
Literate Programming and Documentation Reuse

Bart Childs Johannes Sametinger

Dept. of Computer Science Dept. of Computer Science

Texas A&M University Texas A&M University

College Station, Texas and

77843-3112 USA CD Laboratory for Software Engineering

Johannes Kepler University

Linz, Austria

Abstract

Object-oriented programming has brought many ad-

vantages to the software engineering community. The

reuse of existing software components and application

frameworks can improve the productivity in software

development considerably. The same object-oriented

techniques, i.e., inheritance and information hiding,

that ease reusing software, can be applied to documen-

tation and thus, enable its reuse.

One can document each software component{

regardless of what a component is{from scratch. This

leads to multiple documentation of features that are

multiply reused. One can also describe a component's

di�erences to other components. This seems logical for

the systems documentation of object-oriented software.

However, as will be shown, this kind of reuse can not

only be applied to source-code related documentation,

but also to documentation, where there is no source

code involved at all, e.g., user documentation.

In this paper we describe the concepts for documen-

tation reuse, how these concepts can be realized with a

literate programming tool, and the application of doc-

umentation reuse.

Key Words: documentation reuse, reuse of soft-

ware engineering artifacts, object-oriented program-

ming, literate programming, noweb

1 Introduction

Reusing software components is a typical task
in object-oriented programming. Class libraries and
application frameworks have increased programmers'
productivity. Modi�cation and extension of software
components without the need to make changes to
the original source code is am advantage of object-
oriented technology. This is accomplished by de�ning
classes through describing their di�erences (i.e., mod-
i�cations and extensions) to their baseclasses. The

standard behavior is inherited from the baseclasses.
Reusable software components that are realized in an
object-oriented manner can have many elements in
common (through inheritance). Adequate documen-
tation is mandatory for software maintenance, as well
as for economic reuse of software components. How-
ever, overlapping information holds for source code
and for documentation. Therefore, the inheritance
mechanism should also be applied to the documenta-
tion. Object-oriented documentation can be used to
de�ne documentation structures, factor common in-
formation, and provide di�erent information details
for various groups of readers.

Subsequently, we describe the concepts of object-
oriented documentation, the oonoweb system, which
supports the proposed concepts, and examples how
these concepts can be successfully applied to various
domains.

2 Concepts

Successful reuse of documentation can be
achieved by means of

� de�nition of a common structure for certain doc-
umentation parts,

� extraction of common information for several doc-
umentation parts,

� reuse and extension/modi�cation of existing doc-
umentation (possibly as is),

� de�nition of views for various readers, e.g., casual
to professional users, and,

� object-oriented description of object-oriented
software systems.

The key concepts in accomplishing all this are
documentation inheritance, documentation abstrac-
tion, and documentation views, which are described in

the subsequent sections. Additionally, a combination
with literate programming and hypertext can further
improve easy access and consistency of the documen-
tation. This has provided the motivation for realizing
the concepts with an existing literate programming
tool that supports hypertext (see Chapter 3). We
start this chapter with a recapitulation of the origi-
nating concept, source code inheritance.

2.1 Source Code Inheritance

The source code of an object-oriented software
system consists of classes containing variables (struc-
ture) and methods (behavior). Objects with the same
structure and behavior are described in a class. From
a documentor's point of view, classes and methods
seem to be equivalent to modules and procedures used
in conventional programming. A central di�erence be-
tween modules and classes is the inheritance relation-
ship between classes. A class may inherit the struc-
ture and behavior of another class and may extend and
modify it. For example, classes Rectangle and Circle

inherit from a class Shape, which de�nes the structure
and the behavior that is applicable to all graphical
objects. Rectangle and Circle are called subclasses (or
derived classes), whereas Shape is called the baseclass.
The source code of the classes Rectangle and Circle

contains only the modi�cations and extensions to the
baseclass Shape (see Fig. 1).

