Technische Universitat Berlin

Forschungsberichte
des Fachbereichs Informatik

A Pragmatic Approach

to Software Documentation

Klaus Didrich

Torsten Klein

Report No. 964
November 1996

Technische Universitat Berlin
Fachbereich 13 e Informatik
FranklinstraBe 28/29 e D - 10587 Berlin

A Pragmatic Approach to Software Documentation

Klaus Didrich* Torsten Kleint

Abstract

We present an approach for designing a literate programming tool that,
in addition to covering the technical issues, especially targets the accep-
tance of the documentation system by the program developer. We then
describe the DosFOP documentation system for the OPAL language, which
was developed in line with these design principles. Finally, we discuss ex-
periences with the system from a user’s and from an implementor’s point
of view.

1 Introduction

The need to document software products as soon as they have evolved beyond
the stage of mere playthings or examples is evident to most software users
and even to most software developers. Nevertheless, documentation is often
not available or is outdated, either because the development of actual running
software is more important and is easier to check for the customer than the
quality of the documentation or because the job of keeping the documentation
up to date is too arduous.

Documentation systems can help to combat the second problem. There are now
several systems available, starting with Knuth’s original web! [Knu83]. We will
discuss some of them in the following section. Their success is, however, only
limited. It seems that one needs discipline and a strong faith in the usefulness
of software documentation to use such a system. We would not go as far as C.
van Wyk, who writes that “[a] fair conclusion from my mail would be that one
must write one’s own system before one can write a literate program” [Van90],
but clearly it is not easy to persuade people to use a system for documenting
software.

If we are to propose yet another approach to software documentation we have to
be careful about the requirements for such systems. In this regard, the remarks
by Will Partain on the creation of the Glasgow literate programming system

*TU Berlin, FB Informatik, Group Compiler Construction and Programming Languages
'TU Berlin, FB Informatik; now at Daimler-Benz AG Forschung Systemtechnik Berlin
!...web has nothing in common with the popular Internet communication concept “World

Wide Web”.

[GRA92], describing not only the system itself but also its development and
origins and experiences with certain of its features, have been very helpful.

The purpose of this paper is to present our approach, and to show by experiment
that a documentation system that is written according to the principles of this
approach is actually not only used by its authors but also by other developers.

The documentation system we have developed is called DosrOp. It began
as a documentation system for the functional programming language OPAL
[DFG*94], which was developed at the TU Berlin by our group. While some
features are specific to OPAL, or more generally to functional programming
languages, the main objectives of the documentation system are language inde-
pendent. We use DosrOP to illustrate our approach to documentation system
development.

e In software engineering, modules are used to structure the software sys-
tem. These modules form a hierarchy reflecting the logical relations be-
tween modules or groups of modules. We expect a documentation system
to support the documentation of a software product in a way that reflects
its structure.

e The documentation system should use the information that is already
contained in the sources. Some people say that well-written programs —
with self-explanatory variable and function names — need not be docu-
mented at all. We do not subscribe to this extreme opinion, but do believe
that a documentation system should include indices, reference tables and
the like that refer directly to the elements of the source code.

e The documentation should not only be available in print but also online.
Paper is good for documenting static versions of a software product, but
we also need the support of a documentation system in the dynamic stages
of a development.

In addition to the technical requirements, we also want to take human idiosyn-
crasies into account:

e Most programmers are very reluctant to use a system if they feel their
individuality is not given consideration. So the documentation system
should incorporate a lot of bells and whistles enabling the user to cus-

tomize the outcome.?

e The initial effort required to use the documentation system must be very
small. Ideally, the user would provide documentation information in the
proper places and the system would generate the documentation without
any extra activity by the user.

2The three people to first use DosFOP each had their own opinion as to how structures

should be ordered.

e In particular, it must be possible to integrate source code that was not
prepared specifically for the documentation system. So quick-and-dirty
programs (which is the way most programs are born) can be integrated
and then later on be gradually documented. This is certainly not a very
pure approach, but we do think that it leads to better documented source
code.

A first prototype of the system was developed by one of the authors (Torsten
Klein) as his Studienarbeit — undergraduate dissertation —and further enhanced
with user-friendly aspects as part of his master’s thesis [Kle95], both of which
were supervised by the other author (Klaus Didrich). (So what you are reading
now is a mixture of an author’s description and an evaluation by one (biased)
customer.) The system was developed in OPAL itself, with the exception of the
graphical user interface, which was developed in TcL/Tk. DosrOP is supplied
with the OpAL distribution [Opa95].

2 Literate Programming Systems

In the following section we try to place our research work in the context of
existing literate programming concepts and tools. We will deal with the reasons
why literate programming is not in the main focus of interest for software
developers today and will discuss what we think should be done to combat
the general aversion against the documentation of source code.

2.1 Benefits and Drawbacks of Existing Concepts and Tools

In introducing the web concepts in 1984, Donald E. Knuth [Knu84] tried to
initiate a new era of so-called “Literate Programming”; this was ultimately
expected to yield better software that is even “fun to read”. The research and
improvements on the web ideas have primarily been carried out in recent years
by tool developers, all of them aiming at reinforcing or removing the emphasis
on certain aspects of the original web designed for PASCAL.

The concept of the original PASCAL web and all its derivatives is based on the
two filters, “weave” and “tangle”, which perform specific transformations based
on a common web input file consisting of code and informal documentation.
The “weave” filter is designed for the production of pretty-printed documen-
tation intended for human reading. The succession of code and text is identi-
cal to the original web input file and not restricted by compiler requirements
such as “definition before use”. The “tangle” filter, on the other hand, deals
with these compiler requirements and performs the code-reordering and macro-
substitution needed for further automatic processing. Informal documentation
is fully dispensed with because it has no effect on the running program.

Much effort has been invested in adapting the web idea
e to different programming languages (e.g. FORTRAN [AO90], C [KL93]),

e such that the web tool can be tailored to a specific programming language

(Spider web [Ram89]),
e such that web can remain language independent (noweb [Ram92]).

