onversion

EXT Support Macros

.05.21

y 25

agen

A / Hans Hagen &

\convertPDFt. .

\PDFmediabox. .

supp-pdf

METAPOST to PDF conversion

These macros are written as generic as possible. Some general support macro’s are loaded from a
small module especially made for non CONTEXT use. In this module I use a matrix transformation
macro written by Tanmoy Bhattacharya. Thanks to extensive testing of Sebastian Ratz I was able to
complete this module within reasonable time. First we take care of non—CONTEXT use:

\ifx \undefined \writestatus \input supp-mis.tex \relax \fi

This module handles some PDF conversion and insertions topics. The macros use the PDFTEX primitive
\pdfliteral.

\writestatus{loading}{Context Support Macros / PDF}
\unprotect

\ifx\pdfliteral\undefined
\def\pdfliteral#i{\message{[ignored pdfliteral: #1]}}
\fi

PDFTEX supports verbatim inclusion of PDF code. The following macro takes care of inserting exter-
nally defined illustrations in PDF format. According to a suggestion Tanmoy Bhattacharya posted to
the PDFTEX mailing list, we first skip lines until stream is reached and then copy lines until endstream
is encountered. This scheme only works with vectorized graphics in which no indirect references to
objects are used. Bitmaps also don’t work. Interpreting their specifications is beyond the current
implementation.

\convertPDFtoPDF
{filename}
{x scale} {y scale}
{x offset } {y offset}
{width} {height}

When the scales are set to 1, the last last four values are the same as the bounding box, e.g.

\convertPDFtoPDF{mp-pra-1.pdf} {1} {1}{-1bp}{-1bp}{398bp}{398bp}
\convertPDFtoPDF{mp-pra-1.pdf}{.5}{.5} {Obp} {Obp}{199bp}{199bp}

Keep in mind, that this kind of copying only works for pure and valid pdf code (without fonts).
The scanning and copying is straightforward and quite fast. To speed up things we use two constants.

\def\@@PDFstream@Q@ {stream}
\def\@@PDFendstream@@ {endstream}

If needed, the macros can scan for the mediabox that specifies the dimensions and offsets of the graphic.
When we say:

\PDFmediaboxpreferedtrue

the mediabox present in the file superseded the user specified, already scaled and calculated offset and
dimensions. Beware: the user supplied values are not the bounding box ones!

\newif\ifPDFmediaboxprefered

\def\setPDFboundingbox#1#2#3#4#5#67,
{\dimenO=#1\dimenO=#5\dimen0
\ScaledPointsToBigPoints{\number\dimen0}\PDFxoffset
\dimenO=#3\dimenO=#5\dimen0
\xdef\PDFwidth{\the\dimen0}%

CONTEXT CONTEXT Support Macros

10

11

12

13

supp-pdf

METAPOST to PDF conversion

\dimenO=#2\dimen0=#6\dimenO
\ScaledPointsToBigPoints{\number\dimen0}\PDFyoffset
\dimenO=#4\dimen0=#6\dimenO
\xdef\PDFheight{\the\dimen0}
\global\let\PDFxoffset=\PDFxoffset
\global\let\PDFyoffset=\PDFyoffset}

\def\setPDFmediabox#1 [#2 #3 #4 #5]#6\done},
{\dimen2=#2bp\dimen2=-\dimen2
\dimen4=#3bp\dimend=-\dimen4d
\dimen6=#4bp\advance\dimen6 by \dimen2
\dimen8=#5bp\advance\dimen8 by \dimen4
\setPDFboundingbox{\dimen2}{\dimen4}{\dimen6}{\dimen8}\PDFxscale\PDFyscale}

\def\checkPDFmediabox#1/MediaBox#2#3\doneY,
{\ifx#2\relax \else
\message{mediaboxl}/,
\setPDFmediabox#2#3\done
\fi}

We use the general macro \doprocessfile and feed this with a line handling macro that changed it’s
behavior when the stream operators are encountered.

\def\handlePDFline}
{\ifx\@OPDFstream@@\fileline
\let\doprocessPDFline=\copyPDFobject
\startPDFtoPDF
\else\ifPDFmediaboxprefered
\expandafter\checkPDFmediabox\fileline/MediaBox\relax\done
\fi\fi}

\def\copyPDFobject%
{\ifx\@OPDFendstream@@\fileline
\ifPDFmediaboxprefered
\let\doprocessPDFline=\findPDFmediabox
\else
\let\doprocessPDFline=\relax
\fi
\else
\advance\scratchcounter by 1
\pdfliteral{\filelinel},
\fi}

\def\findPDFmediabox¥
{\expandafter\checkPDFmediabox\fileline/MediaBox\relax\done}

The main conversion macro wraps the PDF codes in a box that is output as an object. The graphics
are embedded in q and Q and are scaled and positioned using one transform call (cm). This saves some
additional scaling.