methods of

class Rectangle

#

Rectangle

Shape

D
ra
w

O
u
tl
in
e

M
o
v
e

R
o
ta
te

Figure 1: Methods of classes Shape and Rectangle

The boxes in Fig. 1 indicate the existence of
source code for a method. Rectangle objects can be
drawn, outlined, moved, and rotated, though the class
Rectangle does not implement the methods Outline

andMove; they are inherited from the baseclass Shape.
The methods Draw and Rotate are overridden; i.e.,
Rectangle objects have their own Draw and Rotate

methods, they do not use the methods of the Shape

class. The arrows (#) in Fig. 1 indicate the direction
of view in order to determine the methods which are
provided and used by class Rectangle.

2.2 Documentation Inheritance

As with object-oriented source code, a documen-
tation unit should inherit the documentation of its

base unit. A section is a portion of documentation
text with a title. The sections can be de�ned by the
programmer/technical writer and used for inheritance
in the same way as methods. Similar to methods, sec-
tions are either left unchanged, removed, replaced, or
extended.

documentation of dbxtool

#

dbxtool

dbx

N
a
m
e

S
y
n
o
p
si
s

A
v
a
il
a
b
il
it
y

D
es
cr
ip
ti
o
n

O
p
ti
o
n
s

U
sa
g
e

E
n
v
ir
o
n
m
en
t

F
il
es

S
ee
a
ls
o

N
o
te
s

B
u
g
s

Figure 2: Inherited, overridden, extended, and hidden
documentation sections of dbxtool

Fig. 2 contains the structure of the documenta-
tion of the Unix tools dbx and dbxtool. The documen-
tation of dbx consists of eleven sections; dbxtool has
six documentation sections. The sections Availability,
Usage, Files and Notes are inherited by dbxtool. It has
its own sections on Name, Synopsis, Description, Op-
tions, and See also. The section Environment is not
applicable to dbxtool and thus is hidden. This is indi-
cated by a horizontal line () rather than an arrow
(#) in the �gure. The bugs of dbx are also available in
dbxtool, therefore the Bugs section had been extended.
For more details on this kind of documentation inher-
itance see [9].

2.3 Documentation Abstraction

In object-oriented programming, abstract classes
are designed as parents from which subclasses may be
derived. Abstract classes are not itself suitable for in-
stantiation. They are used to prede�ne certain struc-
ture and behavior which is then shared by a group of
sibling subclasses. The subclasses add di�erent varia-
tions of the missing pieces. Documentation has simi-
lar structure in many domains, e.g., manual pages and
software life-cycle documents. The prede�ned struc-
ture for a certain group of documents guarantees uni-
form and consistent appearance. It is also possible
to factor common information for all the documents,
making it easier to make modi�cations and keep in-
formation consistent. The de�nition of sections of the
abstract documentation serves as a guide to consistent
documentation and helps identify incomplete parts.

documentation of dbxtool

#

dbxtool

dbx

man page

N
a
m
e

S
y
n
o
p
si
s

A
v
a
il
a
b
il
it
y

D
es
cr
ip
ti
o
n

O
p
ti
o
n
s

U
sa
g
e

E
n
v
ir
o
n
m
en
t

F
il
es

S
ee
a
ls
o

N
o
te
s

B
u
g
s

C
o
p
y
ri
g
h
t

Figure 3: Inherited, overridden, extended, and hidden
documentation sections of dbxtool

Fig. 3 is another view of the documentation of
dbxtool in terms of documentation abstraction. The
documentation for \man page" de�nes twelve sections,
of which six are designated as having to be overrid-
den (the sections Name, Synopsis, Description, Us-

age, Files, and Bugs). If such a section is not over-
ridden, as indicated in Fig. 3 for section Usage, then
the inherited contents of the section should indicate
that this information is missing and has to be pro-
vided. Tool support is useful in checking complete-
ness and |if incomplete| in spotting the missing sec-
tions. The abstract documentation in Fig. 3 contains
another section, Copyright, which is automatically in-
cluded for all descriptions inherited thereof. Fig. 4
shows what the abstract documentation for manual
pages could look like. Whenever manual pages for a
new tool are written, the presence of |information
has to be provided| (which is inherited from the ab-
stract manual page) in the documentation indicates
that there are still missing parts.