As we see it, all derivatives of the original PASCAL web show inadequacies
when it comes to the solution of some important conceptional documentation
requirements:

o Writing programs with a web system is more than just writing programs in
your favourite language with a little bit of added documentation. All web
derivatives provide a new (meta-)language defined on the basis of a pro-
gramming language and a language intended for typesetting (such as TEX
or troff). Additionally, this new language introduces some new princi-
ples into (i.e. removes some deficiencies in) the underlying programming
language.

For software developers this is an obstacle that is difficult to overcome
because they have to familiarize themselves with a new formal language
and its environment (error messages, debugging techniques, etc.) and
have to rewrite existing code so that it conforms to the respective web
tool.

e The need for a tool that enables code-reordering, which has been one
of the most highlighted features of all web derivatives, is eliminated by
modern implementation languages. Functional and logic programming
languages provide this feature inherently without an additional “weaver”.

e Although Knuth used his web to document the implementation of TEX
(which can be considered to be quite a large and complex piece of soft-
ware), none of the currently known web derivatives supports modulariza-
tion or the hierarchical organization of groups of modules. These large-
scale structuring concepts, having proved suitable for practical software
development, should be supported by a documentation tool.

Some of our ideas were motivated by the GRASP Literate Programming Sys-
tem, which was developed at the University of Glasgow [GRA92] on the basis of
the functional programming language HASKELL. Although GRASP also lacks a
concept for what we call “large-scale, structured documentation” support, the
removal of emphasis on code-reordering and the simple syntactic embedding of
Haskell code into the IATEX typesetting language conform to our ideas about
appropriate source-code documentation.

GRASP — as well as all other web offspring — focusses on minimizing the problem
of code/documentation consistency by reducing the spatial distance between
source code and explanatory text. Conventionally, source code and documen-
tation are managed in at least two separate documents (e.g. program listing

and informal documentation handbook). By contrast, the interweaving ap-
proach has been adopted in tools for formal requirements specification where
the explanation of formal notation plays a central role. The Z specification lan-
guage, in connection with the fuzz-package for typesetting and type-checking
developed by M. Spivey at Oxford University [Spi92b, Spi92a], serves as an
appropriate example. As in GRASP, small pieces of formal description are em-
bedded into the informal context provided by a document containing plain text.

2.2 Objectives of the DOSFOP System

In this section, we want to present our essential goals in implementing the Dos-
FOP documentation system. Most of our objectives derive from experiences
with existing documentation tools, as described above, and are motivated by
the fact that acceptance of the documentation system by the program developer
has to be our main focus of interest.

Exploit inherent documentation elements as much as possible

The notion inherent documentation refers to all the kinds of design deci-
sions, naming conventions, structuring aspects, etc. that come up during
“conventional” software development and are useful for documentation
purposes. For example, the module hierarchy built up while developing
large programs can be used as a basis for the structure of both a printable
and an online hypertext documentation. It can be seen as a generated
skeleton of an individually extendable documentation.

The definition and application of program identifiers is another main con-
cern the programmer has to deal with conscientiously. We should use the
programmer’s work as a basis for the administration of various cross ref-
erences automatically generated by the documentation tool. As we see it,
support for browsing has to be one of the central elements of a really useful
system, and it can be achieved by reusing the design information needed
to produce a running (and perhaps completely undocumented) implemen-
tation anyway. Especially in documentation represented in hypertext,
tracing of references to definition or application positions of identifiers
is an example of useful exploitation of inherent documentation informa-
tion.

Provide a convenient documentation environment

Nowadays, integrated programming environments are becoming more and
more powerful and much easier to use (e.g. by the application of high-
resolution graphics, window systems and intuitive point-and-click inter-
faces). A documentation system has to cope with the existing program-

ming environments and, moreover, must motivate software developers to
produce documentation as a side effect of software compilation.

First, the system has to provide support while the documentation is un-
der construction. Because implementation is normally done using edi-
tors with additional features tailored with respect to a specific imple-
mentation language, we have to embed our system into this environ-
ment and add some supplementary documentation features to the edi-
tor.

Second, the use of familiar mechanisms for explaining a program’s source
code simplifies the arduous task of writing explanatory text. The com-
mentary conventions of the programming language chosen for the project
serve as an appropriate notational starting point. The great advantage of
commentaries is the resulting availability of spatial interconnection with
the documented code, which lessens the problem of consistency between
code and documentation.

Finally, documentation already produced has to be easy to “debug”, both
with respect to the content and layout of the written text as well as to
the structure and extent of the documentation as a whole. This can be
achieved by means of existing previewers for mark-up text-formatting lan-
guages like XTEX and HTML and by rapid generation of the documentation
for the purpose of immediate feedback.

Keep the documentation configurable

For the adoption of the structure and extent of a (partly) generated doc-
umentation, a special user interface is needed that offers all choices and
possible combinations of documentation elements (e.g. production of in-
dices, ordering of modules, hiding special implementations or subsystems,
etc.). This is what we call configurable documentation.

Do not sacrifice old code

When introducing a new documentation tool into an established pro-
gramming environment, one has to enable a smooth transition from the
conventional to the innovative documentation approach. Consequently, a
fundamental requirement is that undocumented “old” code can be incor-
porated using the features of the new documentation system.

As an extension of this principle, the introduction of the documentation
tool should not change the behaviour of the other components of the
programming environment.

Allow the documentation of large, structured implementations

Existing documentation environments are generally not designed for han-
dling large-scale implementations that are hierarchically structured into
modules and subsystems. These are the type of implementations we are
most interested in, and approved mechanisms for programming in the

large are considered to form the basis of each generated documentation.