\def\startPDFtoPDF
{\setbox0=\vbox\bgroup
\message{ [PDF to PDF \PDFfilenamel,
\forgetall
\scratchcounter=0

CONTEXT Support Macros CONTEXT

14

15

16

\convertMPto. .

17

supp-pdf

METAPOST to PDF conversion

\let\stopPDFtoPDF=\dostopPDftoPDF}

\def\dostopPDFtoPDFY,

{\ifnum\scratchcounter<0 \scratchcounter=1 \fi
\message{ (\the\scratchcounter\space lines)]1}/
\egroup
\wd0=\PDFwidth
\vbox to \PDFheight
{\forgetall
\vfill
\pdfliteral{q}/
\pdfliteral{l O 0 1 \PDFxoffset\space \PDFyoffset\space cm}’
\pdfliteral{\PDFxscale\space O O \PDFyscale\space 0 0 cm}/,
\box0
\pdfliteral{Q}}}

\def\stopPDFtoPDFY

{\message{[PDF to PDF \PDFfilename\space not found]}}

\def\convertPDFtoPDF#1#2#3#4#5#6#77,

{\bgroup

\def\PDFfilename{#1}Y

\def\PDFxscale {#2}%

\def\PDFyscale {#3}%
\setPDFboundingbox{#4}{#5}{#6}{#7}{1}{1}%
\uncatcodespecials

\endlinechar=-1

\let\doprocessPDFline=\handlePDFline
\doprocessfile\scratchread\PDFfilename\doprocessPDFline

\stopPDFtoPDF
\egroup}

The next set of macros implements METAPOST to PDF conversion. Because we want to test as fast as
possible, we first define the POSTSCRIPT operators that METAPOST uses. We don’t define irrelevant
ones, because these are skipped anyway.

\def \PScurveto {curveto}

\def \PSlineto {lineto}

\def \PSmoveto {moveto}

\def \PSshowpage {showpage}

\def \PSnewpath {newpath}

\def \PSfshow {fshow}

\def \PSclosepath {closepath}
\def \PSfill {fill}

\def \PSstroke {stroke}

\def \PSclip {clip}

\def \PSrlineto {rlineto}

\def \PSsetlinejoin {setlinejoin}
\def \PSsetlinecap {setlinecap}
\def \PSsetmiterlimit {setmiterlimit}
\def \PSsetgray {setgray?}

\def \PSsetrgbcolor {setrgbcolor}
\def \PSsetdash {setdash}

\def \PSgsave {gsave}

CONTEXT CONTEXT Support Macros

3

4

18

19

20

21

22

supp-pdf

METAPOST to PDF conversion

\def \PSgrestore {grestore}
\def \PStranslate {translate}
\def \PSscale {scale}

\def \PSconcat {concat}

\def \PSdtransform {dtransform}
\def \PSBoundingBox {BoundingBox:}

\def \PSHiResBoundingBox {HiResBoundingBox:}
\def \PSExactBoundingBox {ExactBoundingBox:}
\def \PSPage {Page:?

In POSTSCRIPT arguments precede the operators. Due to the fact that in some translations we need
access to those arguments, as well as that sometimes we have to skip them, we stack them up. The
stack is one-dimensional for non path operators and two—dimensional for operators inside a path.
This is because we have to save the whole path for (optional) postprocessing. Values are pushed onto
the stack by:

\setMPargument {value}
They can be retrieved by the short named macros:

\gMPa {number}
\sMPa {number}

When scanning a path specification, we also save the operator, using
\setMPkeyword {n}

The path drawing operators are coded for speed: clip, stroke, £ill and fillstroke become 1, 2, 3
and 4.

When processing the path this code can be retrieved using
\getMPkeyword{n}

When setting an argument, the exact position on the stack depend on the current value of the
(counters) \nofMPsegments and \nofMParguments.

\newcount\nofMPsegments
\newcount\nofMParguments

These variables hold the coordinates. The argument part of the stack is reset by:
\resetMPstack

We use the prefix @@MP to keep the stack from conflicting with existing macros. To speed up things
bit more, we use the constant \@GMP.

\def\@oMP{@QMP}

\def\setMPargument#19,
{\advance\nofMParguments by 1
\expandafter\def
\csname\@@MP\the\nofMPsegments\the\nofMParguments\endcsname,
{\do#1}}

\def\gMPa#1
{\csname\@@MPO#1\endcsname}

CONTEXT Support Macros CONTEXT

23

24

25

26

27

28

supp-pdf

\def\gMPs#1

{\csname\@@MP\the\nofMPsegments#1\endcsname}

\def\setMPkeyword#1

METAPOST to PDF conversion

{\expandafter\def\csname\QOMP\the\nofMPsegmentsO\endcsname{#1}%

\advance\nofMPsegments by 1
\nofMParguments=0\relax}

\def\getMPkeyword#1,

{\csname\Q@@MP#10\endcsname}

When we reset the stack, we can assume that all further comment is to be ignored as well as handled
in strings. By redefining the reset macro after the first call, we save some run time.