2.4 Two Levels of Documentation Inher-
itance

A single level of inheritance may not be su�-
cient for the de�nition of a convenient documentation
structure. Suppose the Usage section of dbx is further
divided into subsections (such as Filenames, Expres-

sions, Operators, etc.) and that for the documenta-
tion of dbxtool we want to override only certain parts
and inherit the rest. Of course, we could de�ne sec-
tions like Usage-Filenames, Usage-Expressions, and
Usage-Operators. However, the logical structure of
the document is better re
ected by applying the inher-
itance mechanism to subsections also. This is shown in
Fig. 5, where an additional (abstract) documentation
unit has been introduced in order to prede�ne these
subsections.

Two levels of inheritance are important for the
documentation of object-oriented software systems
also. In this case we need a second level of inher-

abstract manual page
Name
---information has to be provided---

Synopsis
---information has to be provided---

Availability
Refer to ``Installing OS 4.1'' on how to install

optional software.

Description
---information has to be provided---

Options
no options available

Usage
---information has to be provided---

Environment
no environment variables used

Files
---information has to be provided---

See also
OS 4.1 Programmer's Guide

Notes
no notes

Bugs
---information has to be provided---

Copyright
by Company XYZ, 1996

Figure 4: Possible documentation abstraction for
manual pages

itance for the description of methods. Methods are
inherited from baseclasses; but documentation for a
single method must be further dividable in order to
allow convenient adaptation. In Fig. 6 we have the
documentation of a class Shape, which consists of
three sections (Description, Layout, Event Dispatch-
ing) plus the documentation of the methods Draw,
Outline,Move and Rotate. The documentation of each
method consists of the sections Description, Interface,
and Categories. The documentation of class Rectangle
overrides the Description and adds an Implementation

subsection for the methods Draw and Rotate.

Considering more than two levels of inheritance
is possible. However, we have not encountered a prac-
tical example needing more than two.

2.5 Documentation Inclusions and Refer-
ences

For documentation to be readable, information
about a unit should not be spread over several �les
and/or directories. We need either the full documen-
tation of a unit with all inherited documentation in-
cluded, or cross-references to the inherited informa-
tion (with page numbers for printed documentation
or links for online documentation).

documentation of dbxtool

#

dbxtool

dbx

debuggers

F
il
en
a
m
es

E
x
p
re
ss
io
n
s

O
p
er
a
to
rs

S
co
p
e
R
u
le
s

E
x
ec
u
ti
o
n

T
ra
ci
n
g

P
ri
n
ti
n
g

D
is
p
la
y
in
g

F
il
e
A
cc
es
s

M
is
ce
ll
a
n
eo
u
s

M
a
ch
in
e-
L
ev
el

M
a
ch
in
e
R
eg
s.

man page

N
a
m
e

S
y
n
o
p
si
s

A
v
a
il
a
b
il
it
y

D
es
cr
ip
ti
o
n

O
p
ti
o
n
s

U
sa
g
e

E
n
v
ir
o
n
m
en
t

F
il
es

S
ee
a
ls
o

N
o
te
s

B
u
g
s

C
o
p
y
ri
g
h
t

Figure 5: Sections of dbxtool using two abstractions and two levels of inheritance

