Experience with Literate Programming
or
Towards Qualified Programming

Thomas Setz

Technische Hochschule Darmstadt
Fachbereich Informatik
Alexanderstr. 10
D-64283 Darmstadt
Germany

thsetz@Qcdc.informatik.th-darmstadt.de

Abstract This article illustrates the experience gained in the field of
literate programming while developing the distributed system LIPS over
a period of 6 years. A big part in this area of research is system pro-
gramming, and after the first version of the system which was imple-
mented in “pure C” I was looking for a better way to realize the system.
I thought the approach of literate programming which views program-
ming as writing literature and therefore merges programming language
and documentation language in one document, would be a good choice
and started to use CWEB; a tool for literate-programming with the C
language.

We started with the CWEB version 3.0 [KL93] and soon found that we
did not like the restriction to only use the TgX documentation language.
Therefore, we integrated a possibility to use WTEX as the documenta-
tion language. With the increased usage of WWW documents and the
hypertext markup language (HTML) we added mechanisms to follow hy-
pertext links in documents like a Master Thesis to the “real” program
in the cwEB file. This enables us to follow a more abstract thought and
its description in a “upper level” document to the real intrinsics of its
implementation using standard tools like NETSCAPE and is the basis to
look at the whole project as a big hypertext document.

While using this tool on a daily basis, we found that literate programming
should be enhanced. It is not enough to write well documented programs,
they should also be tested in order to reach better software quality. That
is what we call qualified programming.

In this article we first give a short introduction to programming with
CWEB. The next sections deal with additional tools and practical issues
like GNU Emacs support and automatic translation to HTML within
the LIPS development system. The status of our current work, the en-
hancement of literate programming towards qualified programming, is
presented next. We finish this article with a view on our future work.

1 Introduction

In 1991 I started implementing a distributed system called LIPS which uses the
idle-cycles in networks of workstations for the purpose of distributed computa-
tions [Set91,SR93,5et96,SF96,SL.97]. A big part in this area of research is system
programming, and after the first version of the system which was implemented
in “pure C” I was looking for a better way to realize the system. I heard about
the literate programming approach and took a look at it.

I started reading the article “Literate Programming” [Knu84] written by Donald
Knuth where he says:

I believe that the time is ripe for significantly better documentation of
programs, and that we can best achieve this by considering programs to
be works of literature. Hence, my title: ‘Literate Programming’. ... Let us
change our traditional attitude to the construction of programs: Instead
of imagining that our main task is to instruct a computer what to do,
let us concentrate rather on explaining to human beings what we want
a computer to do. ... surely nobody wants to admit writing an lliterate
program.

After having read so far in the article , I liked the idea of sitting in my office
late in the night writing on a scene in the second act of my comedy (drama)
called LIPS where a system process (the good one) suddenly is stroken by a fault
(the bad one). I found it a nice way to look at the problem — although the more
technical view, namely what happens if the ioct1 () does not work, seemed to be
closer to the real world. Anyway, what I missed having read so far was a better
way of integrating a hierarchy into the code. I knew the DeMarco approach
[DeM79] of Structured Analysis, where a complex problem is subdivided into
smaller subproblems, so-called bubbles, and each of these subproblems

1 nput /%—\\\ \/sl
odtput
Module 1 Module 2 Module 3

AR & .

L4 \4

Submodules Submodules Submodules

Figurel. Layering Data Flow Diagrams

2. Programming in CWEB 3

could be subdivided further into additional layers until the so-called level of mini-
specifications is reached, close to the level of real implementation. This scenario
is depicted in Figure 1. Reading further in Knuth’s article I found

I chose the name WEB partly because it was one of the few three-letter
words of English that hadn’t already been applied to computers. But
as time went on, I’ve become extremely pleased with the name, because
I think that a complex piece of software is, indeed, best regarded as
a web that has been delicately pieced together from simple materials.
We understand a complicated system by understanding its simple parts,
and by understanding the simple relations between those parts and their
immediate neighbors. If we express a program as a web of ideas, we can
emphasize its structural properties in a natural and satisfying way.