Provide different kinds of documentation presentation

Source-code documentation can be helpful to persons coming from a vari-
ety of backgrounds and each with a different interest in the project’s im-
plementation. As a consequence, documentation has to do justice to many
requirements. It would be illusory to try to produce different kinds of doc-
umentation products that are each tailored to specific needs. This last
statement is confirmed by the experiences of the GRASP team ([GRA92]
p. 48 “Death to ribbons...”). Our approach is to enable the program-
mer to present his or her documentation in different ways, at no extra
effort.

We believe that online documentation in hypertext format is well suited
for browsing: persons interested only in particular areas of the implemen-
tation can comfortably zero in on what they want, while inexperienced
novices can follow the predefined standard browsing paths. Readers who
have difficulties with online hypertext presented on a monitor can refer
to a high-quality printed documentation. Due to the sequential nature
of this media, one has to use a table of contents and indices for manual
browsing (turning the pages).

Motivate the user with convincing products

Minor obstacles (which cannot be completely prevented if useful docu-
mentation is to be produced) can be be overcome if the resulting doc-
umentation is found to be practicable by the customers, the person in
charge of the project or, last but not least, the programmer him- or her-
self. Only appreciation of the product will motivate the programmer to
put more effort into the informal explanation of source code at software
development time. When designing the features of a documentation sys-
tem, we always have to keep in mind that we need an impressive end
product.

We will return to this catalogue of objectives after the description of the Dos-
FOP system and discuss to what extent the goals have been achieved.

3 Description of the DosrOP System

This section contains a description of the DosrOP system. Following the in-
troduction of some terminology, in the second section we will describe the com-

ponents of the documentation system. In the following section, the integration
of documentation into the source code — the core of literate programming —
is discussed. The final part contains a description of special features provided
by the DosrFOP system for customizing the output.

3.1 Terminology

In describing DosrOP, we do not use features that are specific to OPAL, but
we use some terminology from the OPAL environment, which we explain here
briefly.

The DosrOP system uses comments from the programming language to in-
corporate documentation. The OPAL syntax for comments that span several
lines is /* ...*/. The notation for comments that end at the end of the line
is——

A structure in OPAL corresponds to “modules” or “packages” in other lan-
guages. A structure consists of four parts: the signature, the implementation,
the external properties and the internal properties; each of these parts corre-
sponds to a separate file. The property parts may be omitted. The signature
and the external properties together constitute the interface of an OPAL struc-
ture.

A subsystem is a collection of structures and possibly other subsystems. The
concept of a subsystem corresponds roughly to the notion of “library” in other
languages.

An OPAL program has a top function, which is a monadic command that con-
trols the execution. The structure where the top function is located is called
the top structure of the project. The place where the top structure is located
within the DosrOP data base is called toplevel.

3.2 Components of the DOSFOP System

The general idea of literate programming is straightforward: feed the literate
program into the documentation generator and out comes the documentation.
The DosrOP system, however, has projects as input, allows customization and
produces several output formats. Hence, with DosrOP, things are not quite so
simple.

On the input side, DosFOP not only needs the source code, because DosrOp
documents not only single files but also larger OPAL projects and the mod-
ularization should be reflected in the documentation as it is provided in the
program. DOSFOP therefore additionally needs a project data base in which

the structure of the OPAL project is recorded. Moreover, DosFOP does not
produce a uniform documentation format — the user has many possibilities to
customize the result via global options.

On the output side, DosFOP does not directly produce documentation, rather
it produces an intermediate output file in the TEXINFO language. This inter-
mediate output is translated in turn into a final representation. The advantage
of this approach is that we do not need to write the necessary translators,
rather can use existing tools. Currently, pvI files (for printed output), INFO
files (for the GNU info help system) and HTML files (for web browsers) are
supported.

Figure 1 is a graphical representation of the generation of a documentation with
DosrOp.

r - - - - = 1
| Global [fil
IConfiguration | Y
L - - - _ _ \ /
:— _P_ _ _t_ _'l intermediate

rojec DosrOPp output ——= INFO file
I Data Base | (TEXINFO)
L______ ! —\
- e
: Source Code : HTML file
Lo _ _ _ |

Figure 1: Producing documentation

3.3 Example of Generated Documentation

Before we proceed with the description, we want to present a short example.
Figure 2 on the following page shows a piece of literate source code from the
implementation of a small SKI-combinator interpreter, IFigure 3 shows the cor-
responding printed output, while Figure 4 was generated by a WWW browser.
The HTML hypertext is divided into one node for every section or subsection.

/* %This structure provides an @sc{Opal} interface to parsers generated
with yacc. There are three parsers available for parsing
Q@itemize @bullet{}

Q@item

standard input

Q@item

or (the contents of) some file
Q@item

or a denotation.
Q@end itemize

*/
SIGNATURE LexYacc[data]

-- %$Parameter$

SORT data

/%%

@code{data} is usually an abstract syntax type. It must be the same type
that is constructed by the yacc actions. Since the interface is handcoded,
no type checking is possible. You may encounter weird error messages if you
supply a parameter type which is different from that used in the yacc parser.

*/
-- %$Imports$

IMPORT Com[data] ONLY com
File ONLY file

-- %$Parsing$

AR

411 of the functions deliver a '"fail" answer if a parse error
occurs. This answer contains the message generated by the parser.

*/

FUN parse: com[data]

FUN parse: file -> com[data]

FUN parse: denotation -> com[data]

Text enclosed in /* ...*/is an OPAL comment. A leading per cent sign (‘7.) marks a
text as DosFOP documentation. Words starting with an “at” sign (@) are TEXINFO
commands.

Figure 2: Source code

10

Chapter 4: User Subsystem : SKI 12

4.2 LexYacc

This is the structure which performs the connection between the generated parser and OPAL.
Three different functions - all called parse - provide access to this parser. You can parse either
e standard input
e or (the contents of) some file

e or a denotation.
4.2.1 Signature of LexYacc

SIGNATURE LexYacc[data]

4.2.1.1 Parameter

SORT data

data is usually an abstract syntax type. It must be the same type that is constructed by the yacc
actions. Since the interface is handcoded, no type checking is possible. You may encounter weird
error messages if you supply a parameter type which is different from that used in the yacc parser.