\def\resetMPstack/,
{\catcode ‘\%=\0@Gactive

\let\handleMPgraphic=\handleMPendgraphic
\def\resetMPstack{\nofMParguments=0\relax}/,

\resetMPstack}

The arguments are saved with the preceding command \do. By default this command expands to

nothing, but when we deal with strings it’s used to strip off the (and).

Strings are kind of tricky, because characters can be passed verbatim (hello), by octal number (\005)
or as command (\ (). We therefore cannot simply ignore (and), the way we do with [and J. Another
complication is that strings may contain characters that normally have a special meaning in TEX, like

$ and {3.

A previous solution made \ an active character and let it look ahead for a number or character. W
ehad to abandon this scheme because of the need for verbatim support. The next solution involved

some (catcode) trickery but works well.

\def\octalMPcharacter#1#2#3Y

{\char’#1#2#3\relax}

\bgroup
\catcode ‘\ |=\@@comment
\catcode ‘\%=\@Cactive
\catcode ‘\ [=\@Cactive
\catcode ‘\]=\@Cactive
\catcode ‘\{=\@Ractive
\catcode ‘\}=\@Cactive
\catcode ‘B=\0@@begingroup
\catcode ‘E=\@@endgroup
\gdef\ignoreMPspecials|
B\def%BE|

\def [BE|

\def]BE|

\def{BE|

\def}BEE
\gdef\obeyMPspecials|

B\def%B\char 37\relax

\def [B\char 91\relax

\def]B\char 93\relax

\def{B\char123\relax

CONTEXT

E|
E|
E|
E|

CONTEXT Support Macros

5

6

29

30

31

supp-pdf

METAPOST to PDF conversion

\def}B\char125\relax EE
\gdef\setMPspecials|
B\catcode‘\%=\0@0@active
\catcode ‘\[=\@Cactive
\catcode ‘\]=\@Gactive
\catcode ‘\{=\@Gactive
\catcode ‘\}=\@@active
\catcode ‘\$=\0@0@letter
\catcode‘_=\@@letter
\catcode ‘\#=\0@0@letter
\catcode‘\"=\@@letter
\catcode ‘\&=\@@letter
\catcode‘\|=\@@letter
\catcode‘\"=\@@letter

\def\ (B\char40\relax El
\def\)B\char4i\relax El
\def\\B\char92\relax El

\def\OB\octalMPcharacterOE|
\def\1B\octalMPcharacterlE|
\def\2B\octalMPcharacter2E|
\def\3B\octalMPcharacter3E|
\def\4B\octalMPcharacter4E|
\def\5B\octalMPcharacter5E|
\def\6B\octalMPcharacter6E|
\def\7B\octalMPcharacter7E|
\def\8B\octalMPcharacterSE|
\def\9B\octalMPcharacter9EE
\egroup

We use the comment symbol as a sort of trigger:

\bgroup

\catcode ‘\%=\0@0active
\gdef\startMPscanning{\let’=\startMPconversion}
\egroup

In earlier versions we used the sequence
\expandafter\handleMPsequence\input filename\relax

Persistent problems in IATEX however forced us to use a different scheme. Every POSTSCRIPT file starts
with a %, so we temporary make this an active character that starts the scanning and redefines itself.
(The problem originates in the redefinition by 14TEX of the \input primitive.)

\def\startMPconversion
{\catcode ‘\%=\0@@ignore
\ignoreMPspecials
\handleMPsequence}

Here comes the main loop. Most arguments are numbers. This means that they can be recognized
by their \1ccode. This method saves a lot of processing time. We could speed up the conversion by
handling the path seperately.

