
§1 Listing 5 A C++ STRING CLASS 1

1. A C++ String Class. To demonstrate the use of CWEB for C++ programming, we adapt the string
class described by Stroustrup [1, pages 248–251]. Explanations in slanted type (including inline comments,
when possible) are direct quotes from the original. We make a few minor changes along the way, but on the
whole, we stick to Stroustrup’s design.

2. We put the interface part of our class in the header file xstring.h. We call our class “Xstring”
rather than “string” to avoid confusion with the original and other (more useful) string classes. We restrict
ourselves to a lowercase file name to maintain portability among operating systems with case-insensitive file
names.
〈 xstring.h 2 〉 ≡
#ifndef XSTRING_H

#define XSTRING_H /∗ prevent multiple inclusions ∗/
class Xstring {
〈Private Xstring members 4 〉

public:
〈Public Xstring members 5 〉

};
#endif
This code is cited in section 3.

This code is used in section 3.

3. We implement the class members in a single “unnamed chunk” that will be tangled to xstring.c

(or xstring.cc or xstring.cpp, depending on your compiler’s preference). We include the contents of
〈 xstring.h 2 〉 directly, rather than relying on #include, because we can.
〈Header files 8 〉
〈 xstring.h 2 〉
〈Xstring members and friends 6 〉

2 REPRESENTING AN XSTRING Listing 5 §4

4. Representing an Xstring. The internal representation of an Xstring is simple. It counts the
references to a string to minimize copying and uses standard C++ character strings as constants.
〈Private Xstring members 4 〉 ≡

struct srep {
char ∗s; /∗ pointer to data ∗/
int n; /∗ reference count ∗/
srep() { n = 1; }
};
srep ∗p;

See also section 16.

This code is used in section 2.

§5 Listing 5 CONSTRUCTION AND DESTRUCTION 3

5. Construction and Destruction. The constructors and the destructor are trivial. We use the null
string as a default constructor argument rather than a null pointer to protect against possible string.h

function anomalies.
〈Public Xstring members 5 〉 ≡

Xstring(const char ∗s = ""); /∗ Xstring x = "abc" ∗/
Xstring(const Xstring &); /∗ Xstring x = Xstring . . . ∗/
∼Xstring();

See also sections 12, 14, and 15.

This code is used in section 2.

6. An Xstring constructed from a standard string needs space to hold the characters:
〈Xstring members and friends 6 〉 ≡

Xstring ::Xstring(const char ∗s)
{
p = new srep;
〈Allocate space for the string and put a copy of s there 7 〉;
}

See also sections 9, 10, 13, and 17.

This code is used in section 3.

7. There is always the possibility that a client will try something like “Xstring x = Λ.” We substitute
the null string whenever we are given a null pointer.
〈Allocate space for the string and put a copy of s there 7 〉 ≡

if (s ≡ Λ) s = "";
p~s = new char [strlen (s) + 1];
strcpy (p~s, s);

This code is used in sections 6 and 13.

8. 〈Header files 8 〉 ≡
#include <string.h> /∗ Standard C header for strcpy ∗/
This code is used in section 3.

9. On the other hand, to build an Xstring from another Xstring, we only have to increment the reference
count:
〈Xstring members and friends 6 〉 +≡

Xstring ::Xstring(const Xstring &x)
{
x.p~n++;
p = x.p;

}

10. The destructor also has to worry about the reference count:
〈Xstring members and friends 6 〉 +≡

Xstring ::∼Xstring()
{
〈Decrement reference count, and remove p if necessary 11 〉;
}

4 CONSTRUCTION AND DESTRUCTION Listing 5 §11

11. 〈Decrement reference count, and remove p if necessary 11 〉 ≡
if (−−p~n ≡ 0) {

delete []p~s;
delete p;

}
This code is used in sections 10 and 13.

§12 Listing 5 ASSIGNMENT 5

12. Assignment. As usual, the assignment operators are similar to the constructors. They must handle
cleanup of their first (left-hand) operand:

〈Public Xstring members 5 〉 +≡
Xstring &operator=(const char ∗);
Xstring &operator=(const Xstring &);

13. 〈Xstring members and friends 6 〉 +≡
Xstring &Xstring ::operator=(const char ∗s)
{

if (p~n > 1) { /∗ disconnect self ∗/
p~n−−;
p = new srep;
} else /∗ free old string ∗/

delete []p~s;
〈Allocate space for the string and put a copy of s there 7 〉;
return ∗this;
}
Xstring &Xstring ::operator=(const Xstring &x)
{
x.p~n++; /∗ protect against “st = st ” ∗/
〈Decrement reference count, and remove p if necessary 11 〉;
p = x.p;
return ∗this;

}

6 MISCELLANEOUS OPERATIONS Listing 5 §14

14. Miscellaneous Operations. We provide a conversion operator to translate Xstring’s into ordinary
strings. This allows us to pass them to standard functions like strlen (and gives us an output operator for
free). We convert to const strings to prevent strange things from happening if a client should try to use a
standard function like strcat to modify an Xstring.
〈Public Xstring members 5 〉 +≡

operator const char ∗() { return p~s; }

15. The subscript operator is provided for access to individual characters. The index is checked. However,
we depart from the original design by returning a dummy element when the index is out of bounds rather
than generating an error message (or an exception).
〈Public Xstring members 5 〉 +≡

char &operator [](int i) { return ((i < 0) ∨ (strlen (p~s) < i) ? dummy : p~s[i]); }

16. 〈Private Xstring members 4 〉 +≡
static char dummy ;

17. 〈Xstring members and friends 6 〉 +≡
char Xstring ::dummy ;

§18 Listing 5 REFERENCES 7

18. References.

[1] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, second edition, 1991.

8 INDEX Listing 5 §19

19. Index.

dummy : 15, 16, 17
i: 15
n: 4
operator: 12, 13, 14, 15
p: 4
s: 4, 5, 6, 13
srep: 4, 6, 13
strcat : 14
strcpy : 7, 8
strlen : 7, 14, 15
x: 5, 7, 9, 13
Xstring: 2, 6, 9, 10, 13, 17
XSTRING_H: 2

Listing 5 NAMES OF THE SECTIONS 9

〈Allocate space for the string and put a copy of s there 7 〉 Used in sections 6 and 13.

〈Decrement reference count, and remove p if necessary 11 〉 Used in sections 10 and 13.

〈Header files 8 〉 Used in section 3.

〈Private Xstring members 4, 16 〉 Used in section 2.

〈Public Xstring members 5, 12, 14, 15 〉 Used in section 2.

〈 xstring.h 2 〉 Cited in section 3. Used in section 3.

〈Xstring members and friends 6, 9, 10, 13, 17 〉 Used in section 3.

Listing 5

Section Page
A C++ String Class . 1 1

Representing an Xstring . 4 2
Construction and Destruction . 5 3
Assignment . 12 5
Miscellaneous Operations . 14 6

References . 18 7
Index . 19 8

Copyright c© 1994 by Lee Wittenberg. Portions copyright c© 1991 by AT&T Bell Telephone Laboratories, Inc.

	A C{�am 	tfam 	entt ++} String Class
	Representing an {�am �ffam 	enbf Xstring}
	Construction and Destruction
	Assignment
	Miscellaneous Operations
	References
	Index