4.2.1.2 Imports

IMPORT Com[data] ONLY com
File ONLY file

4.2.1.3 Parsing

All of the functions deliver a "fail" answer if a parse error occurs. This answer contains the message
generated by the parser.

FUN parse: com[data]
FUN parse: file -> com[datal

FUN parse: denotation -> com[data]

Figure 3: Printed output

11

Go to thefirst, previous, next, last section, table of contents.

LexYacc
This s the structure which performs the connection between the generated parser and OPAL.
Three different functions - all called par se - provide access to this parser. Y ou can parse either
@ standard input
@ or (the contents of) somefile

® or adenotation.

® |exYacc Sign
® | exYacc Impl

Go to thefirst, previous, next, last section, table of contents.

Go to thefirst, previous, next, last section, table of contents.

Signature of LexYacc

® LexYacc Impl: IMPLEMENTATION LexYacc
® Parameter (Part of LexY acc Sign)

® |mports (Part of LexY acc Sign)

® Parsing (Part of LexY acc Sign)

SI GNATURE LexYacc[dat a]

Go to thefirst, previous, next, last section, table of contents.

Go to thefirst, previous, next, last section, table of contents.

Parameter
SORT data

dat a isusually an abstract syntax type. It must be the same type that is constructed by the yacc actions.
Since the interface is handcoded, no type checking is possible. Y ou may encounter weird error messages
if you supply a parameter type which is different from that used in the yacc parser.

Go to thefirst, previous, next, last section, table of contents.

Go to thefirst, previous, next, last section, table of contents.

Parsing
All of the functions deliver a"fail" answer if a parse error occurs. This answer contains the message
generated by the parser.

FUN parse: conidata]
FUN parse: file -> confdata]

FUN parse: denotation -> confdata]

Go to thefirst, previous, next, last section, table of contents.

The corresponding hypertext is divided into five different nodes, four of which are
shown here.

Figure 4: Hypertext

12

3.4 Using DosrOP

To use DosrOP, the input must be set up as depicted in Figure 1, that is,
the user must provide the Global Configuration, create the Project Database
and supply the source code. The last task is the easiest one because DosrOp
requires no changes to the source code. Of course, the source code is the place
where the documentation should be added (see Section 3.5), but the system
does not require the code to be adapted.

Initializing DOsSFOP requires setting up the Global Configuration and the Proj-
ect Data Base. The Global Configuration need usually not be changed again,
whereas the Project Data Base must be kept up to date by adding or deleting
structures.

3.4.1 The DosrOr Main Window

The DosrOP Main Window (see Figure 5) very much resembles the picture in
Figure 1. It is the “head office” for invoking tools to edit the Global Configura-
tion and the Project Data Base, for invoking the DosrOP translator itself, for
generating the DVI file, INFO file or HTML file, and for calling up a previewer or
browser to view the documentation on the screen.

] Help|
DOSFOP: documenting SKI-Interpreter

Glohal Configuration [DVI previewer |
Project Browser [| > | start DOSFOPI -> | Info hypertext reader |
Check Configuration Consistency | HTML viewer |

Figure 5: DosrOp Main Window

3.4.2 Global Configuration

In the Global Option Configurator (see Figure 6), the root location of the
project, the intermediate output file and the name of the top structure have
to be provided. For the title page of the documentation, one can additionally
add the project name, the authors’ names and the date of creation. There are
many other options available: for a description, see Section 3.6.1.

13

DosrOP provides sensible defaults but cannot guess the correct name of the top
structure, which must be entered by the user. The top structure® and all the
structures in the root directory of the project — and possibly also user-defined
subsystems that are directly or indirectly imported by it — are included in the
documentation (with the exception of files from the standard library).

File Help|

Global Option Configurator

Root-Location of the Project :
‘home/uebbikdlsrc/SKIZ |

Intermediate code output file :
‘home/uebbikd/erc/SKIZ/DOSFOR/SKIDver.texi |

Top Structure Name :
SKIDriver [

Name of the Project :
Skl-Interpreter |

Authors’ Names :
Klaus Didrich [

Date of Creation :
December 1934 |

Display All Options ->||

Figure 6: Global Option Configurator

3.4.3 Project Browser

The Project Browser manages the DosrFOP data base. This data base contains
information on all structures and subsystems that are used within the docu-
mented OPAL project (except the structures from BIBLIOTHECA OPALICA).

Most important is the information as to where structures and subsystems are
located, that is, in which subsystem they are to be found, and the path name to
access the source code. An additional feature is the configuration of subsystems
and structures, which may override the global configuration.

The Project Browser is a kind of tree editor for an OPAL project, where the
user can insert, delete and rename structures and subsystems. Subsystems

1t is also possible to process projects without a top structure, such as libraries.

14

Detete| st | Rename] Contg lava | cont

Figure 7: Project Browser

can also be ordered by the user, whereas the order of structures is determined
by DosrOP according to customizable options. The names of structures are
determined by OPAL, but the names of subsystems are managed by DosrOp
and can be chosen freely.

3.4.4 Generating Documentation

Once everything is set up, the user can initiate the generation of the documen-
tation. DosFOP does not immediately produce all possible output formats,
rather asks the user which formats should actually be generated. The following
output formats are currently available:

printable documentation / dvi format If printable documentation is re-
quired, DosrOP generates a DVI file, which can be previewed and printed.

hypertext / info format Hypertext in INFO format, which can be used, for
example, in the GNU emacs editor.

hypertext / html format A family of files in HTML format, which can be
viewed with any WWW browser.

3.5 Writing Documentation

This section contains information about writing documentation using the Dos-
FOP system. We first describe the language the documentation is written in,

15

then show how project and subsystem surveys are included and, finally, explain
how documentation is integrated into the OPAL source code.

