VISUALIZATION OF PROGRAMS IN TEXTBOOKS

Peterse V and Bishop M
Department of Computer Science, University of Pretoria
May 1996

The analysis for a generic design of a hypothetical system that is called VIiZAUTHOR is discussed in this paper. It isan
open integrated visual programming environment that possesses all the necessary tools to develop and maintain visual
books. It is highly adaptable and therefore very versatile. It can also be used for literate programming or for the
development and maintenance of hypermedia databases.

The term visual book refers to an electronic textbook which can be used to teach the reader programming design
concepts as well as programming in a specific programming language.

Various specialised topics, each of which may contribute in a special way to the design of the proposed environment
with its unique properties, were identified. The best features of several environments that originated from divers subjects
within computer science, must be consolidated in VIiZAUTHOR. The fields of study involved are Literate Programming,
Visualization of programs, Visual programming, Integrated Programming Environments and Hypermedia.

1. Introduction

1.1 Computer based training

Computer Based Training (CBT) can have a meaningful positive influence on the efficiency in which the
learners retain knowledge after learning. Reinhardt (1995) refer to various experiments that confirm this
assartion.

Contributions that are made towards more effective learning and teaching with the aid of computers are
reported regularly at the bi-annua conference on multimedia an hypermediathat is held at the Univergty of
Pretoria. (Britz 1996; Ritchie 1994; Cronjé 1996; Hall 1994)

1.2 Visualization

It iswel known that visudization plays an important role in education and training. Authors such as (Bork,
1975), (Mayer, 1981), (Brown & Cunningham, 1990), (Cunningham et d, 1990) and (Quinn, 1991) have
shown by experiment that the use of visudizing has a meaningful influence on actua learning, where the
capability of the learner to gpply the obtained knowledge to new problemsis used to measure learning. The
use of diagrams and animations to visudize the different aspects of computer programs will attribute to the
vaue of visud books aslearning aids.

1.3 Availability

The possihility of usng computers to enhance learning has been extended by recent developments in
computer technology. Both software and hardware needed for successful use of computers in teaching is
more readily available than few years ago. A study conducted by Bender (1994) showed that the use of
computers in South-African schools has increased dramaticaly since 1990. The qudity and quantity of
avallable educationa softwareis accderdting.

1.4 Motivation

In the presence of evidence that CBT can enrich learning, it is considered worth the trouble to investigate in
the use of the newest technology to improve the qudity of teaching. The discusson of exigting environments
shows that the cregtion of an environment that is favourable for learning programming and programming
designisaredigic god. The intended learning environment will in this document, be referred to asavisual
book.

2 Research

While looking for an environment that has enough tools to create avisua book, several topics of computer
science have been considered.

It was found that computer scientists are inclined to create new environments to meet specific needs rather
than to use exigting environments. The result is a vast number of custom made environments which are not
usesble outside the intended need. Many of these do have excellent tools suitable to create a visua book.
Unfortunately most of them are inadequate in some or other way due to the fact that they were created with
some other god than avisua book in mind.

3 Existing Environments
3.1 Literate Programming Environments (LPE'Ss)

3.1.1 Introduction

Knuth (1984) coined the term 'Literate Programming” to describe a programming paradigm. According
to this paradigm the programs should be written in a style which makes the reading of a program an

enjoyable experience. The structure o the program mugt at al costs enhance the human understanding of

the program. Literate programming is thus a way to design and document programs primarily to explain to
a human what the computer is supposed to do. Thisisradicaly different from the traditiond viewpoint of a
program as a sequence of ingtructions to a computer to solve a problem.

3.1.2 Structure

The following diagram illugtrates the structure of a generic LPE. There are LPE's that deviate from this
structure, but the mgjority is based upon it.

Executable
Program
Source
Document
Typographic Text
Document Formatter

A source document of the literate program is created in the LPE. The LPE uses two different processesto
generate an executable program document and a typographic document from the source document. These
documentsiis respectively executed by a compiler, and printed with atext formatting tool.

3.1.3 Good properties

A \isua book can be seen as a collection of literate programs. The following are properties of literate
programs that avisua book should have;

. Pretty Printing

Pretty printing refers to the automatic use of fonts, text colours and layout to enhance the readability and
understanding of code. Use of pretty printing is a matter of course in modern programming environments
In his article on Paradox 7, Riccardi (1996) mentions that the leading editors uses pretty printing to
visudize the meaning of sentences.