There is the “structural property” I was looking for.

Since then we started to develop the whole system (approximately 60.000 lines
of documented code) in cWEB. Using the CWEB tool on an every day basis,
we adapted it to our needs. The first step was the possibility to use KTEX as
documentation language instead of TEX. Then we integrated the CWEB doc-
uments nicely into the imake-, autoconf- and CVS-based development system
and created template files for manual pages, header files etc. . We introduced
commands to integrate additional glossary and keyword listings into the CWEB
files and added a bibliography to those files. In the next step we found that it
would be good to follow the hierarchy of a CWEB document via hypertext links.
Especially, it should be possible to follow the hierarchy across the border of the
document itself. This enables us to follow an abstract view of an approach, for
example, in a Master Thesis via a hypertext link to its implementation in an-
other HTML file being generated from the CWEB-based source code. Currently,
we are working on a CWEB-based test environment helping us to (automatically)
decide whether the piece of literature (module) is found to be a drama or comedy
on the stage (platform).

In this article I first give an example of writing and structuring a CWEB pro-
gram and show the different translation tools needed to generate program code
as documentation from a CWEB file. In the next section our Emacs interface,
specially adapted to our needs, is sketched. The generation of HTML code from
a CWESB file is explained next, and some examples show how we use this feature.
The following section sketches the state of our current work dealing with the
integration of a test language into the CWEB document. Preceding the conclu-
sion and summary, we give some performance data for the usage of the different
translation tools.

2 Programming in CWEB

The cWEB package is a front-end to the C programming language; it is not an
entire new system. So everyone familiar with programming in C will be able

to write code in CWEB. A CWEB program holds both documentation and C
code in one file, so the system is helpful to improve structured documentation.
The documentation is written in ITEX style, and therefore every CwWEB file is
a mixture of BTEX and C code. First I will give a very small example of the
simplest way to write a CWEB program.

1 Q

2 Qc

3 #include <stdio.h>

4 int main()

5 {

6 printf ("Hello, world!\n");
7 return O;

8 }

The only difference between the CWEB file (typically ending with .w) and the
well known Hello world example in C can be found in the first two lines. The
first @ sign introduces the documentation part of the CWeB Hello world program
and the @c starts the C part of the program. The minimal difference between a
C file and a CWESB file is @ @c.

In the rest of this section I will first introduce a more complex program making
use of the documenation and structuring capabilities of CWEB. Then, a high
level view on the structure of a CWEB file is presented. The section closes with
the description of tools needed in the process of translating a CWEB file into the
different document and program representations.

2.1 Developing More Complex Programs

It is not only possible to write normal C code in CWEB programs, but it is also
possible (and strongly recommended!) to build a structured program using bub-
bles.! In the example, we develop a small utility called “findstr” which outputs
the location of the first occurrence of a string in a file. We will now examine
how we can divide the program into small units. As shown in Figure 2, a natural
approach would be to split the file into a bubble holding the necessary include
files and another one holding the main program. The main part needs to perform
input in order to get the name of the file, to open it and read it into memory.
Then it has to do some computation in order to find the string in the memory.
At the end, it prints the result of the analysis.

The code for the implementation of the main part in CWEB will be presented
next. In the example, we omit the coding for the manual page and included
header files and start with the main part.

! According to the CWEB terminology, the structuring units are called sections but I
prefer the term bubble for a section as it is closer to the DeMarco terminology.

2. Programming in CWEB 5

[

struct stat fileinfo
char *filebuf

int position

char *argv[1] int found
& (computation J——"""————a=—

read file
into memory

check command -—’ get size and

Figure2. A sample program tree

1 @ The Program findstr. \newline

2 We use this straightforward procedure: Examine the command
3 line, get the arguments and check if they are in correct

4 format. Then read the given file, search for the string and
5 output the result. If an error occurs, the program will exit
6 with an error message.