3.5.1 A Word About Texinfo

TeEXINFO [CS93] is the language in which the documentation is written by
the user. TEXINFO and its associated tools are freely redistributable software,
which was developed by the Free Software Foundation and is used for the doc-
umentation of GNU utilities and libraries. The TEXINFO language is designed
to generate printed and hypertext documentation from a single document and
contains support for index generation.

From the user’s point of view, TEXINFO has the look and feel of a remote
dialect of TEX, without the possibility of declaring one’s own commands, and
without the multitude of styles. The documentation examples in Figure 2 and
Figure 9(a) show text written in the TEXINFO language. For a documentation
of TEXINFO see [CS93].

3.5.2 Project, Subsystem and Structure Surveys

Usually, the documentation is included in OPAL source code; after all, this is
the idea of literate programming. There is, however, no place in OPAL code that
corresponds to a whole project or a whole subsystem. You can insert “surveys”
of (or introductions to) the project and subsystems into the documentation by
configuring them.

The Project Survey is managed by the extended Global Option Configurator.
A Subsystem Survey is inserted by a Subsystem Configurator.

Structures may also have a survey. As every OPAL structure must have a
signature part, we decided the first documentation in the signature part of a
structure should be the Structure Survey if the documentation is located before
the keyword “SIGNATURE”.

3.5.3 Source-Code Documentation

All other documentation is contained in the OPAL source code in the form of
special comments. Every comment that starts with a per cent sign (%) is treated
as documentation. All other comments are treated as source code. Note that
both types of comments (see 3.1) are treated alike.

We found it useful to distinguish between various kinds of documentation. In
DosrOP, there are four? different kinds of documentation. We present them
in turn, each with an example in concrete DosFOP documentation syntax.

*There is actually also a fifth kind of documentation available, which is specific to OPAL.
See Section 3.6.3.

16

Ordinary Documentation is any documentation that does not belong to

the following categories. Ordinary documentation may contain arbitrary
(TEXINFO) text.

-- /This function computes the length of a sequence.

Tagged Documentation Tagged documentation is ordinary documentation

with an additional tag. This documentation does not appear in the gener-
ated documentation unless explicitly specified in the global configuration.
This feature can be used to generate documentation for different audi-
ences.

/* J{optimize} This function needs further attention
if used with bigger arguments.

*/

Documentation Sectioning In addition to the structuring provided by Dos-

FOP, it is useful to insert additional headings in the source code. We
cannot use TEXINFO commands for this purpose because they define the
absolute sectioning level.

The number of dollar signs ($) at the beginning indicates the relative
sectioning level of the heading. The current implementation of DosrOP
allows up to four additional levels within a source-code file.

-- /$$Accessing elements of a sequence$

Hidden Documentation Every system has its comments, and so does Dos-

3.6

FOP. Unlike OPAL comments, hidden documentation does not appear at
all in the generated documentation.

—-- %- Check below carefully for typos!

Special Features

The DosrOP system provides a few special features that enable the user to
write documentation in accordance with personal preferences. They concern
the following areas:

Customizing the documentation
Structuring the documentation
OPAL speciality: property references

TEXINFO setup

17

3.6.1 Customizing the Documentation

DosrOP provides several possibilities for changing the appearance of the gener-
ated documentation. The documentation can be configured differently on three
levels: global, subsystem-local and structure-local.

Configuring on the global level is done via the Global Option Configurator.
These customizations are valid by default for the whole documentation. Table 1
explains the switches that are available.

Tagging
Functionality Index

Application Index

Concept Index

Structure Index

Subsystem Inclusion

Library Inclusion

Property Inclusion

Include only Interfaces

Hierarchy Visualization

Sort Structures

Import Referencing

Used Function Tables

Basic Language

Start New Page

Drop Empty Lines

Enable tagged comments.

Include an index of all functions together
with their functionalities.

Include an index of all applied functions.

Include a concept index. The user must in-
sert @cindex entry lines manually.

Include an index of all structures.

Include only structures on the toplevel, if
switched off.

Include interfaces (signature and possibly ex-
ternal properties parts) of referenced struc-
tures from BIBLIOTHECA OPALICA.

Also include property parts.

Include only signature parts of structures
(also external property parts, if property in-
clusion is switched on).

Include a graphical representation of the hi-
erarchy of subsystems and/or structures

Sort structures within subsystems top-down,
bottom-up, ...

Include references to imported structures.

Include tables that show which functions are
applied in function definitions.

Choose the language of the generated text.

Start new page for every structure part in the
printed documentation.

Remove empty lines at the end of source
code.

Table 1: Brief description of global switches

18

Customizing locally for a subsystem is done via a Subsystem Configurator. This
configuration overrides the global configuration and is valid for structures and
subsystems contained in the subsystem, unless they are configured differently
themselves. The possible options are a subset of those presented in Table 1.

Finally, it is also possible to configure a single structure with a Structure Config-
urator. This configuration in turn overrides both the global and the subsystem
local configurations. The possible options are again a subset of those listed in
Table 1.

3.6.2 Structuring the Documentation

While the structure of the OPAL project is a good starting point, DosrOp
does not require that the structure of the documentation mirror the physical
structure of the project in the file system. The only requirement is that every
structure referenced in the project must either be a structure from BIBLIO-
THECA OPALICA or be located somewhere in the DosrFOP data base.

This opens the possibility of subdividing a subsystem further if such a structure
is more suitable for representation purposes. You can also completely reorganize
the physical structure if that leads to better documentation. Depending on the
readers targeted, this reorganization may or may not be a good idea. A different
structure might be the most appropriate way to document the interfaces of a
library. If the documentation is not for the user but for the administrator
who maintains and debugs the code, the structure of the documentation should
resemble the physical structure.

3.6.3 An OraL Speciality: Property References

Property references are an experimental feature. They allow inclusion of laws
from the property partsin the documentation simply by referencing their names.

Syntactically, property references consist of a list of names of laws from the
external or internal property part of an OPAL structure. In the documentation,
these references are replaced by the law from the corresponding property part.