As in LPE's and modern programming environments, VizAUTHOR will automaticaly gpply pretty printing

to al code in a visud book. This will ensure that the code in a visua book is formatted uniformly and
readable.

. Verigmilitudity

This property identified by Thimbleby (quoted by van Wyk, 1990) is concerned a precondition for true
literate programming. This requires that both the executable program and the typographic document must
be automatically generated from exactly the same source document of the literate program. In the LPE's
studied, this is accomplished with first level dataintegration (83.4.2).

With VIzAUTHOR it will be possible to trace through code, view the same code in WY SI\WY G-mode and
to print it with a date of the art desktop publisher. All this can be done by using third level data- and
control integration.

. Psychological arrangement

The structure and ordination of a literate program is dictated by psychologica terms and should not be
influenced by syntactic concerns (Brown and Childs, 1990). This property distinguish literate programs
from highly documented programs. Freedom of arrangement as implemented in LPE's can be used to
design avisua book with the most logica structure from an educationd point of view.

3.1.4 Constraints
Thefollowing are properties of LPE's which hinder the creation of visua books by usng aLPE done

. Code can not be traced interactively

Most LPE's uses a preprocessor to extract the code from the source document and produce it in a
executable format to a compiler to execute it. Not one of the LPE's studied, have tools to trace or step
through the generated code, let done tools to trace the code in the source document.

Generdly it is hard to determine the origin of code that caused an error when the generated program is
executed in a LPE. Interactive stepping and tracing through code has greet vaue for debugging and is vitd
inavisud book to visudize the execution of the code.

. Not adapted for documentsthat may contain multiple programs and partial programs.

The LPE's studied generates one complete executable program at atime, using the hole source document.
This is an unacceptable congtraint on a visud book. It must be possible to have multiple programs and
partid programsin avisua book.

. Not enough visualization

In most LPE's pretty printing is the only form of visudisation found. Some LPE's like LIPED (Bishop and
Gregson, 1992) and WHS (Brown and Czegjdo, 1990) visualizes the program structure in a diagram mainly
to ease up navigation.

3.2 Hypermedia Environments (HE'S)

3.2.1. Introduction

Hypermedia can be defined as multimedia containing hyperlinks. Multimedia is the use of multiple mediain
one document. A multimedia document can thus contain text, graphics, sound, music, animation, video,
virtud redlity, etc. Hyperlinks enable the reader to explore related data with the click of amouse. Akscyn
(1994) cdls hypermedia documents " Active documents'.

3.2.2 Structure
The following diagram depicts the generic structures of respectively a closed HE, and an open HE.

External External External
Data Data Data
Internal Linking
Data Information

Inaclosed HE dl datais stored in an internd format and can only be manipulated using the HE's editors.

Open HE's uses externad data sources which can not be edited within the HE. Linking information is either
sandardised (eg. HTML) or handled interndly.

3.2.3 Good properties
A visua book can be seen as a hypermedia document and must have the following hypermedia properties:

. Use of multimedia

More media means more methods can be used in explanaionsin avisud book. Woolf and Hall (1995) say
thet it can create a stimulating and motivating learning environment.

. Hyperlinks and guided tours

Hyperlinks induces a non-sequentiad order. According to Romiszowski (1990) their use can promote
learning if it is correctly used. A guided tour islike atutoria which can reved the necessary precognition as
well as the essence for the understanding of atopic in apsychologica correct order.

. Intelligent interaction

The fact that artificid intelligence can be built into a hypermedia document, makes it an gppeaing medium
for education and training. (Louw, 1994), (Woolf and Hall, 1995).

3.2.4 Constraints
The following congraints of HE's inhibits the creetion of avisud book with the aid of aHE aone:

. Importability

The mogt cited problem with HE's is it's complex and private data structure which makes it importable to
other HE's or platforms. This undesirable Stuation is commonly referred to as the "docu idand™ problem
and was identified by van Dam (1988) in 1987.

Recently open hypermedia environments such as Microcosm (Rake and Davis, 1994) have been
developed, but there is gill many problems in connection with the editing of externd documents and
updating of links because externad documents can be edited by externa editors without the awvareness of
the HE.

