.) atol hasto be typed in by hand. Actualy, al too often the program-
mer says ‘‘oh well, on my machine it works out all right if | don’t bother declaring atol’’, and the result is
dirty and unportable code. The X3J11 draft ANSI standard for C addresses this by defining some more
header files and requiring their use for portable programs, so that the header files can do al the work and
doitright.

* All marked with the string ‘xxx’ to make them easy for atext editor to find.

In principle, source inclusion can be used for more than just header files. In practice, amost anything that
can be done with source inclusion can be done, and usually done more cleanly, with header files and
libraries. There are occasional specialized exceptions, such as using macro definitions and source inclusion
to fake parameterized data types.

Theft via lnvocation

Finally, it is often possible to steal another program’s code simply by invoking that program. Invoking
other programs via system or popen for things that are easily done in C is a common beginner’'s error.
More experienced programmers can go too far the other way, however, insisting on doing everything in C,
even when aleavening of other methods would give better results. The best way to sort alargefileis prob-
ably to invoke sort(1), not to do it yourself. Even invoking a shell file can be useful, athough a bit odd-
seeming to most C programmers, when elaborate file manipulation is needed and efficiency isnot critical.

Aside from invoking other programs at run time, it can also be useful to invoke them at compile time. Par-
ticularly when dealing with large tables, it is often better to dynamically generate the C code from some
more compact and readable notation. Yacc and lex are familiar examples of this on alarge scale, but sim-
ple sed and awk programs can build tables in more specialized, application-specific ways. Whether thisis
really theft is debatable, but it's a valuable technique all the same. It can neatly bypass a lot of objections
that start with **but C won't let me write...”".

An Excess of I nvention

With all these varied methods, why is code theft not more widespread? Why are so many programs
unnecessarily invented from scratch?

The most obvious answer is the hardest to counter: theft requires that there be something to steal. Use of
library functions is impossible unless somebody sets up alibrary. Designing the interfaces for library func-
tions is not easy. Worse, doing it well requires insight, which generally isn't available on demand. The
sameistrue, to varying degrees, for the other forms of theft.

Despite its reputation as a hotbed of software re-use, UNIX is actually hostile to some of these activities. If
UNIX directories had been complex and obscure, directory-reading libraries would have been present from
the beginning. Asitis, it was simply too easy to do things ‘‘the hard way’’. There still isno portable set of
functions to perform the dozen or so useful manipulations of terminal modes that a user program might
want to do, a major nuisance because changing those modes ‘‘in theraw’’ is simple but highly unportable.

Finally, there isthe Not Invented Here syndrome, and its relatives, Not Good Enough and Not Understood
Here. How else to explain AT&T UNIX’'s persistent lack of the dbm library for hashed databases (even
though it was developed at Bell Labs and hence is available to AT&T), and Berkeley UNIX's persistent
lack of the full set of strxxx functions (even though a public-domain implementation has existed for years)?
The X3J11 and POSIX efforts are making some progress at developing a common nucleus of functionality,
but they are aiming at a common subset of current systems, when what is really wanted is a common super-
Set.

Conclusion
In short, never build what you can (legally) steal! Done right, it yields better programs for less work.

References
[1] Brian W. Kernighan, The Unix System and Software Reusability, IEEE Transactions on Software
Engineering, Vol SE-10, No. 5, Sept. 1984, pp. 513-8.

[2] Geoff Collyer and Henry Spencer, News Need Not Be Sow, Usenix Winter 1987 Technical Confer-
ence, pp. 181-190.

[3] Brian W. Kernighan and P.J. Plauger, Software Tools, Addison-Wesley, Reading, Mass. 1976.
[4] Mike O Déll, UNIX: The World View, Usenix Winter 1987 Technical Conference, pp. 35-45.

[5] |EEE, IEEE Trial-Use Sandard 1003.1 (April 1986): Portable Operating System for Computer
Environments, |EEE and Wiley-Interscience, New Y ork, 1986.