documentation of class Rectangle
#

Rectangle

Im
p
le
m
en
ta
ti
o
n

Im
p
le
m
en
ta
ti
o
n

Shape

D
es
cr
ip
ti
o
n

In
te
rf
a
ce

C
a
te
g
o
ri
es

D
es
cr
ip
ti
o
n

In
te
rf
a
ce

C
a
te
g
o
ri
es

D
es
cr
ip
ti
o
n

In
te
rf
a
ce

C
a
te
g
o
ri
es

D
es
cr
ip
ti
o
n

In
te
rf
a
ce

C
a
te
g
o
ri
es

D
es
cr
ip
ti
o
n

L
a
y
o
u
t

E
v
en
t
D
is
p
a
tc
h
in
g

m
et
h
o
d
D
ra
w

m
et
h
o
d
O
u
tl
in
e

m
et
h
o
d
M
o
v
e

m
et
h
o
d
R
o
ta
te

Figure 6: Sections of class Rectangle using two levels of inheritance

class Collection
base class for collections of objects

: : :

Collection Types
The subclasses of Collection implement different

ways of storing and accessing the objects: : :

Dynamic Creation and Object Copying (class Object)
see page 34.

: : :

Figure 7: Sample output with reference to an inherited
section

Fig. 7 shows part of the documentation of a class
Collection. The section Dynamic Creation and Object

Copying is inherited from class Object and can be read
on page 34 of the documentation. This avoids waste of
paper in printed documentation. For online documen-
tation the inclusion of inherited sections will enhance
readability and avoid the excessive use of links. Then
too, it may make the document overly redundant.

It is also useful to have a table of contents for a
unit, where for each section (including the inherited
ones) the corresponding unit and the page number
(printed documentation) or a link (online documen-
tation) are speci�ed.

Fig. 8 shows the online output, i.e., instead of
page numbers links are provided for direct access to
the various sections. This mechanism can also be used
in order to list all methods of a certain class and pro-
vide references to their documentation.

2.6 Documentation Views

Information �ltering is important for e�cient ac-
cess to huge amounts of information. De�ning cate-
gories for documentation sections is a simple, yet pow-
erful mechanism to provide various views on a docu-
ment and meet di�erent documentation needs of var-
ious readers. Fig. 9 shows what information might be
provided to a casual user of dbxtool. The presence of
an arrow in the �gure indicates that the corresponding
section is part of the view. Please note that sections
that are not used for that view do not have a hor-
izontal line (), i.e., they are not hidden. Hidden
sections are not available for any view, whereas sec-
tions without an arrow may be used for other views.
For example, a professional user would get the other
sections as well.

When documenting source code, a useful control
mechanism is the distinction among private, protected
and public sections, as is done in the programming lan-
guage C++. This distinction determines access rights
for clients, heirs and friends of classes. Public sections

[*] class Collection
base class for collections of objects

[*] List of Sections
1. List of Sections (Collection), see page [<-]

2. List of Methods (Collection), see page [->]

3. Description (Collection), see page [->]

4. Memory Management (Collection), see page [->]

5. Collection Types (Collection), see page [->]

6. Retrieval of Elements (Collection),

see page [->]

7. Iterators (Collection), see page [->]

8. Enumerating Objects (Collection),

see page [->]

9. History (Collection), see page [->]

10. Class Descriptors and Dynamic Type-Checks

(Object), see page [->]

11. Dynamic Creation and Object Copying

(Object), see page [->]

12. Object Input/Output (Object), see page [->]

13. Object Comparison (Object), see page [->]

14. Change Propagation (Object), see page [->]

15. Flag Handling (Object), see page [->]

: : :

Figure 8: Sample (online) output with a table of sec-
tions

can be read by everyone and are devoted to describing
how to use a class. Protected sections contain more
detailed information that is needed to build subclasses.
Finally, private sections contain additional implemen-
tation details that are exclusively intended for devel-
opment and maintenance personnel (see Fig. 10).