7

8 @c

9 int main(int argc, char *xargv) {

10 @<variable declarations@> @/

11 @<input (get string and file)@> @/

12 @<computation (search string occurrence)@> @/

13 @<output (print result on screen)@> @/

14 exit (0);

15 %

So we see that a bubble is created by the code “@< name @>”. Now that the
bubbles are declared, we can define their contents. This is done in the following
way: We open a new section, write the documentation code, and then we do not
use the “@c” sequence to start the C code part. Instead, we use the construct
“@< name @>=". This also starts the C part of a section, but now the following
C code is taken as the content of the bubble called “name”. Let’s take a look at
how we fill the input bubble:

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

@ Input. \newline

We will get the arguments from the command line and read the
given file. It is easy to get the arguments: they can be
accessed by any C program in the function main() as argc,
which holds the number of arguments, and argv, which is an
array of strings that were given in the command line. If the
format of the command line turns out to be wrong or if we are
unable to read the given file, we output an error message and
exit.

@<input (get string and file)@>=

@<check command line syntax@> @/

@<open file@> @/

@<get size of file and allocate memory@> @/
Q@<read file into memory@> @/

So you see how the usage of bubbles work: in a bubble, you may of course define
more bubbles, which you can define later. Then, at the bottom of the program
structure tree, you will use real C code and that may look like this.

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

@ The |stat()| system call will get file information into the
[fileinfo| structure. The entry |st_size| in that structure
indicates the total file size in bytes. Then we allocate as
much memory as we need to hold the complete file. If anything
fails, we exit with an error message.

0<get size of file and allocate memory@>=
if (stat(argv[2], &fileinfo)!=0) {
fprintf (stderr, "cannot get size of file %s\n",
argv[2]);
exit(-1);
}

filebuf=malloc(fileinfo.st_size);
if (filebuf==NULL) {
fprintf (stderr, "cannot allocate %d bytes\n",
fileinfo.st_size);
exit(-1);

The code for the other missing bubbles, is omitted as it should be easy to imagine
how the rest of the application could be coded. Having understood this concept,
you should now be able to write your own CWEB programs.

2. Programming in CWEB 7

2.2 A High Level View on a ¢wkgB File

A high level view on a CWEB file is given in Figure 3. It is easy to see that the
file (module) consists of mutiple bubbles each of which is further divided into
a documentation part and a code part. Within every code part it is possible to
“call” additional bubbles, which could be defined later. The limbo part at the

limbo
bubble 1 documentation
code
bubble 2 documentation
code
documentation

program bubble 3

code

%

documentation
code

bubble n

Figure3. Structure of a CWEB file

beginning of a CWEB file is an area in which one may use plain TEX commands
as definitions, page settings or other things.

2.3 Translating a CWEB File Into Other Formats

As shown in Figure 4, the translators ctangle and hycweave are used to get
the documentation or program code from the CWEB file. The ctangle command
extracts the C code from the .w-file and throws away all comments. The resulting
.c-file can be fed to a C compiler like cc or gcc. The documentation is prepared
using the command hycweave which creates a .tex-file that can be fed to IWTEX
to create DVI files or to ATEX2HTML in order to build an HTML document.

2.4 Advanced Control Codes

For a complete catalogue of CWEB control codes, please refer to the document
“The ¢WEB System of Structured Documentation” by Donald E. Knuth and
Silvio Levy, which is shipped with the CWEB package. A special feature worth
mentioning is the highlighting of variable names in the documentation part of
a bubble. If you mention a variable, function, or section in the IXTEX part of a
bubble, you may want to write “|example_function() |” instead of the ordi-
nary way. This will yield nicer output, and in addition the index will be searched

findstr.w

ctangle findstr.w
hycweave findstr.w

findstr.c findstr.tex
) latex2html findstr.tex
gcce findstr.c latex findstr.tex
; : findstr.ntml
findstr* findstr.dvi nodel.html

xdvi findstr.dvi n0<_1e2-html

dvips findstr.dvi
preview, print

Figure4. How to work with CWEB

to print the section number where example_function is defined after the ex-
pression.