\def\dohandleMPsequence#1#2 7
{\ifnum\lccode ‘#1=0

CONTEXT Support Macros CONTEXT

METAPOST to PDF conversion

\setMPargument{#1#2}%
\else
\edef\somestring{#1#2}%
\ifx\somestring\PSmoveto
\edef\lastMPmoveX{\gMPal}%
\edef\lastMPmoveY{\gMPa2}},
\pdfliteral{\gMPal \gMPa2 m}J,
\resetMPstack
\else\ifx\somestring\PSnewpath
\let\handleMPsequence=\handleMPpath
\else\ifx\somestring\PSgsave
\pdfliteral{ql}V
\resetMPstack
\else\ifx\somestring\PSgrestore
\pdfliteral{Q}%
\resetMPstack
\else\ifx\somestring\PSdtransform 7% == setlinewidth
\let\handleMPsequence=\handleMPdtransform
\else\ifx\somestring\PSconcat
\pdfliteral{\gMPal \gMPa2 \gMPa3 \gMPa4 \gMPa5 \gMPa6 cm}%
\resetMPstack
\else\ifx\somestring\PSsetrgbcolor
\pdfliteral{\gMPal \gMPa2 \gMPa3 rg \gMPal \gMPa2 \gMPa3 RG}/
\resetMPstack
\else\ifx\somestring\PSsetgray
\pdfliteral{\gMPal g \gMPal G}%
\resetMPstack
\else\ifx\somestring\PStranslate
\pdfliteral{i 0 0 1 \gMPal \gMPa2 cm}},
\resetMPstack
\else\ifx\somestring\PSsetdash
\handleMPsetdash
\resetMPstack
\else\ifx\somestring\PSsetlinejoin
\pdfliteral{\gMPal jl}%
\resetMPstack
\else\ifx\somestring\PSsetmiterlimit
\pdfliteral{\gMPal M}%
\resetMPstack
\else\ifx\somestring\PSfshow
\handleMPfshow
\resetMPstack
\else\ifx\somestring\PSsetlinecap
\pdfliteral{\gMPal J}%
\resetMPstack
\else\ifx\somestring\PSrlineto
\pdfliteral{\lastMPmoveX\space \lastMPmoveY\space 1 S}/,
\resetMPstack
\else\ifx\somestring\PSscale
\pdfliteral{\gMPal O 0 \gMPa2 0 O cm}}
\resetMPstack
\else
\handleMPgraphic{#1#2}J,

supp-pdf CONTEXT CONTEXT Support Macros 7

8

32

33

34

35

supp-pdf

METAPOST to PDF conversion

AVEAVSAVEANSAVSAVEAN SRV S
\EINFINEINEINFINEINEINE]
\fi
\handleMPsequence}

Beginning and ending the graphics is taken care of by the macro \handleMPgraphic, which is redefined

when the first graphics operator is met.

\def\handleMPendgraphic#17
{\ifx\somestring\PSshowpage
\let\handleMPsequence=\finishMPgraphic
\else
\setMPargument{#11}/,
\fi}

\def\handleMPbegingraphic#1%
{\ifx\somestring\PSBoundingBox

\let\handleMPsequence=\handleMPboundingbox

\else\ifx\somestring\PSHiResBoundingBox
\let\handleMPsequence=\handleMPboundingbox

\else\ifx\somestring\PSExactBoundingBox
\let\handleMPsequence=\handleMPboundingbox

\else\ifx\somestring\PSPage
\let\handleMPsequence=\handleMPpage

\else
\setMPargument{#11}/,

\fi\fi\fi\fi}

\let\handleMPgraphic=\handleMPbegingraphic

We check for three kind of bounding boxes: the normal one and two high precission ones:

BoundingBox: 1lx 1ly ucx ucy
HiResBoundingBox: 1lx 1ly ucx ucy
ExactBoundingBox: 1lx 1lly ucx ucy

The dimensions are saved for later use.

\def\handleMPboundingbox #1 #2 #3 #4
{\dimenO=#1pt\dimen0=-\MPxscale\dimenO
\dimen2=#2pt\dimen2=-\MPyscale\dimen2
\xdef\MPxoffset{\withoutpt{\the\dimen0}}J
\xdef\MPyoffset{\withoutpt{\the\dimen2}}%
\dimenO=#1bp\dimenO=-\dimenO
\dimen2=#2bp\dimen2=-\dimen2
\advance\dimenO by #3bp
\dimenO=\MPxscale\dimenO
\xdef\MPwidth{\the\dimen03}’
\advance\dimen2 by #4bp
\dimen2=\MPyscale\dimen2
\xdef\MPheight{\the\dimen2}/,
\nofMParguments=0
\let\handleMPsequence=\dohandleMPsequence
\handleMPsequence}

We use the page comment as a signal that stackbuilding can be started.

CONTEXT Support Macros

CONTEXT

36

37

38

supp-pdf

METAPOST to PDF conversion

\def\handleMPpage #1 #2
{\nofMParguments=0
\let\handleMPsequence=\dohandleMPsequence
\handleMPsequence}

METAPOST draws it dots by moving to a location and invoking 0 O rlineto. This operator is not
available in PDF. Our solution is straightforward: we draw a line from (current_z, current_y) to itself.
This means that the arguments of the preceding moveto have to be saved.

\def\lastMPmoveX{0}
\def\lastMPmoveY{0}

These saved coordinates are also used when we handle the texts. Text handling proved to be a bit of
a nuisance, but finaly I saw the light. It proved that we also had to take care of (split arguments).