Figure 8(a) shows the source code of a concatenation function with a reference
to a law from the property part. Figure 8(c) shows the generated printed
output. (The formula is derived from the abstract syntax, which does not
reveal information whether an application was written in prefix, infix or postfix
notation. Therefore, the notation of the law differs from the source code shown

in Figure 8(b) .)

19

FUN ++ : seq ** seq -> seq
-- % [++_assoc]

(a) source code in signature part

LAW ++_assoc == ALL a b c. a ++ (b++c) === (a++b) ++ c

(b) source code in external properties part

FUN ++ : seq ** seq —> seq

Va,b,e.++(a,++ (b,¢)) =+ +(+ + (a,b),¢)

(c) printed output
Figure 8: Property references

3.6.4 TEXINFO Environment

There may be situations in which you do not want to use the same text in
the printed and the hypertext versions of the documentation. In the printed
documentation, one can use the capabilities of TEX, which is particularly suited
to mathematical formulae. In the hypertext, however, one has to provide a
textual representation of formulae.

As an example, see the documentation of the postcondition of a numerical
integration function. The source code in Figure 9(a) shows how to write
different documentation for printed and HTML output. Figures 9(b) and 9(c)
display the corresponding results for the two different outputs.

DosrOpP extends TEXINFO slightly by providing a macro definition facility.
Macros are set globally for a document and the Macro Editor is thus selected
via the Global Option Configurator. Within the Macro Editor you can define
simple macros for use in your documentation.

DosrOP sets TEXINFO up such that you can directly use the ISO Latin 1
character set (ISO-8859-1), which is important if the documentation language

20

Compute an approximation of

@ifset html

the integral of @code{f} between Qcode{a} and @code{b}.
Gend ifset

Qtex
$\int_a"b £(x) dx$.
Q@end tex

The result is a list of better and better approximations.
The Q@i{n}th element of the list is the approximation with
@ifset html

@i{2°n}

QGend ifset

Otex

$2°n$

QGend tex

intervals.

(a) source code

Compute an approximation of f: f(z)dz. The result is a list of better and
better approximations. The nth element of the list is the approximation

with 2" intervals.

(b) printed output

Compute an approximation of the integral of f betweena andb. Theresultisalist

of better and better approximations. The nth element of thelist isthe
approximation with 2*n intervals.

(c) hypertext output

Figure 9: Usage of conditional documentation

21

is not English. The only other language supported is german, but others can

be easily added.

4 Experiences

Since its creation, the documentation system has been applied to several small
and medium-sized programs:

e The prototype of the “Studienarbeit” implementation of DoOsSFOP was
used for the documentation of OPAL programs in a joint project with
Daimler-Benz AG Forschung Systemtechnik.

e The extended DoOSFOP implementation described in the master’s thesis
[Kle95] was applied

— in the documentation of the ESZ® project,
— in the documentation of OPALWIN®[FGPS96], and

— of course, in the documentation of DosrOP itself.

We first discuss to what extent the requirements listed in the catalogue in
Section 2.2 are met.

The DosrOP system relies on some tools developed by other people who never
dreamed that their products would be used to document OPAL projects. We
discuss some of the difficulties we encountered with these tools below.

The system has some flaws that could be improved on, if only we could devote
more time to the further development of DosrOp.

4.1 Critical Discussion of the Objectives

In this section we review the objectives singled out in Section 2.2, discuss
whether these objectives are met by our implementation and, if so, whether
the desired effect has been achieved as a result.

Exploit inherent documentation elements as much as possible We
mentioned two applications for this principle. First, the module hierarchy as
the basis for the documentation structure and, second, the support for browsing
by automatically generated indices.

We found that printed output and hypertext output require separate treatment.
The documentation structure is already handled well by DosrOP and TEXINFO;

SESY is a type-checker for the 7 formal specification language.
OPALWIN is an OPAL library for a graphical user interface based on concurrent functional
programming.

22

however, the HTML output suffers from the fact that the tool used does not fully
preserve the hypertext structure generated by DosrOp.

The generated indices are also used differently. Functional languages tend to
support a style in which many small items are written. The indices are easy to
use in hypertext because all entries are links to corresponding declaration. In
printed output, the references to pages are too unspecific, to be really useful.
Surveys and overviews, on the other hand, are more effective on paper.

Provide a convenient documentation environment The addition of new
documentation by means of specially marked comments turned out to be the
most natural way to incorporate documentation.

The aim of easy debugging is only partially met. The documentation system is
only superficially integrated into the OPAL compilation system and is therefore
slower than desirable. The documentation must be processed as a whole, while
the compilation is done in small steps; so the time invested in generating the
documentation is considerably longer than he time needed for compiling the
program. While the time is acceptable for printed output, the more volatile
hypertext should ideally be produced more quickly.

Keep the documentation configurable The configurability of DosrOp
has contributed much to its acceptance. We already mentioned that ordering
of structures within a subsystem very much depends on the author’s preferences.
Other issues like choice of language, used-function tables and the optional in-
clusion of structure parts also play a role in the adaptation of the output to
the user’s needs. We strongly believe that hard-wiring of these options would
result in a documentation system only its author(s) would use.

Do not sacrifice old code DosrOP allows a smooth transition from undoc-
umented structures to a documented project and does not force the programmer
to “surrender” unconditionally to the documentation system. The programmer
can decide at any point whether the program has reached the stage where it is
worth documenting it properly. The decision to document a software system
does not commit one to the use of DOSFOP. One can always stop documenting
and still compile the code without difficulty. This was important in the early
days of DosrOP, when we did not know whether the documentation system
would finally work or not. It is still important for users who are suspicious
about documentation systems.

Allow the documentation of large, structured implementations Dos-
FOP has been successfully applied to a number of software projects, the largest
being the DosrOP system itself and BIBLIOTHECA OpPALICA, OPAL’s standard
library. With more than 150 structures, organized in several subsystems, the

23

generation of documentation for the standard library has been an endurance
test for the documentation system.