The whole documentation of a class (or a method)
is visible only for friends. Reusers who build sub-
classes (heirs) see only a subset of this documentation;
they do not have access to private sections, which typi-
cally describe implementation details (Implementation

sections in Fig. 10). Clients' access is further restricted
to public sections, which contain general interface de-
scriptions (Description, Layout, Method Descriptions

and Interfaces in Fig. 10). Please note that, similarly
to the source code, private sections of the documen-
tation are not inherited; i.e., private documentation
of the classes Rectangle would not become part of the
documentation of any subclass thereof.

documentation of dbxtool for casual users

#

dbxtool

dbx

debuggers

F
il
en
a
m
es

E
x
p
re
ss
io
n
s

O
p
er
a
to
rs

S
co
p
e
R
u
le
s

E
x
ec
u
ti
o
n

T
ra
ci
n
g

P
ri
n
ti
n
g

D
is
p
la
y
in
g

F
il
e
A
cc
es
s

M
is
ce
ll
a
n
eo
u
s

M
a
ch
in
e-
L
ev
el

M
a
ch
in
e
R
eg
s.

man page

N
a
m
e

S
y
n
o
p
si
s

A
v
a
il
a
b
il
it
y

D
es
cr
ip
ti
o
n

O
p
ti
o
n
s

U
sa
g
e

E
n
v
ir
o
n
m
en
t

F
il
es

S
ee
a
ls
o

N
o
te
s

B
u
g
s

C
o
p
y
ri
g
h
t

Figure 9: A casual user's view of dbxtool 's documentation

documentation of class Rectangle
clients

heirs

friends

Rectangle

Im
p
le
m
en
ta
ti
o
n

Im
p
le
m
en
ta
ti
o
n

Shape

D
es
cr
ip
ti
o
n

In
te
rf
a
ce

C
a
te
g
o
ri
es

D
es
cr
ip
ti
o
n

In
te
rf
a
ce

C
a
te
g
o
ri
es

D
es
cr
ip
ti
o
n

In
te
rf
a
ce

C
a
te
g
o
ri
es

D
es
cr
ip
ti
o
n

In
te
rf
a
ce

C
a
te
g
o
ri
es

D
es
cr
ip
ti
o
n

L
a
y
o
u
t

E
v
en
t
D
is
p
a
tc
h
in
g

m
et
h
o
d
D
ra
w

m
et
h
o
d
O
u
tl
in
e

m
et
h
o
d
M
o
v
e

m
et
h
o
d
R
o
ta
te

Figure 10: Documentation sections for clients, heirs, and friends

3 Oonoweb

In order to realize the ideas presented in the pre-
vious section we have taken an existing literate pro-
gramming tool as a starting point and augmented it
with the presented features. The following sections
describe the literate programming system noweb, why
we selected it, and how these features can be incorpo-
rated into it.

3.1 Literate Programming

Programs are written to be executed by comput-
ers rather than to be read by humans. However, when
writing programs, the goal of telling humans what we
want the computer to do should be more important
than instructing the computer what to do [3]. The
idea of literate programming is to make programs as
readable as ordinary literature. The primary goal is
not just to get an executable program but to get a
description of a problem and its solution (including
assumptions, alternative solutions, design decisions,
etc.).

We agree that literate programming is a process
leading to more carefully constructed software sys-
tems with better documentation. Most literate pro-
gramming tools automatically provide extensive read-
ing aids like tables of contents and indexes. We be-
lieve that these tools can and should be used for the
entire documentation of software systems. Of the en-
tire documentation only a small part will have source
code included. The advantage is that the whole sys-
tem is documented in a consistent way, and as will
be shown in the subsequent sections, documentation
reuse can be applied very easily. Naturally, developing
large software systems requires tools like browsers in
addition to a simple documentation system. In this
paper we will concentrate on the reuse aspect.

3.2 The noweb System

Noweb is a literate programming tool like WEB

(see [3]). A noweb document consists of a series of
chunks that can appear in arbitrary order. Each
chunk contains either code or documentation. For ad-
ditional structuring LATEX commands like \section,
and \subsection can be used. Indexing and cross-
referencing information can be provided for chunks
and for programming language identi�ers. Fig. 11 is
taken from the noweb distribution. It consists of a
documentation chunk followed by a code chunk. Dou-
ble brackets ([[]]) in the documentation text enclose
source text. Double angles (<<>>) in the code deter-
mine other chunks.