3 The Directory Structure of LIPS

The TOP directory of the LiPS system as shown in Figure 5 consists of several
subdirectories for the different types of files in the system. The cweb/ direc-
tory which is further divided into subdirectories holds the LIPS system code
written in CWEB. When we generate the system, further subdirectories named
according to the directory name in the CWEB directory are created. The src/
subdirectory will later contain the C code of the program, and the platform/
directory, divided into system specific subdirectories, will then contain system
dependent object code, libraries and executables. The doc/ directory holds the
TEX, DVI, PostScript and HTML representation of the CWEB files. Again, the
name of each subdirectory is chosen according to the directory name in the CWEB
tree. Directories that are needed beside the initial directories in the CWEB tree
are generated on the fly and therefore do not need to be part of the revision
control system. The inc/ directory holds the necessary header files which are
also generated from CWEB files. The Install_and_work directory holds some
directories where IATEX sources for documentation like theses or papers live.
The figs/ directory holds subdirectories of all pictures used somewhere in the
documentation. This feature enables us to reuse pictures once drawn in multiple
places.

4 Emacs Modes

GNU Emacs is much more than an editor. Together with its Lisp interface and
the variety of mode packages that come with the distribution, it provides the abil-

4. Emacs Modes 9

LiPS TOP directory

include
cweb platforms nstall_and work doc figs src
lips_source/ - papers .
lips_monitor/ - Talks ovi
PS |- lips_service/
tex |- lips_source/
— lips_monitor/
sundc_SunOS 4.1.3 i486_Linux_0.99.12
~ lips_service/ — lips_service/
~ lips_source/ — lips_source/
— lips_monitor/ — lips_monitor/

Figureb. The LiPS directory tree

ity of editing with centralized customization. Meanwhile, we consider it a manda-
tory component for our project development. With our LIPS Emacs package we
provide a standardized interface for PERL, C, ITEX, and CWEB documents.
Figure 6 shows Emacs with the file findstr.w using the LIPS-CWEB-mode. By
applying Lisp hooks to basic modes such as the PERL-mode we tune in standard
definitions such as indentation widths, short cuts or hot keys for special LIPS
editing features. But also basic faces as text highlighting with the h1319 package,
or umlaut handling with the iso-accents-mode are incorporated. Additionally
we have a special Emacs mode for CWEB files. It’s main features are:

— Mouse support for the X version of the GNU Emacs, so that you can easily
jump between bubbles;

— Hypertext-like browsing through CWEB code;

— Im- and exploding of bubbles, to hide/show code/documentation part(s) of
bubble(s) in the edit buffer;

— Highlighting of CWEB code;

— Built-in shell to ctangle, hycweave, ATEX and C-compilers;

— Adaptations for the usage with the LIPS development environment, e.g.
insertion of standard CWEB header files or manual pages.

This makes editing especially, large CWEB documents, very comfortable.

10

@ The Program findstr, \newline Inplode Bubble

ke use this straightforuard procedure: Exan 1yniode Doc Part

the arguments and check if they are in corr

given file, search for the string and outpe IMplode German Doc Part
occurs, the program will exit with an error Implode English Doc Part

The overall structure of the program is gi\Imp10de Test Part
Figure™ref [\LiPSFigsPapersl itProg {} /orog 1 Implode Code Part
postsoript (WLiPSF igsPapersLitProg i} forog 1 Inplode Limbo
structure of iI\tt findstri} [} Inplode A11 Bubbles

Buffers Files Tools Search Edit Compile Im—fExp]odelIump History Help |!