Codein aHE isnot executable

Normally code cannot be executable in a HE due to the complex internd data structure required by the

HE.

Intricate visualization of code

Although HE's are build to contain animation and graphics, no generd HE that contain tools to
automaticaly visualize any aspect of acomputer program could be found.

3.3 Visual Programming Environments (VPE'S)

3.3.1 Introduction

Visud programming is the use of visua expressons such as icons or diagrams, or grgphica manipulation
during programming. According to Burnett and Mclntyre (1995) visua programming can be done in a
visud environment or by using avisud language. Thisdistinction isillustrated in the accompanying diagram.

Visual Programming
Environments

VISUAL
PROGRAMMING

A visud programming environment

contains tools to visudize some VISUAL VISUAL
aspect of a program irrespective if
the language in which the program
iswritten, istextud or visud.

Visual Programming L anguages

A visud language uses grephica

PROGRAMMING ENVIRONMENT PROGRAMMING ENVIRONMENT

Visualisation of program Management and manipulation of
execution — —{ visual information

PROVIDE Microcosm

Programming by manipulating
— —{ GUI objectsgraphically
GASP Visual BASIC

Visualisation of datastructures

manipulation to create programs. If
the syntax of a language contains

Visualisation of program
structure and design
DOgMA and Regis

Spatially organizing program
components represented by icons.
Regisand PSIS

any form of visud expresson, it is

cdled avisud language.

The following systems is mentioned as examples in the diagram in the given categories:

PROVIDE (Moher, 1988)

A process visudization and debugging environment that uses computer graphics to depict process
states which can directly be manipulated by the user.

DOgMA (Sametinger and Schiffer, 1995)

A programming environment that supports visudization of dynamic aspects, such as animating
objects and their interactions.

Regis (Magee et al, 1994)

A programming environment in which the description of program structure is separated from the
programming of computational components.

Microcosm (Hall, 1996)

An application that uses generic links to process queries in a database that may contain dynamic
multimedia objects.

Visual BASIC (Linthicum, 1996)

A successful commercid VPE by Microsoft thet provides a suite of visud programming tools
including awindow painter, an application builder and an interactive graphica debugger.

. PSIS (Chang SK et al, 1995)

Pittsburgh-Sderno | conic System is a system in which the programmer design visua sentences by
manipulating icons on the screen.

3.3.2 Good properties
The following advantageous properties of VPE's were identified

. Code can betraced interactively

All the studied VPE's can visudize the execution of their programs by means of an interactive debugger.
This tool enables the user to execute a program step-by-step while monitoring and manipulating the values
of variadlesin the program.

Stepping and tracing can be utilised in a visual book to enforce the reader's understanding of a working
program.

. Visualization

Brook (1987) describes the capability of the human mind to interpret visud information as mans most
powerful conceptua tool. The use of visudization in avisud book will therefore enable the reader to make
better use of his own conceptud ability. The techniques used for visudization in VPE'sis mostly excellent.

. Class Browsers

Sametinger and Schiffer (1995) remarks that file browsers that were adequate before the Object Oriented
(OO0) eraare now obsolete. OO programming is unthinkable without a class browser. All die PE'sfor OO
programming that was studied, uses multi- paned windows for class browsers.

. Query By Image Content (QBIC)

The QBIC-technology andyses properties such as colour, texture, form, postion, etc. of an image and
determines numeric vaues of measurement for al the properties. The results can be used to decide if a
gven image answers to the criteria of the query

. Dynamic updating of associated views
Most VPE's update associated diagrams and code dynamicdly. This means that if one of severd
associated views are changed al the other views are updated according to the change to keep views

cong stent with each other.

3.3.3 Constraints
The following congraints of VPE's was identified:

. Only one-way automatic updating of associated views.

Unfortunately dynamic updating of associated views is usudly only done in one direction. For example if a
diagram is dynamically updated if the associated codeis changed, it will normaly not be possble to edit the
diagram. If the diagram can be edited, the code is hardly ever updated accordingly.

. Rigid program structure

Most VPE's does not cater for the programmers own documentation other than remarks within the code or

captions to generated diagrams. Probably this is so because designers of VPE's may fed that the
documentation that is automaticaly created is more than adequate.

. Limited aspects visualized.