The design of noweb was purposefully to be as
simple as possible but meet the needs of literate pro-

@ This program has no input, because we want

to keep it simple. The result of the program

will be to produce a list of the first thousand

prime numbers, and this list will appear on the

[[output]] file.

Since there is no input, we declare the value

[[m = 1000]] as a compile-time constant. The

program itself is capable of generating the

first [[m]] prime numbers for any positive

[[m]], as long as the computer's finit

limitations are not exceeded.

<<program to print the first thousand prime

numbers>>=

program print primes(output);

const m = 1000;

<<other constants of the program>>

var <<variables of the program>>

begin <<print the first [[m]] prime numbers>>

end.

Figure 11: A Simple noweb Example

grammers. Noweb's primary advantages are simplicity,
extensibility, and language independence. The pri-
mary sacri�ce relative to WEB is that code is not pret-
typrinted and that indexing is not done automatically.
Noweb has been in use for many years at Princeton and
elsewhere for tens of thousands of lines of code in lan-
guages as awk, C, C++, Icon, Modula-3, PAL, perl,
Promela, and Standard ML [7].

Nowebworks with any programming language and
supports TEX, LATEX, and HTML back ends. Thus,
you can either produce printed or online documen-
tation. Cross-references in printed documentation are
provided by means of page numbers and links in online
documentation. For more information on literate pro-
gramming and the noweb system we refer the reader
to [3, 6] and [7, 8], respectively.

Noweb is implemented with pipes, i.e., noweb

source is transformed into an intermediate code, to
which various �lters are applied in order to accomplish
certain tasks, such as indexing and cross-referencing
(see [2] on software architectures). At the end of the
pipe are �lters that make a transformation to either
TEX, LATEX, or HTML. Due to this architecture ex-
tending the functionality of noweb can easily be done
by implementing new �lters. This is what we do in or-
der to implement the concepts of documentation reuse,
which is described in the next section.

3.3 Units

A documentation unit typically describes a logical
unit such as a software component, i.e., a module, a
class, an asset. The documentation is usually divided
into sections, subsections, and paragraphs in order to
describe various aspects of that unit. The example in
Fig. 12 shows how the input for the manual pages of
the source-level-debugger dbx would look like. A unit
can be the subunit of another unit. This is speci�ed
with the \baseunit command. In Fig. 12 unit dbx is
subunit of man page and inherits documentation from
it, i.e., the sections de�ned therein.

\unit{dbx}

\baseunit{man page}

\section{Name}

dbx - source-level debugger

\section{Synopsis}

dbx [-f fcount] [-i] [-Idir] [-k]

[-kbd] [-P fd] [-r] [-s startup]

[-sr tstartup] [objfile [corefile|process-id]]

\section{Availability}

This command is available with the Debugging

software installation option. Refer to

Installing SunOS 4.1 for information on how

to install optional software.

\section{Description}

dbx is a utility for source-level debugging and

execution of programs written in C, or other

supported languages such as Pascal and

\FORTRAN~77. dbx accepts the same commands

as dbxtool(1), but uses a standard terminal

(tty) interface.

: : :

Figure 12: Sample oonoweb documentation unit

3.4 Sections and Subsections

Sections and subsections are used for the distinc-
tion of two levels of inheritance. Whenever a section
is contained in a baseunit but not in the subunit, then
the whole section is inherited. If a section is available
in both the baseunit and the subunit, then the section
is overridden. If, however, sections contain subsec-
tions, then inheritance is applied to these subsections
as well. Subsections can also be inherited or overrid-
den, compare Fig. 12 and Fig. 13.

\unit{dbx}

: : :

\section{Usage}

Refer to dbx in the Debugging Tools manual.