\def\handleMPfshow}
{\setbox0=\hbox
{\obeyMPspecials
\edef\size{\gMPa{\the\nofMParguments} 1}/
\advance\nofMParguments by -1
\font\temp=\gMPa{\the\nofMParguments} at \size bp
\advance\nofMParguments by -1
\temp
\ifnum\nofMParguments=1
\def\do (##1) {##11},
\gMPa1%,
\else
\scratchcounter=1
\def\do (##1{##1}/,
\gMPa{\the\scratchcounter}\space
\def\do{}%
\loop
\advance\scratchcounter by 1
\ifnum\scratchcounter<\nofMParguments
\gMPa{\the\scratchcounter}\space
\repeat
\def\do##1) {##1}7,
\gMPa{\the\scratchcounter},
\fi
\unskip}’
\dimenO=\1lastMPmoveY bp
\advance\dimenO by \htO
\ScaledPointsToBigPoints{\number\dimen0}\lastMPmoveY
\pdfliteral{n q 1 0 0 1 \lastMPmoveX\space\lastMPmoveY\space cm}/,
\dimen0=\htO0
\advance\dimenO by \dpO
\box0
\vskip-\dimenO
\pdfliteral{Q}}

Most operators are just converted and keep their arguments. Dashes however need a bit different
treatment, otherwise PDF viewers complain loudly. Another complication is that one argument comes
after the 1. When reading the data, we simple ignore the array boundary characters. We save ourselves
some redundant newlines and at the same time keep the output readable by packing the literals.

CONTEXT CONTEXT Support Macros

10

39

40

supp-pdf

METAPOST to PDF conversion

\def\handleMPsetdashy

{\bgroup

\def\somestring{ [}V,

\scratchcounter=1

\loop

\ifnum\scratchcounter<\nofMParguments
\edef\somestring{\somestring\space\gMPa{\the\scratchcounter}}%
\advance\scratchcounter by 1

\repeat

\edef\somestring{\somestring] \gMPa{\the\scratchcounter} d}J

\pdfliteral{\somestring}/,

\egroup}

The setlinewidth commands look a bit complicated. There are two alternatives, that alsways look
the same. As John Hobby says:

x O dtransform exch truncate exch idtransform pop setlinewidth
0 y dtransform truncate idtransform setlinewidth pop

These are just fancy versions of x setlinewidth and y setlinewidth. The x 0 ... form is
used if the path is primarily vertical. It rounds the width so that vertical lines come out an
integer number of pixels wide in device space. The 0 y ... form does the same for paths that
are primarily horizontal. The reason why I did this is Knuth insists on getting exactly the
widths TEX intends for the horizontal and vertical rules in btex...etex output. (Note that
PostScript scan conversion rules cause a horizontal or vertical line of integer width n in device
space to come out n + 1 pixels wide, regardless of the phase relative to the pixel grid.)

The common operator in these sequences is dtransform, so we can use this one to trigger setting the
linewidth.

\def\handleMPdtransformy

{\ifdim\gMPalpt>\!!zeropoint

\pdfliteral{\gMPal wl}%

\def\next##1 ##2 ##3 ##4 ##5 ##6 {\handleMPsequencel}’,
\else

\pdfliteral{\gMPa2 w}/

\def\next##1 ##2 ##3 ##4 {\handleMPsequencely,
\fi
\let\handleMPsequence=\dohandleMPsequence
\resetMPstack
\next}

The most complicated command is concat. METAPOST applies this operator to stoke. At that
moment the points set by curveto and moveto, are already fixed. In PDF however the cm operator
affects the points as well as the pen (stroke). Like more PDF operators, cm is a defined in a bit
ambiguous way. The only save route for non—circular penshapes, is saving teh path, recalculating the
points and applying the transformation matrix in such a way that we can be sure that its behavior is
well defined. This comes down to inverting the path and applying cm to that path as well as the pen.
This all means that we have to save the path.

In METAPOST there are three ways to handle a path p:

draw p; fill p; filldraw p;

CONTEXT Support Macros CONTEXT

METAPOST to PDF conversion

The last case outputs a gsave fill grestore before stroke. Handling the path outside the main
loops saves about 40% run time.! Switching between the main loop and the path loop is done by
means of the recursely called macro \handleMPsequence.

41 \def\handleMPpathy
{\chardef\finiMPpath=0
\let\closeMPpath=\relax
\let\flushMPpath=\flushnormalMPpath
\resetMPstack
\nofMPsegments=1
\let\handleMPsequence=\dohandleMPpath
\dohandleMPpath}

Most paths are drawn with simple round pens. Therefore we’ve split up the routinein two.