Mos of the VPE's that was studied, only visudize sngular aspects of programs. In spite of thisfact, alarge
amount of aspects of programs to visudize and ways to visuadize them was found within the set of VPE'S
that were studied.

3.4 Integrated Environments (IE's)

3.4.1 Introduction

An integrated environment is an environment which integrates tools and applications needed in different
stages of a project for ease of use.

3.4.2 Levels of integration

Sharon and Bell (1995) defined the following levels of integration of toolsin an environmern.

. First level integration

The tools operate separately, each on it's own | User Interface (Optional)

internal data. Data is not shared but merey

trandferred from one tool to the other. They are Y

only linked through common import and export Tod e A e B

formats. Trandferring of data from one tool to the A

other is done by processes that are invoked v

mmualy by the use. Repository A Repository Repository
B C

. Second level

Tools are fully integrated and dl datais sored in

an uniform format in a common repository. The ET——]

use of the shared data by different tools is —

trangparent to the user. A tool from other b y RS e e

vendors can only be integrated if it uses the same A

metamodel. Some vendors publish the Datamanagement

metamodels for data Storage to encourage the Uniform common Repository External

development of third-party tools that can be Fepostony

integrated into their environments.

. Third level

Third party tools are bound in a framework Common U niatece

with acommon user interface. All the tools use Tool o ool eeee | Tod
the common repogitory which is managed by

the framework. Transferring of data from one Datamanagement and Integration

tool to the other is done automaticaly by Datafor o common Fesoston Datafor
processes that act transparently to the user. oo manegement of

3.4.3 Good properties

. Common user interface

The ease of use is enhanced by uniform ways to activate gpplications, use tools and manipulate data.

. Data I ntegration

Data integration deals with representation, conversion, and exchange of datain a common metamode!. Bell
and Sharon (1995) say that integration has become practicad due to recent sandards and popularity of
integration frameworks.

. Control Integration

Control integration deals with the updating of associated data from different tools. In OO programming this
can be done by passng of messages. Taschek (1995) explains how IBM's 'Common Object Request
Broker" CORBA technology and the 'Object Linking and Embedding” OLE technology of Microsoft
both boil down to client/server technology. The use of control integration between externd applications to
cregte, edit and manipulate the data in a visua book will diminate the need to create editors and
technol ogy- specific toolsto be used in VIZAUTHOR.

3.4.4 Constraints
. Limited dependency links

In the IE's studied it was found that linking between different tools was mostly established by embedding
the data of one tool within the data of the other. In VIZAUTHOR there is a need for two-way dependency
links to invoke automeatic two-way updating of associated objectsin avisud book.

. Limitation to certain tools

With second leve integration the tools that can be used is limited to the tools of the supplying vendor. Third
level integration in theory give awider range of applications and tools to choose from, but in practice the
integration of anew tool remains time consuming and tricky.

. Duplicating of data

With firgt leve integration shared data is often stored in the native form of both applications which shares
the data, as well as in a common portable format. Unilatera changing of data by a application can essly
lead to inconsi stent data.

4. Design

VIZAUTHOR mugt be an open, fully integrated, adaptable, literate programming environment which uses
hypermedia and mainly third party tools to visudise programs in order to teach programming design

concepts as well as programming in a gpecific programming language.

4.1 Open

The ease of trandferring data between a system and other systems determine the openness of a system. If
the system's internal data can be transferred to other systems, and if data from other gpplications can be
easily used, the system is open.

4.2 Integrated

It is obvious VIZAUTHOR must be based upon an established third leved integration standard that is able to
provide a vendor-neutra programming interface for integrating dl the different tools needed.

4.3 Adaptable

VIZAUTHOR must be independent of any formatter, programming language or specific tool. It can be seen
as an ided toolbox which can be used to easlly integrate the necessary tools in such a manner that any tool
can be added, withdrawn or replaced at any stage.

4.4 Literate Programming Environment

The data structure of documents created in VIZAUTHOR must dow psychologica ordering. Pretty printing
must be applied. The table of contents, index and cross references must be created automaticaly. A
method must be found not only to generate the literate verson and the executable verson of a program
from the exact same source, but aso to be able to interactively debug the literate verson of the program.

45 Hypermedia

VIZAUTHOR mugt provide interfaces to eadly integrate al known media. The use of hyperlinks and guided
toursis essentidl.