(M-mouse-23

int main(int argc, char **argy) §
Bvariable declarations@- ETIGRE Germén Doc Part
@< input (zet string and file)@ Explode English Doc Part
@<computation (search string oCcurt Explode Test Part
B<output (print result on screen) @:

@Ac Implode A11 Doc Parts

@< includes@> Inplode A1l German Doc Parts

Wnain@> Inplode 411 English Doc Parts

@ Inplode A11 Test Parts

@<includes@:=, . 1 Inplode &11 Code Parts

@ Explode Eubble (C-H-mouse-27
Bimaindy= Explode Doc Part

SRit(0); Explode Code Part
1 Explode Limbo

o Explode A11 Bubbles
@ |fileinfo| holds the result of |stat()|.

of the file, Explode A17 Doc Parts
Avariable declarations@r= Explode A11 German Doc Parts
struct stat fileinfo, *filebuf; Explode A11 English Doc Parts

@ Irput. Ynewline Explode A1l Test Parts
We will get the arguments from the command Explode AT1 Code Parts

file, It is easy to get the arguments: thed
progran in the function main) as arec, ulh:EXp]DCIE thole Buffer

argunents, and argv, which is an arrag of : Activate CWEE Key Bindings

the command line, If the format of the comw&Fo ITIRE TOFFS OOT T0 OE
wrong or if we are unable to read the given file, we output an error
nessage and exit,

Blinput Ceet string and filej@x=
@<check command line syntan@

Bopen file@:

B<get size of file and allocate memory@>
Biread file into memory@s

@ The “TGlossar{stat ()} {obtains information about the file pointed to
by the path parameter,} system call will get file information into the
|fileinfo| structure. The entry |st_size| in that structure indicates
the total filesize in buytes, Then we allocate a= much memory as we
need to hold the complete file, If angthing fails, we exit with an

.

.. Eady!

Figure6. Emacs on the screen

5. Developing for the Internet 11

5 Developing for the Internet

The World Wide Web has reached wide-spread use and the up-to-date represen-
tation of a project has meanwhile become a major concern. Given ATEX2HTML,
a translator from ATEX to the hypertext markup language (HTML) it is easy
to compile the whole project to a World Wide Web representation.

5.1 ITEX2HTML Briefly

WATEX2HTML was initially developed by Nikos Drakos, University of Leeds (Great
Britain).

IXTEX2HTML is a conversion tool based on the PERL programming language that
allows documents written in IXTEX to become part of the World Wide Web.
In addition, it offers an easy migration path towards authoring complex hyper-
media documents using familiar word-processing concepts.

ITEX2HTML replicates the basic structure of a IATEX document as a set of in-
terconnected HTML files as it is shown in Figure 7 which can be explored us-
ing automatically generated navigation panels. The cross-references, citations,
footnotes, the table of contents and the lists of figures and tables are also trans-
lated into hypertext links. Formatting information which has equivalent “tags”
in HTML (lists, quotes, paragraph-breaks, type-styles, etc.) is also converted
appropriately. The remaining heavily formatted items such as mathematical
equations, pictures or tables are converted to images which are automatically
placed at the correct positions in the final HTML document. The conversions
are summarized in Table 1.

It extends IATEX by supporting arbitrary hypertext links and symbolic cross-
references between evolving remote documents. It also allows the specification
of conditional text and the inclusion of raw HTML commands. These hyper-
media extensions to BTEX are available as new commands and environments
from within a ATEX document.

TEX HTML
text passage |text passage

math formula|GIF image or HTML MATH
tabular GIF image or HTML TABLE
figure GIF image

Tablel. I TEX2HTML’s simplification for HTML.

Figure 8 shows how the IXTEX2HTML converter is realized. 2 It is written in the

12

section 1
BTEX: section 2

.tex

HTML: | section 1 | > | section 2
.html .html

Figure7. A possible replication of the document structure.