42 \def\flushnormalMPpath
{\scratchcounter=\nofMPsegments
\nofMPsegments=1
\loop
\expandafter\ifcase\getMPkeyword{\the\nofMPsegments}\relax
\pdfliteral{\gMPs1 \gMPs2 1}%
\or
\pdfliteral{\gMPs1 \gMPs2 \gMPs3 \gMPs4 \gMPs5 \gMPs6 cl}/,
\or
\pdfliteral{\lastMPmoveX\space \lastMPmoveY\space 1 S}/,
\or
\edef\lastMPmoveX{\gMPs1}%
\edef\lastMPmoveY{\gMPs2}%
\pdfliteral{\lastMPmoveX\space \lastMPmoveY\space m}/,
\fi
\advance\nofMPsegments by 1\relax
\ifnum\nofMPsegments<\scratchcounter
\repeat}

43 \def\flushconcatMPpath,
{\scratchcounter=\nofMPsegments
\nofMPsegments=1
\loop
\expandafter\ifcase\getMPkeyword{\the\nofMPsegments}\relax
\doMPconcat{\gMPs1}\a{\gMPs2}\b
\pdfliteral{\a\space \b\space 1}
\or
\doMPconcat{\gMPs1}\a{\gMPs2}\b
\doMPconcat{\gMPs3}\c{\gMPs4}\d
\doMPconcat{\gMPs5}\e{\gMPs6}\f
\pdfliteral{\a\space \b\space \c\space \d\space \e\space \f\space c}/
\or
\bgroup
\noMPtranslate
\doMPconcat\lastMPmoveX\a\lastMPmoveY\b
\pdfliteral{\a\space \b\space 1 S}/
\egroup
\or

1 We can save some more by following the METAPOST output routine, but for the moment we keep things simple.

supp-pdf CONTEXT CONTEXT Support Macros

11

44

45

46

47

48

49

12 supp-pdf

METAPOST to PDF conversion

\edef\lastMPmoveX{\gMPs1}%
\edef\lastMPmoveY{\gMPs2}%
\doMPconcat\lastMPmoveX\a\lastMPmoveY\b
\pdfliteral{\a\space \b\space m}%
\fi
\advance\nofMPsegments by 1\relax
\ifnum\nofMPsegments<\scratchcounter
\repeat}

The transformation of the coordinates is handled by one of the macros Tanmoy posted to the PDFTEX
mailing list. T rewrote and optimized the original macro to suit the other macros in this module.

\doMPconcat {x position} \xresult {y position} \yresult

By setting the auxiliary (dimensions) \dimenO upto \dimen10 only once per path, we save over 20%
run time. Some more speed was gained by removing some parameter passing. These macros can be
optimized a bit more by using more constants. There is however not much need for further optimization
because penshapes usually are round and therefore need no transformation. Nevertheless we move the
factor to the outer level and use bit different pt removal macro. Although the values represent base
points, we converted them to pure points, simply because those can be converted back.

\def\MPconcatfactor{256}

\def\doMPreducedimen#1
{\count0=\MPconcatfactor
\advance\dimen#1 \ifdim\dimen#1>\!!zeropoint .5\else -.5\fi\count0O
\divide\dimen#1 \countO\relax}

\def\doMPexpanddimen#1
{\multiply\dimen#1 \MPconcatfactor\relax}

\def\presetMPconcat?,

{\dimen 0=\gMPs1 pt \doMPreducedimen
\dimen 2=\gMPs2 pt \doMPreducedimen
\dimen 4=\gMPs3 pt \doMPreducedimen
\dimen 6=\gMPs4 pt \doMPreducedimen
\dimen 8=\gMPs5 pt \doMPreducedimen
\dimen10=\gMPs6 pt \doMPreducedimenlO } ¥

0w O N O
==

\def\noMPtranslate) use this one grouped
{\dimen 8=\!!zeropoint h t_x
\dimen10=\!"!zeropoint} ht_y

\def\doMPconcat#1#2#3#47,

{\dimen12=#1 pt \doMPreducedimenl2 % p_x
\dimen14=#3 pt \doMPreducedimeni4 h p_y
%

\dimeni6 \dimen O

\multiply \dimenl6 \dimen 6
\dimen20 \dimen 2

\multiply \dimen20 \dimen 4
\advance \dimenl16 -\dimen20
A

\dimen18 \dimenl2

\multiply \dimen18 \dimen 6

CONTEXT Support Macros CONTEXT

supp-pdf

\dimen20 \dimenl4

\multiply \dimen20 \dimen 4

\advance \dimenl18 -\dimen20

\dimen20 \dimen 4

\multiply \dimen20 \dimenlO

\advance \dimenl18 \dimen20

\dimen20 \dimen 6

\multiply \dimen20 \dimen 8

\advance \dimen18 -\dimen20

)