4.6 Third party tools

It will be counterproductive to try develop tools for VizAUTHOR which has dready be done on avery high
standard by others. VIZAUTHOR must provide means to utilise the vast source of existing tools and tools
that will be developed in the future optimaly.

4.7 Visualising

In his famous "No silver bullet”-paper, Brook (1987) said that software is invisible and cannot be
visudised because of it's complexity. Although it is indeed true that it will be impossble to visudise a
invisghble abgtract item such as a computer program, there is many ways to effectively visualise some aspects
of aprogram. VIZAUTHOR must integrate tools that can produce these automatically.

Host Applications

Compiler
Word Debugger Graphic
Processor ‘ Editor

VizAuthor

Management of Integrated data
and Integration facilities

I
e 7

Symbdl Teble Text Source Code Object Code

The design of VizAutor

5 Summary

The following table shows to what degree the different types of environments supports the mentioned useful
properties that VIZAUTHOR should have:

|—
o
A
<
3
m

Uniform User Interface

Adaptable

Multiple programs in one document

Use of Multimedia

Use of third party tools

Dependency

Integration of data

Switching between views

Hyperlinks and guided tours

Navigation in program sructure

Intelligent interaction

Freedom to order Psychologicaly

Compilation of psychologicaly ordered code

Visudization of program execution

Visudization of data and data structures

Visudization of program sructure

Visua methods to program

Manipulaion and management of Visud information

Generation of cross references and indexes

Autométic generation of documentation

OOOOOOO.OOOOOOOOOO.O.I;H
Ol@0eoo000|0|0|0|e0 o e e e e e O e m

O|I0|®|®0|0000e0|0|ee® o000 e e | e|r

Cle0 e e e e e oo0oe e e e e e oo e

0000 lg|o|@0|0|@|O|C|@|@|O|O|O|@|0|0|0|0|0|0|0

Automatic pretty printing

L egend

TPE Text oriented programming environments Never
LPE Literate programming environments Sometimes
HE Hypermedia editors Often
VPE Visud programming environments Mosly

IE Integrated environment ® Always

10

6.

Conclusion

While studying the different environments mentioned in this paper, it was sgnificant tha, dthough there is
much in common between the different types of environments, they have not borrowed from each other's
experiences. Every type of environment was custom made with only its own goa in mind. Therefore most
environments can not be used outside the domain in which they were created.

With this observation in mind, V1zAUTHOR must be created in such amanner that it will be able to contain
not only dl the tools that are concerned vita for the creation of visua books, or the tools that will not
condrain future ideas for visua books, but aso the superset of tools identified within the studied
environments to create a universal adaptable environment that can be used across the various specidised

topics.

References

1

10.

11.

13.

14.

15.

16.

Akscyn RM. Re-engineering the field: Hypertext in the 21st century. HY PERMEDIA '94 Proceedings of the
2nd Southern African Conference on Multimediaan Hypermedia. p. 1-10 (23 - 25 March 1994)

Bell R, Sharon D. Tools to Engineer New Technologies into Applications |EEE Software 12 (2) : 11-16 (March
1995)

Bender JM. Factor s that deter mine successful computer implementation in schools. M Ed Thesis, University of
Pretoria (1994)

Bishop JM; Gregson KM. Literate Programming and the LIPED Environment. Structured Programming. 13 (1)
pp 23-34. (1992)

Bork A. Learning throug graphics. Ten-year forcast for computers and communications : implications for
education. HumRRo Conf (Sept 1975)

Britz B. A case study of the use of multimedia and hypermedia in the corporate training environment.
HYPERMEDIA '96 Proceedings of the 3rd Southern African Conference on Multimedia an Hypermedia
University of Pretoria. (May 1996)

Brook FP Jr. No silver Bullet : Essence and Accidents of Software Engineering. Computer. 20 (4) :10-19.
(April 1987)

Brown JR; Cunningham S. Visualization in Higher Education. Academic Computing (March 1990)

Brown M; Childs B. An Interactive Environment for Literate Programming. Structured Programming, 11 (1) :
11-25. Springer-Verlag. (1990)

Brown M; Czejdo B. A Hypertext for Literate Programming. Advancesin Computing and Information ICCI "90.
International Conference Proceedings. pp 250-259. (23-26 May 1990)