KTEX -0

macros

Web site

Figure8. Realization of the IXTEX2HTML converter.

6. Current Work 13

PERL programming language and uses various other programs and tools such as
BTEX, makeindex and pstoimg.

5.2 Conversion of cWEB to HTML

Together with I TEX2HTML and our CWEBTEX package, we are able to generate
an HTML presentation from the hycweave output. This raises the hyperization
of a CWEB file to its full powers.

Within the HTML document, we may jump back and forth between refinements,
specific locations of variables, the index or the glossary, and much more. Every-
thing that is hyperizable with CWEB is available in our HTML presentation.
Additionally, we have now a presentation ready for the Internet.

Figure 9 and 10 show two examples of CWEB files converted to HTML — both
a high level description and a (low level) CWEB bubble with typical hypertext
elements.

5.3 Linkage of CWEB Documents

It would be nice to point from one refinement of a specific module to another
refinement located elsewhere. With our hycweave alone, this would only be pos-
sible if the refinements lived within one CWEB file.

Within our project, we have an overwhelming amount of CWEB documents which
are also quite heterogeneous. This rules out the approach to have a top level
CWEB file which includes all the underlying ones.

Consequently, our next step resulted in linkage of stand-alone CWEB files. We
developed some special TEX macros which, provided we have unique refinement
names, enables us to point to a refinement outside the current CWEB file. We
call this an inter-refinement.

This feature is rendered in the DVI output as well as available with HTML to
jump between CWEB presentations (Figure 11 on page 16).

6 Current Work

So far, we have built an environment well-suited to implement and document
our system. But implementing and documenting is not the only thing to be done
while building a distributed system. Code changes over the time, bugs are fixed
and code is ported to other architectures. Needless to say that some code being
originally implemented on one architecture will not work on another one or even
worse, may not behave as expected. The same condition holds for bug fixes,

% The figure is taken with kind permission of Ross Moore (ross@mpce.mq.edu.au) from
his talk at the first W TEX2HTML workshop at the Technische Hochschule Darmstadst,
Germany.

14

Next || Up|| Previous|| Tndex

(lossary

Next: Section 2 Up: Chair Buchmann —
LiPS:/LiPS/thsetz/TiP S/ doc/htmlfapplicatons/findstr
Previouns : Chair Buchmann —

LiPS:/LiPS/thsetz/TiP S/ doc/htmlfapplicatons/findstr

1. The Program findstr.

We use this straightforward procedure: Examine the
comnmand line, get the arguments and check if they are in
correct format, Then read the given file, search for the
string and output the result, If an error occurs, the program
will exit with an error message.

The overall structure of the program is given in Figure 0.1,

zmue cxex floiolo

; chx fichuf iocpomidm
chx =py[l] o Touod
—={_iopus {compustion ===

Figure 0.1: Overall structure of findstr

< inclhades 2=
< main 3

Figure9. NETSCAPE showing a high level description of the findstr program

6. Current Work 15

Next[[Upl| Previous|[Tndex
S

Figurel0. HTML representation of a (low level) CWEB bubble

16

SEE ALSO :

{ process_req() _processreq.w 3}, the next leve
(l'd() rd.w4) and(rdp() rdp.w4>.

NOTES :

{ out() 1) does not allow formal parameters, it
them according to the types specified in the tyf

Figurell. Refinement links of file out.w
You see links to inter-refinements (e.g. to refinement rd() of file rd.w) and a link to
an intra-refinement (out () of the current file).

which will make the system work on one architecture but may introduce some
more errors on another architecture. It is hard work to find out what the error
is and why it appears. This field asked for more tools to be integrated into the
development environment.