\multiply \dimenl12 -\dimen 2

\multiply \dimen14 \dimen O

\advance \dimenl12 \dimenl4

\dimen20 \dimen 2

\multiply \dimen20 \dimen 8

\advance \dimenl2 \dimen20

\dimen20 \dimen O

\multiply \dimen20 \dimenlO

\advance \dimenl12 -\dimen20

A

\doMPreducedimenl6

\divide \dimenl18 \dimenl6 \doMPexpanddimenl8
\divide \dimenl12 \dimenl6 \doMPexpanddimenl2
A

\edef#2{\withoutpt{\the\dimen183}}/ % p_x"\prime
\edef#4{\withoutpt{\the\dimen12}}} % p_y~\prime

METAPOST to PDF conversion

The following explanation of the conversion process was posted to the PDFTEX mailing list by Tanmoy.
The original macro was part of a set of macro’s that included sinus and cosinus calculation as well as
scaling and translating. The METAPOST to PDF conversion however only needs transformation.

Given a point (U, U,) in user coordinates, the business of POSTSCRIPT is to convert it to device space.
Let us say that the device space coordinates are (D, D,). Then, in POSTSCRIPT (D, D,) can be written

in terms of (U, U,) in matrix notation, either as

Sy Ty
(D: Dy 1)=(U; U, 1)1y, sy
te 1y
or
D, Sy Ty ta U,
Dy | =17z sy 1y U,
1 0 0 1 1

both of which is a shorthand for the same set of equations:
Dy =s,Up +1,Uy+ 1,
Dy =1, Uy +s,Uy + 1y

which define what is called an ‘affine transformation’.

1)

(4)

POSTSCRIPT represents the ‘transformation matrix’ as a six element matrix instead of a 3 x 3 array because
three of the elements are always 0, 0 and 1. Thus the above transformation is written in postscript as

CONTEXT

CONTEXT Support Macros

13

14

supp-pdf

METAPOST to PDF conversion

[T3 Ty Sy ty ty]. However, when doing any calculations, it is useful to go back to the original matrix
notation (whichever: | will use the second) and continue from there.

As an example, if the current transformation matrix is [sy 7y 7y Sy t5t,] and you say [a b ¢ d e f£]
concat, this means:

Take the user space coordinates and transform them to an intermediate set of coordinates using
array [abcde f] as the transformation matrix.

Take the intermediate set of coordinates and change them to device coordinates using array
[8z 72 Ty Sy ty ty] as the transformation matrix.

Well, what is the net effect? In matrix notation, it is

I, a c e U,
I |=(bv d r||U, (5)
1 0 0 1 1
D, Sp; Ty tg 1,
Dy | =172 sy ty I, (6)
1 0 0 1 1

where (I, 1) is the intermediate coordinate.

Now, the beauty of the matrix notation is that when there is a chain of such matrix equations, one can
always compose them into one matrix equation using the standard matrix composition law. The composite
matrix from two matrices can be derived very easily: the element in the i*" horizontal row and j* vertical
column is calculated by'multiplying’ the ith row of the first matrix and the j* column of the second matrix
(and summing over the elements). Thus, in the above:

D, Sy Ty th U
Dy, | =17 s, t, U, (7)
1 0 0 0 1
with
St = Sza+1yb
T =Tya+ Syb
rl = syc+r,d
Y & Y
/ (8)
8y =TzC+ Syd
U= sge+ryf +t,
ty, =Te€+ sy f + 1y

In fact, the same rule is true not only when one is going from user coordinates to device coordinates,
but whenever one is composing two ‘transformations’ together (transformations are ‘associative’).
Note that the formula is not symmetric: you have to keep track of which transformation existed
before (i.e. the equivalent of [s;r; 7y Sy t5ty]) and which was specified later (i.e. the equivalent of
[abede f]). Note also that the language can be rather confusing: the one specified later ‘acts earlier’,
converting the user space coordinates to intermediate coordinates, which are then acted upon by the
pre—existing transformation. The important point is that order of transformation matrices cannot be
flipped (transformations are not ‘commutative’).

Now what does it mean to move a transformation matrix before a drawing? What it means is that
given a point (P, P,) we need a different set of coordinates (Py, P;) such that if the transformation
acts on (Py, Py), they produce (P, P,). That is we need to solve the set of equations:

CONTEXT Support Macros CONTEXT

50

supp-pdf

METAPOST to PDF conversion

P, Sp Ty lp P!
Pyl =|ra sy ty Pé (9)
1 0 0 1 1

Again matrix notation comes in handy (i.e. someone has already solved the problem for us): we need
the inverse transformation matrix. The inverse transformation matrix can be calculated very easily:
it is

P Sy Ty th P,
Pyl=1r s t P, (10)
1 0 0 1 1

where, the inverse transformation matrix is given by

D =558, — 11y

8y = sy/D

8y = 82/D

rl. = —r./D (11)
7y, = —1y/D

ty = (=syty +1yty)/D

ty = (rate — sgty)/D

And you can see that when expanded out, this does give the formulas:

p - 8y(pe — ta) +1y(ty — py)

* Sy ok Sy — Ty ¥ Ty
T —t mtx_:v

py = 0y =1y} £ 1allz =) »

SI*Sy*Tr*T’y

(12)

The code works by representing a real number by converting it to a dimension to be put into a
(dimension) register: 2.3 would be represented as 2.3pt for example. In this scheme, multiplying two
numbers involves multiplying the (dimension) registers and dividing by 65536. Accuracy demands
that the division be done as late as possible, but overflow considerations need early division.