Burnett MM; Mclntyre DW. Visual Programming. Computer 28 (3) : 14-16. (March 1995)

Chang SK, Costagliola G, Pacini G, Tucci M, Tortora G, Yu B, Yu JS. Visual-Language System for User
Interfaces. IEEE Software 12 (2) : 33-44 (March 1995)

Cronjé J. Threading a web for training. HY PERMEDIA '96 Proceedings of the 3rd Southern African Conference
on Multimedia an Hypermedia. University of Pretoria. (May 1996)

Cunningham S; Brown JR; McGrath M. Visualization in Science and Engineering Education. in|[EEE Tutorial
: Visualization in Scientific Computing. Edited by Nielson GM, Shriver B. |EEE Press (1990)

Louw WJA. Hypertext and its use in education. HY PERMEDIA '94 Proceedings of the 2nd Southern African
Conference on Multimedia an Hypermedia. University of Pretoria. p. 117-124 (March 1994)

Hall W. Ending the tyranny of the button: Extending the role of hypermedia in education and training.

HYPERMEDIA '94 Proceedings of the 2nd Southern African Conference on Multimedia an Hypermedia.
University of Pretoria. p. 11-18 (March 1994)

11

17.

18.

19.

21

23.

24,

25,

26.

217.

28.

3L

32.

Hall W. Zen and the Art of Linking. in HYPERMEDIA '96 Proceedings of the 3rd Southern African
Conference on Multimedia and Hypermedia (23 - 24 May 1996)

Knuth DE. Literate Programming. The Computer Journal, 27 (2) : 97-111. (1984)

Linthicum DS. Visual Basic 4.0: ready for the enterprise. DBMS9 (1) : 44-50. (Jan 1996)

Magee J, Dulay N, Kramer J. Regis: a constructive development environment for distributed programs.
Distributed System Engineering 1 : 304-312. The British Computer Society, The Institution of Electrical
Engineers and |OP Publishing Ltd. (1994)

Mayer RE. The Psychology of How Novices Learn Computer Programming. Computer Surveys, 13 (1) : 121-141
(March 1981)

Moher TG. PROVIDE : A Process Visualization and Debugging Environment | EEE Transactions on Software
Engineering. 14 (6) : 849 - 857 (June 1988)

Quinn G. Encoding and maintenance of information in visual working memory. in Mental Imagesin Human
Cognition. Edited by Logie RH, Denis M. Elsevier Science Publishers B.V. (North-Holland) (1991)

Rake S, Davis H. Microcosm: Reease 2.2 Documentation. Department of Electronics and Computer Science,
University of Southampton. UK (1994)

Reinhardt A. New Waysto Learn. BYTE 20 (3) : 50- 72 (March 1995)

Riccardi S. Paradox 7: Powerful 32-bit Database Build For Developers. PC Magazine South Africa. 4 (2) :
23,28 (March 1996)

Ritchie I. Hypermedia in education - will the promise ever be fulfilled ? HY PERMEDIA '94 Proceedings of the
2nd Southern African Conference on Multimedia an Hypermedia. University of Pretoria. p. 19 - 25 (March 1994)

Romiszowski A. The Hypermedia/Hypermedia Solution - But What Exactly is the Problem ?. In Designing
Hypermediafor Learning. edited by Jonassen DH and Mandl H. Springer-Verlag. (Berlin) p. 321 - 373 (1990)

Sametinger J; Schiffer S. Design and Implementation Aspects of an Experimental C++ Programming
Environment. Software - Practice and Experience. 25 (2) : 111 - 128 (Feb 1995)

Sharon D, Bell R. Tools That Bind: Creating Integrated Environments. |IEEE Software 12 (2) : 76-85 (March
1995)

Taschek J. IBM, Microsoft share client/server vision in PCWeek executive edition South Africa, 1 (2) : 23-24 (9
22 Oct 1995)

Van Dam A. Hypertext '87 Keynote Address. Communications of the ACM, 31 (7) : 887 - 895. (July 1988)

Van Wyk CJ. Literate Programming : An Assessment In Literate Programming. Commu nications of the ACM,
33 (3) : 361-365. (March 1990)

Woolf BP, Hall W. Multimedia Pedagogues : Interactive Systems for Teaching and Lear ning. Computer 28 (5) :
74-80 (May 1995)

12