The most useful basic commands about are run;

run the program being debugged; where, obtain

a stack trace with line numbers; print,

display variables; and stop, set breakpoints.

\subsection{Filenames}

Filenames in dbx may include shell meta-

characters. The shell used for pattern matching

is determined by the SHELL environment variable.

\subsection{Expressions}

dbx expressions are combinations of variables,

constants, procedure calls, and operators.

Variables are either variables in the program

being debugged or special dbx variables whose

names begin with $.

: : :

Figure 13: Sample oonoweb sections and subsections

3.5 Extensions and Concealments

In the example in Fig. 2 we have seen that it is
sometimes necessary to either conceal (section Envi-

ronment) or extend inherited sections (section Bugs).
Fig. 14 shows how this can be achieved with the com-
mands \conceal and \extend. The documentation of
dbxtool will not contain the Environment section and
will have the Bugs section extended by the text given.

\unit{dbxtool}

: : :

\section{Environment}

\conceal

\section{Files}

core default core file

.dbxinit local dbx initialization file

\section{Bugs}

\extend

The interaction between scrolling in the source

subwindow and dbx's regular expression search

commands is wrong. Scrolling should affect

where the next search begins, but it does not.

Figure 14: An Extended and a Concealed oonoweb

Section

3.6 Inclusions and Cross References

If \xrefInherit is speci�ed for a unit, then cross-
references are included, if \includeInherit is speci-
�ed, then the inherited documentation is physically in-
cluded. If none of these commands is speci�ed, then{
similar to source code{inherited documentation is not
mentioned at all, except when a section is extended
(see section 3.5) then the inherited text is included by
default.

Commands \xrefInherit and \includeInherit
can be speci�ed for individual sections. This gives
the user the possibility to reference big sections and
include small ones. Fig. 15 contains an example of
included, referenced, and extended sections.

A table of contents (i.e., a list of sections) can
simply be included with the \sectionlist command
(see Fig. 16). For each section it speci�es the corre-
sponding unit and the page number (printed documen-
tation) or a link (online documentation). The same
holds for the second level of inheritance, for which
\subsectionlist is used.

3.7 Views

In order to provide various views to the docu-
mentation we o�er the possibility to apply attributes
to sections. To each section (or subsection) various
attributes can be speci�ed by using the \attribute

command. Additionally, with \attributeOn and
\attributeOff it is possible to specify attributes
for more than one section. In Fig. 17 the attribute
professionalUser is speci�ed globally, i.e., for all
sections, whereas the attribute casualUser is speci-
�ed only for certain parts of the documentation.

The output of the documentation can be con-
trolled with a command line option. Various views
can be speci�ed for the documentation and cause the
output of sections that have the attribute speci�ed.
Where sections or subsections are inherited, they are
also considered for output if they have the attribute
speci�ed. Thus, multiple views of documents can be
generated.

4 Examples

The concepts discussed in the previous sections
can be applied to pure documentation, i.e., documen-
tation without any source code, to systems documen-
tation of conventional software systems, and to sys-
tems documentation of object-oriented software sys-
tems. The examples of the previous sections have
given a glimpse of how documentation can be reused in
the manual page domain, i.e., in user documentation
of tools and applications.

dbxtool
Name
dbxtool - SunView interface for the dbx

source-level debugger

Synopsis
dbxtool [-d] [-i] [-k] [-kbd]

[-I directory] [objectfile [corefile]]

Availability
see Availability in dbx. xref

Description dbxtool, a source-level

debugger for C, Pascal and FORTRAN 77

programs, is a standard tool that

runs within the SunView environment.

It accepts the same commands as dbx,

but provides a more convenient user

interface.

Usage
see Usage in dbx. xref

Files incl

core default core file

.dbxinit local dbx initialization file

: : :

Notes xref

see Notes in dbx.

Bugs
see Bugs in dbx. xref

The interaction between scrolling in

the source subwindow and dbx's regular

expression search commands is wrong.