Division involves dividing the two (dimension) registers and multiplying the result by 65536. Again,
accuracy would demand that the numerator be multiplied (and/or the denominator divided) early:
but that can lead to overflow which needs to be avoided.

If nothing is known about the numbers to start with (in concat), I have chosen to divide the 65536 as
a 256 in each operand. However, in the series calculating the sine and cosine, I know that the terms
are small (because I never have an angle greater than 45 degrees), so I chose to apportion the factor
in a different way.

The path is output using the values saved on the stack. If needed, all coordinates are recalculated.

\def\processMPpathy
{\flushMPpath
\closeMPpath
\pdfliteral{\ifcase\finiMPpath W n\or S\or f\or B\fil}%
\let\handleMPsequence=\dohandleMPsequence
\resetMPstack
\nofMPsegments=0
\handleMPsequence}

CONTEXT CONTEXT Support Macros

15

16

METAPOST to PDF conversion

In PDF the cm operator must precede the path specification. We therefore can output the cm at the

moment we encounter it.

51 \def\handleMPpathconcat¥
{\presetMPconcat
\pdfliteral{\gMPs1 \gMPs2 \gMPs3 \gMPs4 \gMPs5 \gMPs6 cm}
\resetMPstack}

This macro interprets the path and saves it as compact as possible.

52 \def\dohandleMPpath#1#2 ¥
{\ifnum\lccode ‘#1=0
\setMPargument{#1#2}%
\else
\def\somestring{#1#2}/,
\ifx\somestring\PSlineto
\setMPkeyword0
\else\ifx\somestring\PScurveto
\setMPkeyword1
\else\ifx\somestring\PSrlineto
\setMPkeyword2
\else\ifx\somestring\PSmoveto
\setMPkeyword3
\else\ifx\somestring\PSclip
\let\handleMPsequence=\processMPpath
\else\ifx\somestring\PSgsave
\chardef\finiMPpath=3
\else\ifx\somestring\PSgrestore
\else\ifx\somestring\PSfill
\ifnum\finiMPpath=0
\chardef\finiMPpath=2
\let\handleMPsequence=\processMPpath
\fi
\else\ifx\somestring\PSstroke
\ifnum\finiMPpath=0
\chardef\finiMPpath=1
\fi
\let\handleMPsequence=\processMPpath
\else\ifx\somestring\PSclosepath
\def\closeMPpath{\pdfliteral{h}}%
\else\ifx\somestring\PSconcat
\let\flushMPpath=\flushconcatMPpath
\handleMPpathconcat
AVEANSAVSAVEAVSAVSAVSAVSFAVSANSAN 1
\fi
\handleMPsequence}

The main conversion command is

\convertMPtoPDF {filename} {x scale} {y scale}

The dimensions are derived from the bounding box. So we only have to say:

\convertMPtoPDF{mp-pra-1.eps}{1}{1}
\convertMPtoPDF{mp-pra-1.eps}{.5}{.5}

supp-pdf CONTEXT Support Macros

CONTEXT

METAPOST to PDF conversion

53 \def\convertMPtoPDF#1#2#3,
{\bgroup
\message{[MP to PDF #1]}J
\setMPspecials
\startMPscanning
\def\do{}%
\edef\MPxscale{#2}/,
\edef\MPyscale{#3}/
\setbox0=\vbox\bgroup
\forgetall
\offinterlineskip
\pdfliteral{q}
\let\handleMPsequence=\dohandleMPsequence
\input #1\relax}

54 \def\finishMPgraphic}

{\pdfliteral{Q}’

\egroup

\wd0=\MPwidth

\vbox to \MPheight
{\forgetall
\vfill
\pdfliteral{q \MPxscale\space O 0 \MPyscale\space

\MPxoffset\space \MPyoffset\space cm}/,

\box0
\pdfliteral{Q}}V

\egroup}

This kind of conversion is possible because METAPOST does all the calculations. Converting other
POSTSCRIPT files would drive both me and TgX crazy.

55 \protect \endinput

supp-pdf CONTEXT CONTEXT Support Macros 17

18

supp-pdf

METAPOST to PDF conversion

\convertMPtoPDF 3
\convertPDFtoPDF 1

CONTEXT Support Macros

\PDFmediaboxprefered 1

CONTEXT