In the first step, we wrote a tool called spectest [STea94], which is able to
generate a test program from a C function and a test description (Figure 12).
The test description is written in a test description language, defining the test

cweb-filew

test description file

¢ spectest
cweb-file.C
gct g++
~
generated Testprogramm
cweb-file.cov /
Expect
$. Investigation
cweb-filellog
cweb-file.sum
J

Figurel2. How to work with the test environment

case by its preconditions, the tests to be performed and the expected results

6. Current Work 17

to be reached. Multiple tests can be performed with one test description. It is
possible to define stubs for functions being called from the tested functions in
order to investigate the tested function in isolation (unit test). It is also possible
to call the “real” function and thereby making an integration test. The main
advantage of our spectest tool in comparison to other test tools in this area,
e.g. dejagnu [Sav96], is the possibility to perform the tests on the basis of a
function instead of being able only to test a main program.

In the next step we integrated this tool together with gct [Mar95], Expect [Lib94],
g++ [Sta94] and our development environment [STea94]. This is still ongoing
work, and a more detailed description is given in [Lip97]. The integration of gct
enables us to find the coverage of the performed tests. The coverage measure-
ments determine whether the set of tests applied to the module have test cases
such that every branch of a function is walked through at least once while the
tests are performed. The integration of our development environment and Expect
enable us to simply type make findstr.test, and all tests for this module are
performed automatically. After the tests are finished, a file named findstr.sum
gives a summary on the performed tests. Its content looks like:

-- Test Summary for /LiPS/lippmann/LiPS/test/examples/findstr.w

—-- Working revision: Repository revision:
-- RCS Id: findstr.w,v 1.1 1997/01/22 11:28:19 lippmann Exp

UNITTESTfindstr.t: PASS
testl: PASS
test2: PASS

BINARY BRANCH INSTRUMENTATION (4 conditions total)
1 (25.00%) not satisfied.
3 (75.00%) fully satisfied.

LOOP INSTRUMENTATION (3 conditions total)
2 (66.67%) not satisfied.
1 (33.33%) fully satisfied.

MULTIPLE CONDITION INSTRUMENTATION (4 conditions total)
2 (50.00%) not satisfied.
2 (50.00%) fully satisfied.

SUMMARY OF ALL CONDITION TYPES (20 total)
9 (45.00%) not satisfied.
11 (55.00%) fully satisfied.

A more detailed description, especially a description of what failed if the test
failed, are given in findstr.log. The coverage of the tests are given in
findstr.cov.

18

7 Performance

As I found in some discussions, a lot of people tend to think that the additional
documentation in the programming document takes too much time while devel-
oping programs for translation between CWEB and C, I built up a table with the
timings spent within the different tools. This list is given in Table 2. It shows the
times (sum of user and system CPU time) of the different tools on various plat-
forms for translating a file in the order of magnitude of findstr. It can be seen
that the times additionally needed by the CWEB tools (ctangle and hycweave)
can be ignored in comparison to the others.

[[ctangle[gcc[hycweave| WTEX [IATEX 2HTML |dvips]

sun sparc ultra 170E 0.0{0.3 0.0f 1.2 1:03.9] 0.1
sun sparcstation 4 0.0|1.5 0.3 4.2 58.7| 0.5
sun SLC 0.1/6.1 0.1 171 4:53.7 6.7

Table2. Time measurements for the different tools on different platforms

8 Conclusion and Summary

In this article, I have presented how literate programming is used within the de-
velopment of our system LIPS. I showed the similarity of structuring properties
in established software engineering methods like Structured Analysis to struc-
turing possibilites given in programming with CWEB, and how this is integrated
into our project’s development system. The property to translate CWEB doc-
uments and accompanying documents like Master Theses into HTML format,
and thereby enabling us to see the whole procect as a large hypertext document,
shows the analogy.

The integration of software testing into our development system should con-
tribute to a better quality of our software, although many questions of how
testing should be realized come up and have to be solved in the future.