Scrolling should affect where the

next search begins, but it does not.

Figure 15: Included, referenced, and extended (Bugs)
sections

Knuth's TEX and METAFONT are imple-
mented/documented as literate programs [4, 5] are ex-
cellent examples where documentation could be reused
to a big extent. We have studied these [1] and deter-
mined extensive implicit, ad-hoc reuse was done. This
ad-hoc reuse can easily be made explicit by using the
concepts for documentation reuse presented in this pa-
per. In fact, the results of this investigation strongly
motivated us in providing the prerequisites of explicit
documentation reuse.

\unit{dbxtool}

\section{Section List}

\sectionlist

\section{Name}

: : :

Figure 16: Section list

\unit{dbxtool}

\baseunit{dbx}

\attributeOn{professionalUser}

: : :

\section{Name}

\attribute{casualUser}

: : :

\section{Synopsis}

\attribute{casualUser}

: : :

\section{Description}

\attribute{casualUser}

: : :

\section{Options}

: : :

\section{See also}

\attribute{casualUser}

: : :

\section{Bugs}

: : :

Figure 17: Attribute speci�cation for the dbxtool doc-
umentation

Documenting an object-oriented software system
provides the most obvious applicability of documen-
tation reuse. If systems documentation and source
code are similarly structured, documentation reuse is
a matter of fact. This had been partly shown in [9]
already.

5 Conclusion

We have presented a comfortable and natural
means of reusing any kind of documentation. This can
be done by de�ning common structures, extracting
common information, extending and modifying sec-
tions, and de�ning various views on documentation.
The introduced concepts are being implemented as an
extension to the noweb literate programming system.
The future goal is to have software systems built from
reusable components and to have their documentation
built upon these components' documentation. Even
though we are still a long way from that scenario, lit-
erate programming and explicit documentation reuse
can help in improving the quality of our software sys-
tems and in increasing the productivity of software
engineers.

Still, many problems remain open for future re-
search. For example, so far we consider object-
oriented techniques only when weaving the documen-
tation, but not when tangling source code, because
object-oriented programming languages provide these
techniques anyway. It would be interesting to deter-
mine the usefulness of applying object-oriented tech-

niques via oonoweb to modular programming lan-
guages. Another issue not addressed so far is mul-
tiple inheritance. Experience will show whether there
is a need for multiple inheritance for documentation
similar to source code.

References

[1] Childs B., Sametinger J.: \Literate
Programming from the Viewpoint of Reuse," to
appear.

[2] Garlan, D., Shaw, M.: \An Introduction to
Software Architecture," in \Advances in
Software Engineering and Knowledge
Engineering," Vol. 1, World Scienti�c Publishing
Company, 1993, and Carnegie Mellon University,
Technical Report, CMU/SEI-94-TR-21.

[3] Knuth D.E.: \Literate Programming," The
Computer Journal, Vol. 27, No. 2, pp. 97-111,
1984.

[4] Knuth Donald E.: \TEX: The Program,"
Volume B of Computer & Typesetting,
Addison-Wesley, 1986.

[5] Knuth Donald E.: \METAFONT: The Program,"
Volume D of Computer & Typesetting,
Addison-Wesley, 1986.

[6] Knuth Donald E.: \Literate Programming,"
Stanford University Center for the Study of
Languages and Information, Leland Stanford
Junior University, 1992.

[7] Ramsey N.: \Literate programming simpli�ed."
IEEE Software, Vol. 11, No. 5, pp. 97-105,
September 1994.

[8] Ramsey N.: \The noweb Hacker's Guide,"
August 1994.

[9] Sametinger J.: \Object-oriented
Documentation," ACM Journal of Computer

Documentation, Vol. 18, No. 1, pp. 3-14,
January 1994.

The current address of Johannes Sametinger is
Department of Computer Science
Box 1910
Brown University
Providence, RI 02912

Current email addresses:
js@cs.brown.edu

bart@cs.tamu.edu