[6] lan Darwin and Geoff Collyer, Can’t Happen or /* NOTREACHED */ or Real Programs Dump Core,
Usenix Winter 1985 Technical Conference, pp. 136-151.

[7] Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley, Reading, Mass. 1986.

Appendix
Warning: these templates have been in use for varying lengths of time, and are not necessarily all entirely
bug-free.

C program, single stream of input
/*

* name - purpose Xxx

*

* Log
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <string.h>

#define MAXSTR 500 [* For sizing strings -- DON'T use BUFSIZ! */
#define STREQ(a, b) (*(@) ==*(b) && strcmp((a), (b)) == 0)

#ifndef lint
static char RCSid[] = "$Header$";
#endif

int debug = 0;
char *progname;

char **argvp; [* scan pointer for nextfile() */

char *nullargv[] ={ "-",NULL }; /* dummy argv for case of no args*/
char *inname; [* filename for messages etc. */

long lineno; /* line number for messages etc. */
FILE*in=NULL; [* current input file */

extern void error(), exit();

#ifdef UTZOOERR

extern char *mkprogname();
#else

#define mkprogname(a) (@)
#endif

char *nextfile();
void fail();

/*
- main - parse arguments and handle options
*/

main(argc, argv)

int argc;

char *argv[];

intc;

int errflg=0;
extern int optind;
extern char *optarg;
void process();

progname = mkprogname(argv[Q]);

while ((c = getopt(argc, argv, "xxxd")) != EOF)
switch (c) {
case’xxx’: [* xxx meaning of option */
XXX
break;

case’d: /* Debugging. */
debug++;
break;
case’?:
default:
errflg++;
break;

}
if (errflg) {
fprintf(stderr, "usage: %s", progname);
fprintf(stderr, "xxx [filg] ..\n");
exit(2);

if (optind >= argc)
argvp = nullargv;

else
argvp = &argv[optind];

inname = nextfile();

if (inname!= NULL)
process();

exit(0);

}

/*

- getline - get next line (internal version of fgets)
*/

char *

getline(ptr, size)

char *ptr;

int size;

{

register char * namep;

while (fgets(ptr, size, in) == NULL) {

namep = nextfile();

if (namep==NULL)

return(NULL);

inname = namep; /* only after we know it's good */
}
lineno++;
return(ptr);

}

/*
- nextfile - switch files
*/
char * /* filename */
nextfile()
{
register char * namep;
struct stat statbuf;
extern FILE *efopen();

if (in!=NULL)
(void) fclose(in);

namep = *argvp;

if (namep==NULL) /* no morefiles*/
return(NULL);

argvpt++;

if (STREQ(namep, "-")) {
in=stdin;
namep = "stdin";
}else{
in = efopen(namep, "r");
if (fstat(fileno(in), & statbuf) < 0)
error("can't fstat ‘%s'", namep);
if ((statbuf.st_mode & S_IFMT) == S_IFDIR)
error("*%s' isdirectory!", namep);

lineno=0;
return(namep);
}

/*

- fail - complain and die

*/

void

fail(sl, s2)

char *s1;

char *s2;

{
fprintf(stderr, "%s: (file ‘%s’, line %ld) ", progname, inname, lineno);
fprintf(stderr, s1, s2);
fprintf(stderr, "\n");
exit(1);

}

/*

- process - process input data
*/

void

process()
{
char lineMAXSTRY;

while (getling(ling, (int)sizeof(line)) = NULL) {
XXX
}

C program, separateinput files
/*
* name - purpose Xxx

*

* Log
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <string.h>

#define MAXSTR 500 [* For sizing strings -- DON'T use BUFSIZ! */
#define STREQ(a, b) (*(a) ==*(b) && strcmp((a), (b)) == 0)