Provide different kinds of documentation presentation The documen-
tation system provides three different kinds of output. The info hypertext is
only rarely used; the HTML hypertext provides almost the same functionality
with a better-known user interface. Hypertext documentation is mostly used
for libraries that are accessed frequently.

Printed documentation is still the most important kind of output, perhaps be-
cause the art of producing hypertext that is easy to read is not as well developed
as the art of producing printed text. This will improve in the future, we hope,
and because it is easy to integrate different translatorsinto the DosrOP system,
we will profit immediately from new developments in this area.

Motivate the user with convincing products The printed documentation
produced by DosrOP follows the style developed by FSF for printed documen-
tation. This style has proved practical for our purposes, and the documentation
has impressed many other people. The INFO hypertext, however, suffers from
the fact that the tool is text oriented. We are also not fully satisfied with the
generated HTML hypertext, because the translator does not preserve the node
structure of the intermediate TEXINFO code. Still, the hypertext provides a
tool for easy browsing and access to declarations of functions and sorts.

4.2 Experiences From An Implementor’s Point of View
4.2.1 Application of Third-Party Tools

The DosrOP system relies on a number of programs from third parties, most
notably TcL/Tk and the software from the Free Software Foundation (FSF)
for processing TEXINFO. Most of these programs were not developed with the
documentation of OPAL programs in mind, and we consequently encountered
some difficulties.

Tcl/Tk The implementation of DosFOP consists of a T'cL/TK part and an
OpPaL part. Some problems in installing the system result from the TcrL/Tk
part, which requires a secure X server’. Thus, some caution is required in

calling up the window manager.

The requirement of a secure X server seems reasonable enough, but we encoun-
tered quite a few non-secure servers. Because most people do not know how to
set up their server in a secure way, this is perhaps a reason why the system is
not used.

"They are caused by the TcL command send.

24

The Texinfo Language The choice of TEXINFO as the documentation lan-
guage is controversial. The language itself is not difficult, and one needs only
a small part of it to write documentation. But TEXINFO is not a very popular
language, users preferring languages such as IATEX or, in the age of the World
Wide Web and its browsers, HTML. There are now some IWIEX-to-HTML trans-
lators (e.g. LaTeX2HTML, Hyperlatex), while other approaches try to extend
[ATEX by URL hyperlinks in special previewers (e.g. HyperTeX). However, most
of these tools try to translate a paper document automatically into a hypertext,
instead of integrating both views in one language, like TEXINFO does.

One other possibility would have been to invent a documentation language of
our own, but we wanted to concentrate on the documentation system and not
invest too much effort in the development and maintenance of a new language.
One could also introduce syntactic sugar and make the language look like IATEX.
But experience with the GRASP system shows that users tend to forget that
they are not using IATEX, rather only a restricted subset.

In spite of all the inexpediences mentioned above, TEXINFO is a language that
is well suited as a mark-up language for formatting text and as an intermediate
language for the generation of printed documentation and documentation in
hypertext form. TEXINFO has the best built-in support for handling multiple
indices. Some of the points mentioned above cannot be amended easily, because
TEXINFO must be translatable to two® different languages and is therefore often
restricted to the least common denominator.

The Texinfo Tools The tools that translate TEXINFO into the respective
target languages are also not perfect. None of these tools really does check that
the input conforms to the description in [CS93]. Most tools silently correct
minor errors, especially in the parts that are not important for the target format.
As a consequence, the user gets different error messages from the different tools
and has difficulty matching the error to the location in the documentation.

Some tools (texindex is an example) generate output that causes formatting
problems in the context of DosrFOP. These problems are treated by auxiliary
programs.

4.2.2 DosrOp Implementation Aspects

Error-Handling After installation there are no problems — provided the
user makes no mistakes. DosrOP’s error-handling is currently the weak point:
users would like to have a tool with elaborated error recovery. The OpaL
compiler, by contrast, has much more sophisticated error-handling and the
documentation system is inferior in this respect, which irritates users.

8The HTML format was added later, and the translator from TEXINFO to HTML is not
supported by the Free Software Foundation (FSF).

25

Partitioning of the System The partitioning of the system turned out to
be an obstacle to system enhancement. While it was a straightforward affair
to enhance the documentation system itself, the adaptation of the interface
part was difficult. The fact that the user interface and the DosrOP system are
implemented in two different languages contributed to the problem. A potential
option is to reimplement the user interface in OPAL. This is now possible with
the recently developed window library for OpaL [FGPS96].

An OPAL user interface would also be a solution to a further criticism. The con-
figuration chosen by the user is communicated via an ASCII interface language,
which is then scanned and parsed again by the proper documentation system
written in OPAL. If the interface were also written in OPAL, the time-consuming
three-stage process would not be necessary.

Separate Tool DosrOP was developed as a separate tool to be added to the
OPAL environment. This means that the tool has to be called up separately,
and — even worse — that addition (or deletion) of a structure of the software
project must be done twice: once for the OPAL compilation system and once for
DosrOP. We thought this would be an advantage because the documentation
could then have a different structure to the actual system.

Experience showed, however, that this feature is only rarely used. And the user
is annoyed by having to register each change of the modularization with both
the OPAL compilation system and the documentation system. Thus, we have
come to the conclusion that we need to integrate the documentation system
into the overall compilation system as well, so that the button that starts the
compilation of the program also starts the generation of the documentation.

Efficiency We mentioned already that the documentation must always be
processed as a whole, and that generation is therefore slow compared to com-
pilation. The first possible remedy is to generate a piece of documentation for
every module; to produce the documentation, one simply concatenates these
pieces. However, even if this were possible, there is the problem that the user
might change some switches that affect the pieces already generated. The web-
bing of the pointers to and from other nodes of the hypertext document is
especially problematic.

Creation and management of modularized text is a fairly new topic (see e.g.
[GB93]) and does not fall within the scope of the research activities carried out
in our department.