I have been working for a couple of years with the literate programming aproach,
and keep going on. In [Knu84] Donal Knuth said about his opinion on literate
programming

In fact, my enthusiasm is so great that I must warn the reader to discount
much of what I shall say as the ravings of a fanatic who thinks he has
just seen a great light.

9. Acknowledgements 19

I have already joined this party a couple of years ago, and with the hypertext
and testing extension — the direction towards qualified programming — the light
even seems to be brighter now.

9 Acknowledgements

Building a distributed system and a nicely fitting development environment is a
lot of work. While working at the Universitét des Saarlandes, Saarbriicken (Ger-
many), I had a lot of students involved in the implementation of our development
system. I am very grateful to them spending lots of hours in the integration and
adaption of tools into the development system.

Martin Tews wrote the first version of hycweave® and integrated the IKTEX
documentation language. Thomas Liefke wrote the first version of the spectest
tool which now is the backbone of our test environment. Harald Lorchert realized
the first version of our Emacs mode. Jens Lippmann spent a lot of time in
implementing the translation of CWEB files to HTML and integrated the test
environment into our development system.

References

[DeM79] T. DeMarco. Structured Analysis and System Specification. Prentice-Hall
publishers-Yourdon, Inc, 1979. Also published in/as: Yourdon, Inc., New York,
1978.

[KL93] Donald E. Knuth and Silvio Levy. The CWEB System of Structured Documen-
tation, Version 3.0. Addison-Wesley, Reading, MA, USA, 1993.

[Knu84] Donald E. Knuth. Literate programming. The Computer Journal, 27(2):97—
111, May 1984.

[Lib94] Don Libes. Ezploring Ezpect: A Tcl-based Toolkit for Automating Interactive
Programs. O’Reilly & Associates, Inc., 981 Chestnut Street, Newton, MA 02164,
USA, December 1994.

[Lip97] Lippmann J. Integration einer Testumgebung in LIPS. Diplomarbeit, Univer-
sitdt des Saarlandes, Lehrstuhl Prof. Buchmann, 1997.

[Mar95] Brian Marick. The Craft of Software Testing. Prentice Hall, 1995.

[Sav96] Rob Savoye. The DejaGNU Testing Framework. Free Software Foundation,
http://www.cygnus.com/library/dejagnu/dejagnu_toc.html edition, 1 1996.

[Set91] Setz T. Integration einer Linda-orientierten Laufzeitumgebung in LIPS. Diplo-
marbeit, Universitdt des Saarlandes, 1991. Fachbereich Informatik, Lehrstuhl
Professor Buchmann.

[Set96] Setz T. Integration von Mechanismen zur Unterstitzung der Fehlertoleranz in
LI1PS. PhD Thesis, Universitit des Saarlandes, 2 1996. Fachbereich Informatik,
Lehrstuhl Prof. Buchmann.

[SF96] Setz T. and Fischer J. Software Fehlertoleranz vom Level Eins in LIPS. In
Proceedings of SIWORK’96, Workstations and their applications, Zirich, May
1996.

3 This version changes the original cweave only by some 10’s of lines.

20

[SL97] Setz T. and Liefke T. The LIPS Runtime Systems based on Fault-Tolerant Tu-
ple Space Machines. In Proceedings of the Workshop on Runtime Systems for
Parallel Programming (RTSPP), 11th International Parallel Processing Sym-
posium (IPPS’97), Geneva, Switzerland, April 1997. Appeared as Technical
Report, Vrije Universiteit Amsterdam, Faculteit der Wiskunde en Informatica,
No. IR-417, februari 1997.

[SR93] Setz T. and Roth R. Distributed Processing with LIPS. In ALCOM,
Saarbriicken, August 1993.

[Sta94] Stallman R. M. Using and Porting gcc. Free Software Foundation, 1994.

[STea94] Setz T., Tews M., and et al. The LIPS Development System, 10 1994. Uni-
versitat des Saarlandes, Fachbereich Informatik, Lehrstuhl Prof. Buchmann.