#ifndef lint
static char RCSid[] = "$Header$";
#endif

int debug = 0;
char *progname;

char *inname; /* filename for messages etc. */
long lineno; /* line number for messages etc. */

extern void error(), exit();
#ifdef UTZOOERR
extern char *mkprogname();

#defi ne mkprogname(a) (a)
void fail();

/*
- main - parse arguments and handle options
*/

main(argc, argv)

int argc;

-10-

char *argv[];

intc;

int errflg = 0;

FILE *in;

struct stat statbuf;
externint optind;
extern char *optarg;
extern FILE *efopen();
void process();

progname = mkprogname(argv[0]);

while ((c = getopt(argc, argv, "xxxd")) != EOF)
switch (c) {
case’xxx': [* xxx meaning of option */
XXX
break;
case’d: /* Debugging. */
debug++;
break;
case’?:
default:
errflg++;
break;

}
if (errflg) {
fprintf(stderr, "usage: %s", progname);
fprintf(stderr, "xxx [file] ..\n");
exit(2);

if (optind >= argc)
process(stdin, "stdin");

else
for (; optind < argc; optind++)
if (STREQ(argv[optind], "-"))
process(stdin, "-");
ese{
in = efopen(argv[optind], "r");
if (fstat(fileno(in), & statbuf) < 0)
error("can't fstat ‘%s™", argv[optind]);
if ((statbuf.st_mode& S IFMT) == S _IFDIR)
error("'%s' isdirectory!", argv[optind]);
process(in, argv[optind]);
(void) fclose(in);
exit(0);
/*
- process - processinput file
*/
void
process(in, name)
FILE *in;
char *name;

}
/*

char lineMAXSTRY;

inname = name;
lineno = 0;

while (fgets(line, sizeof(line), in) 1= NULL) {
lineno++;
XXX

- fail - complain and die

*/

-11-

void

char *sl;

char *s2;

{
fprintf(stderr, "%s: (file ‘%s', line %ld) ", progname, inname, lineno);
fprintf(stderr, s1, s2);
fprintf(stderr, "\n");

exit(1);
}
Makefile
Things you might want to put in ENV and LENV:
#-Dvoid=int compiler lacks void

#-DCHARBITS=0377 compiler lacks unsigned char
#-DSTATIC=extern compiler dislikes "static foo();" as forward decl.
#-DREGISTER= machines with few registers for register variables
#-DUTZOOERR have utzoo-compatible error() function and friends
ENV = -DSTATIC=extern -DREGISTER= -DUTZOOERR

LENV = -Dvoid=int -DCHARBITS=0377 -DREGISTER=-DUTZOOERR

Things you might want to put in TEST:
#-DDEBUG debugging hooks

#-l. header files in current directory
TEST =-DDEBUG

Things you might want to put in PROF:

#-Dstatic="/* *I' make everything global so profiler can seeit.
#-p profiler

PROF =

CFLAGS = -O $(ENV) $(TEST) $(PROF)
LINTFLAGS = $(LENV) $(TEST) -ha
LDFLAGS = -i

OBJ = xxx
LSRC = xxx
DTR = README dMakefile tests tests.good xxx.c

XXX: XXX.0
$(CC) $(CFLAGS) $(LDFLAGS) xxX.0 -0 XXX

XXX.0: Xxx.h

lint: $(LSRC)
lint $(LINTFLAGS) $(LSRC) | teelint

r XXX tests tests.good # Regression test.
XXX <tests >tests.new
diff -h tests.new tests.good & & rm tests.new

Prepare good output for regression test -- name isn’t "tests.good"
because human judgement is needed to decide when output is good.
good: xxx tests

XXX <tests >tests.good

dtr: r$(DTR)
makedtr $(DTR) >dtr

dMakefile: Makefile
sed’/"L*ENV=/d *-DUTZOOERR//" Makefile >dM akefile

clean:
rm -f *.o lint tests.new dM akefile dtr core mon.out xxx