5 Conclusion and Future Work

The difficulties mentioned in the previous section do not render the system
unusable, but only a user who is convinced of the advantages of good documen-
tation and is willing to take time to get acquainted with the system will use it.

26

If these conditions are given, DosFOP provides powerful support in reducing
the administrative overhead of documenting software. Of course, the text has
to be written manually. In an ideal programming environment, this would be
the only effort required, and we hope that the integration of DosrOP into the
OPAL compilation system will eventually yield such an environment.

What is the result of the introduction of the documentation system? Code
is better documented because the user feels that the result is worth the little
extra effort of formulating a more explicit commentary in the form of a docu-
mentation. We hope that the further development of DosrOp will produce a
system that will be able to generate an online documentation as a side effect of
compiling, while minimizing the delay in the compilation process itself.

Future work will concentrate on extensions and the integration of DosFOP into
the OPAL environment.

Error-handling in DoOsSFOP needs to be improved by a robust error-handling
scheme that reports errors together with a precise description and then proceeds
with the generation of text.

The integration of the OPAL compilation system and the documentation system
cannot be done in a straightforward way (as mentioned above) because the gen-
eration of TEXINFO code depends on settings that are only known at the time
the overall documentation is generated. But if one accepts some inconsistencies
in the course of program development, this goal might be achieved. One would
have to clean up the inconsistencies once in a while of course. The gain would
be the possibility of generating object code and documentation together and
always having both automatically.

The TEXINFO documentation format has developed since the completion of
DosrOP. The most recent version [CS96] contains built-in support for the
enhancements described in Section 3.6.4. Some commands have been introduced
which facilitate the modular generation of the intermediate TEXINFO code.

Finally, let us mention that the abstract syntax of OpaL 2 [DEG*96], which
is currently under development, has been designed to support DosrOP (or
DosrOP 2) by including comments and documentation in the concrete and the
abstract syntax, so that the new OPAL 2 system will, from the very beginning,
have an integrated documentation system.

Acknowledgement The work described in this report profited from discus-
sions with other members of the OPAL Group and from participants of the
projects in which the first prototypes were used. We are grateful to Niamh
Warde for her valuable help in proof-reading this report.

27

References

[AO90]

[CS93]

[CS96]

Adrian Avenarius and Siegfried Oppermann. FWEB: A literate pro-
gramming system for Fortran 8X. ACM SIGPLAN Notices, 25(1):52~
58, January 1990.

Robert J. Chassell and Richard M. Stallman. Texinfo —
The GNU Documentation Format. In hypertext form available
at URL http://www.cl.cam.ac.uk/texinfodoc/texi toc.html,
March 1993. Edition 2.18, for Texinfo Version Two.

Robert J. Chassell and Richard M. Stallman. Texinfo — The GNU
Documentation Format, October 1996. Edition 2.23, for Texinfo Ver-
sion Three.

[DEG196] Klaus Didrich, Jiirgen Exner, Carola Gerke, Wolfgang Grieskamp,

Christian Maeder, Peter Pepper, and Mario Siidholt. The OPAL 2
Language — Alpha Version. Technical report 96-3, TU Berlin, 1996.
To appear.

[DFG194] K. Didrich, A. Fett, C. Gerke, W. Grieskamp, and P. Pepper. OPAL:

Design and Implementation of an Algebraic Programming Language.
In J. Gutknecht, editor, Programming Languages and System Archi-
tectures, LNCS 782, pages 228-244. Springer, 1994.

[FGPS96] Th. Frauenstein, W. Grieskamp, P. Pepper, and M. Siidholt. Concur-

[GBY3]

[GRA92]

[KL93]

[K1e95]

[Knu83]

[Knu84]

[Knu91]

rent Functional Programming of Graphical User Interfaces. Technical
Report 95-19, TU Berlin, 1996.

Michael J. Groves and David F. Brailsford. Separate compilation of
structured documents. Flectronic Publishing — Origination, Dissem-
ination, and Design (Journal), 6(4):315-326, December 1993.

The GRASP Team. Glasgow Literate Programming User’s Guide,
September 1992. Contact: Will Partain.

Donald E. Knuth and Silvio Levy. The CWEB System of Structured
Documentation, Version 3.0. Addison-Wesley, Reading, MA, USA,
1993.

Torsten Klein. DOSFOP — Ein benutzerfreundliches Dokumentations-
system. Diplomarbeit, TU Berlin, April 1995.

Donald E. Knuth. The WEB system of structured documentation.
Stanford Computer Science Report CS980, Stanford University, Stan-
ford, CA, September 1983.

D. E. Knuth. Literate programming. The Computer Journal,
27(2):97-111, 1984.

Donald E. Knuth. The TpXBook. Addison Wesley Publishing Com-
pany, Stanford University, 1991.

28

[Opa95]

[Ram89]

[Ram92]

[Spi92a]

[Spi92b]

[Van90]

The Opal Group. The OpPAL Project. Available at URL
http://www.cs.tu-berlin.de/~opal/, 1995.

Norman Ramsey. Weaving a language-independent WEB. Commu-
nications of the Association for Computing Machinery, 32(9):1051-
1055, September 1989.

Norman Ramsey. Literate-programming tools need not be complex.
Report at ftp.cs.princeton.edu in /reports/1991/351.ps.Z.
Software at ftp.cs.princeton.edu in /pub/noweb.shar.Z and at
bellcore.com in /pub/norman/noweb.shar.Z. CS-TR-351-91, De-
partment of Computer Science, Princeton University, August 1992.
Submitted to IEFE Software.

J. M. Spivey. The fuzz Manual. Computing Science Consultancy, 34
Westlands Grove, Stockton Lane, York YO3 OEF, UK, 2nd edition,
July 1992.

J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall
International Series in Computer Science, 2nd edition, 1992.

Christopher J. Van Wyk. Literate programming—an assess-
ment. Communications of the Association for Computing Machinery,
33(3):361, 365, March 1990.

29

